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Vectors and Linear Spaces

Vectors provide a mathematical formulation for the notion of direction, thus
making direction a part of our mathematical language for describing the physi-
cal world. This leads to useful applications in physics and engineering, notably
in connection with forces, velocities of motion, and electrical fields. Vectors
help us to visualize physical quantities by providing a geometrical interpreta-
tion. They also simplify computations by bringing algebra to bear on geometry.

1.1 Scalars and vectors

In geometry and physics and their engineering applications we use two kinds
of quantities, scalars and vectors. A scalar is a quantity that is determined
by its magnitude, measured in units on a suitable scale. ! For instance, mass,
temperature and voltage are scalars.

A vector is a quantity that is determined by its direction as well as its mag-
nitude; thus it 1s a directed quantity or a directed line-segment. For instance,
force, velocity and magnetic intensity are vectors.

We denote vectors by boldface letters a, b, r, etc. [or indicate them by arrows,
a, 5, 7, etc., especially in dimension 3]. A vector can be depicted by an arrow,
a line-segment with a distinguished end point. The two end points are called
the initial point (tail) and the terminal point (tip):

1. length (of the line-segment OA)
A 2. direction
— attitude (of the line OA)
— orientation (from O to A)

0

The length of a vector a is denoted by [a|. Two vectors are equal if and only

1 In this chapter scalars are real numbers (elements of R}).
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if they have the same length and the same direction. Thus,
a=b <= |aj]=|b|] and atth.

Two vectors have the same direction, if they are parallel as lines (the same
attitude) and similarly aimed (the same orientation). The zero vector has
length zero, and its direction is unspecified. A unit vector u has length one,
|lu] = 1. A vector a and its opposite —a are of equal length and parallel, but
have opposite orientations.

1.2 Vector addition and subtraction

Given two vectors a and b, translate the initial point of b to the terminal
point of a (without rotating b). Then the sum a+b is a vector drawn from the
initial point of a to the terminal point of b. Vector addition can be visualized
by the triangle formed by vectors a,b and a+b.

b b

a a+b a a

Vector addition b

Vector addition is commutative, a4+ b = b+a, as can be seen by inspection of
the parallelogram with a and b as sides. It is also associative, (a+b)+c =
a+(b+c), and such that two opposite vectors cancel each other, a+(—a) = 0.
Instead of a+ (—b) we s1mply write the dlﬂ'erence as a— b. Note the order

in BA OA 0_1)3 when a—OA and b= OB

0 b B

Vector subtraction
Remark. To qualify as vectors, quantities must have more than just direction
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and magnitude — they must also satisfy certain rules of combination. For in-
stance, a rotation can be characterized by a direction a, the axis of rotation,
and a magnitude a = |a|, the angle of rotation, but rotations are not vectors
because their composition fails to satisfy the commutative rule of vector addi-
tion, a+b = b+4a. The lack of commutativity of the composition of rotations
can be verified by turning a box around two of its horizontal axes by 90°:

P i C 90°

-~
90°

The terminal attitude of the box depends on the order of operations. The axis
of the composite rotation is not even horizontal, so that neither a+b nor b+a
can represent the composite rotation. We conclude that rotation angles are not
vectors — they are a different kind of directed quantities. 1

1.3 Multiplication by numbers (scalars)

Instead of a+a we write 2a, etc., and agree that (—1)a = —a, the opposite of
a. This suggests the following definition for multiplication of vectors a by real
numbers A €R: the vector Aa has length |Aa| = |A||a] and direction given by
(for a # 0)

Aafta if A>0,

datla if A<O.

Numbers multiplying vectors are called scalars. Multiplication by scalars, or
scalar multiplication, satisfies distributivity, A(a +b) = Aa+ Ab, (A4 p)a =
Aa + pa, associativity, (Au)a = A(ua), and the unit property, la = a, for all
real numbers A, 4 and vectors a,b.

1.4 Bases and coordinates

In the plane any two non-parallel vectors e, e; form a basis so that an arbitrary
vector in the plane can be uniquely expressed as a linear combination a =
a,e; + ages. The numbers ay, as are called coordinates or components of the
vector a with respect to the basis {e;,ez}.

When a basis has been chosen, vectors can be expressed in terms of the
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coordinates alone, for instance,
e = (1,0), ez = (0, 1), a= ((11,(12).

If we single out a distinguished point, the origin O, we can use vectors to label

—_
the points A by a = OA. In the coordinate system fixed by O and {e;, ez}
we can denote points and vectors in a similar manner,

point A = (a1, as), vector a = (a1, az),

since all the vectors have a common initial point O.
In coordinate form vector addition and multiplication by scalars are just
coordinate-wise operations:

(a1,a3) + (b1, b2) = (a1 + b1, a2 + b2),
)\((11, az) = (/\al, )\(12).

Conversely, we may start from the set R x R = {(z,y) | z,y € R}, and
equip it with component-wise addition and multiplication by scalars. This
construction introduces a real linear structure on the set R? = R x R making
it a 2-dimensional real linear space R2. The real linear structure allows us to
view the set R? intuitively as a plane, the vector plane R2. The two unit points
on the axes give the standard basis

e = (1,0), ey = (0, 1)

of the 2-dimensional linear space RZ.

In our ordinary space a basis is formed by three non-zero vectors e;,es, es
which are not in the same plane. An arbitrary vector a can be uniquely
represented as a linear combination of the basis vectors:

a=aye; + azey + azes.

The numbers ay, ag, a3 are coordinates ? in the basis {ei, e, es}. Conversely,
coordinate-wise addition and scalar multiplication make the set

RxRxR={(z,94,2) | z,y,z €R}

a 3-dimensional real linear space or vector space R3. In a coordinate system
fixed by the origin O and a standard basis {e1,e2,es} a point P = (z,y, 2)
and its position vector

—
OP =ze; +yey + zes

have the same coordinates. 3

2 Some authors speak about components of vectors and coordinates of points.
3 Since a vector beginning at the origin is completely determined by its endpoints, we will
sometimes refer to the point r rather than to the endpoint of the vector r.
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1.5 Linear spaces and linear functions

Above we introduced vectors by visualizing them without specifying the grounds
of our study. In an axiomatic approach, one starts with a set whose elements
satisfy certain characteristic rules. Vectors then become elements of a math-
ematical object called a linear space or a vector space V. In a linear space
vectors can be added to each other but not multiplied by each other. Instead,
vectors are multiplied by numbers, in this context called scalars. *

Formally, we begin with a set V' and the field of real numbers R. We associate
with each pair of elements a,b € V a unique element in V, called the sum and
denoted by a+b, and to each a € V and each real number X € R we associate
a unique element in V| called the scalar multiple and denoted by Aa. The set
V is called a linear space V over R if the usual rules of addition are satisfied
for all a,b,ceV

at+b=Db+a commutativity
(a+b)+c=a+(b+c) associativity
a+0=a zero-vector 0
a+(—a)=0 opposite vector —a

and if the scalar multiplication satisfies

A(a+b)=2Xa+ )b
(A+pwa=2ra+pua
(An)a = A(ua) associativity

la=a unit property

} distributivity

for all A\, € R and a,b € V. The elements of V' are called vectors, and the
linear space V 1is also called a vector space. The above axioms of a linear space
set up a real linear structure on V.

A subset U of a linear space V is called a linear subspace of V if it is closed
under the operations of a linear space:

a+beU for a,beU,
AaeU for A€eR,aeU.

For instance, R? is a subspace of R3,
A function L : U — V between two linear spaces U and V is said to be
linear if for any a,b e U and A € R,

L(a+b) = L(a) + L(b) and
L(ia) = AL(a).

4 Vectors are not scalars, and scalars are not vectors. Vectors belong to a linear space V,
and scalars belong to a field F. In this chapter F = R.
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Linear functions preserve the linear structure. A linear function V — V is
called a linear transformation or an endomorphism. An invertible linear func-
tion U — V is a linear isomorphism, denoted by U ~ V. 3

The set of linear functions U — V is itself a linear space. A composition
of linear functions is also a linear function. The set of linear transformations
V — V is a ring denoted by End(V). Since the endomorphism ring End(V)
is also a linear space over R, it is an associative algebra over R, denoted by
EndR(V). 6

1.6 Linear independence; dimension

A vector b € V is said to be a linear combination of vectors a;,ay,...,ax if
it can be written as a sum of multiples of the vectors a;, as, ..., ag, that is,

b =MXa; + Azas + -+ -+ A\par  where )\I,Az,...,)\kER.

A set of vectors {a;,as,...,ar} is said to be linearly independent if none of the
vectors can be written as a linear combination of the other vectors. In other
words, a set of vectors {ai,as,...,ar} is linearly independent if Ay = Ay =
...= A = 0 is the only set of real numbers satisfying

A1a; + Agag + - -+ Agag = 0.
In a linear combination

b =M a; + das + -+ Apag

of linearly independent vectors aj,as,...,ar the numbers Ay, Ag, ..., Ax are
unique; we call them the coordinates of b.
Linear combinations of {a;,ay,...,ax} C V form a subspace of V; we say

that this subspace is spanned by {a;,ag,...,ar}. A linearly independent set
{a1,as,...,ax} C V which spans V is said to be a basis of V. All the bases
for V have the same number of elements called the dimension of V.

QUADRATIC STRUCTURES

Concepts such as distance or angle are not inherent in the concept of a linear
structure alone. For instance, it is meaningless to say that two lines in the
linear space R? meet each other at right angles, or that there is a basis of

5 Finite-dimensional real linear spaces are isomorphic if they are of the same dimension.

6 A ring R is a set with the usual addition and an associative multiplication R X R =+ R
which is distributive with respect to the addition. An algebra A is a linear space with a
bilinear product A x A = A.
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equally long vectors e;, ez in R2. The linear structure allows comparison of
lengths of parallel vectors, but it does not enable comparison of lengths of non-
parallel vectors. For this, an extra structure is needed, namely the metric or
quadratic structure.

The quadratic structure on a linear space R™ brings along an algebra which
makes it possible to calculate with geometric objects. In the rest of this chapter
we shall study such a geometric algebra associated with the Euclidean plane
R

1.7 Scalar product
We will associate with two vectors a real number, the scalar product a-b € R of
a,b € R2, This scalar valued product of a = aje; + ase; and b = bye; + baes
is defined as

in coordinates a-b=aib; +azb;

geometrically a-b =|a||bjcosp
where ¢ [0 < ¢ < 180°] is the angle between a and b. The geometrical

construction depends on the prior introduction of lengths and angles. Instead,
the coordinate approach can be used to define the length

la| =+/a- a,
which equals |a] = y/a? + a2, and the angle given by
a-b
|a||b]
Two vectors a and b are said to be orthogonal, if a-b = 0. A vector of
length one, |a] = 1, is called a unit vector. For instance, the standard basis
vectors e; = (1,0), ea = (0,1) are orthogonal unit vectors, and so form an

orthonormal basis for R?.
The scalar product can be characterized by its properties:

cos p =

(a+b)-c=a-c+b-c
(Aa) -b = A(a-b)
a-b=b-a symmetric
a-a>0 for a#0 positive definite.

} linear in the first factor

Symmetry and linearity with respect to the first factor together imply bilin-
earity, that is, linearity with respect to both factors. The real linear space R?
endowed with a bilinear, symmetric and positive definite product is called a
Euclidean plane R2.
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All Euclidean planes are isometric * to the one with the metric/norm

r=ze; +ye; — |r| = /22 + 2.

In the rest of this chapter we assume this metric structure on our vector plane
R2.

Remark. The quadratic form r = ze; + yes — |r|> = z2 + y? enables us to
compare lengths of non-parallel line-segments. The linear structure by itself
allows only comparison of parallel line-segments. 1

1.8 The Clifford product of vectors; the bivector

It would be useful to have a multiplication of vectors satisfying the same axioms
as the multiplication of real numbers — distributivity, associativity and commu-
tativity — and require that the norm is preserved in multiplication, |ab| = |a||b]|.
Since this is impossible in dimensions n > 3, we will settle for distributivity and
associativity, but drop commutativity. However, we will attach a geometrical
meaning to the lack of commutativity.

Take two orthogonal unit vectors e; and ey in the vector plane R2. The
length of the vector r = ze; + yes is |r| = /22 + y%. If the vector r is
multiplied by itself, rr = r?, ® a natural choice is to require that the product
equals the square of the length of r,

r? =|r|%
In coordinate form, we introduce a product for vectors in such a way that
(ze1 + yes)” = 22 + 42
Use the distributive rule without assuming commutativity to obtain
z%e? + y?el + zy(ere; + ezer) = 2% + 4.

This is satisfied if the orthogonal unit vectors e, ez obey the multiplication
rules

2 _ o2 — 1 = =1
°1 =€z which correspond to le1 = fes|
ejegs = —egeq] e 1 e
Use associativity to calculate the square (e1e2)2 = —e%e% = —1. Since the

square of the product ejes is negative, it follows that ejes is neither a scalar

7 An isometry of quadratic forms is a linear function f : V — V' such that Q'(f(a)) = Q(a)
forallag V.

8 The scalar product a- b is not the same as the Clifford product ab. Instead, the two
products are related by a-b = 1(ab + ba).



1.9 The Clifford algebra Céq 9

nor a vector. The product is a new kind of unit, called a bivector, represent-
ing the oriented plane area of the square with sides e; and e;. Write for short
€12 — ejeq.

€2

€12 —__]

We define the Clifford product of two vectors a = aye; + ases and b = bye; +
baes to be ab = a1by +azba+(a1b2 —azbi)eis, asum of a scalar and a bivector.

1.9 The Clifford algebra C/;

The four elements

1 scalar
e, e vectors
el bivector

form a basis for the Clifford algebra Cf; ° of the vector plane R2, that is,
an arbitrary element

u =1ug +uje; +uzez + ujze12 in Cly

is a linear combination of a scalar ug, a vector uje; + uses and a bivector

10
ujze)2.

Example. Compute ejejs = ejejez = ez, ejze; = ejege; = —e%eg = —e2,
eze;z = ezeje; = —ejes = —e; and ejse; = ejed = e;. Note in particular
that e;s anticommutes with both e; and e,. ]

The Clifford algebra Cfs is a 4-dimensional real linear space with basis elements

9 These algebras were invented by William Kingdon Clifford (1845-1879). The first an-
nouncement of the result was issued in a talk in 1876, which was published posthumously
in 1882. The first publication of the invention came out in another paper in 1878.

10 The Clifford algebra C¢, of R™ contains O-vectors (or scalars), 1-vectors (or just vec-
tors), 2-vectors, ..., n-vectors. The aggregates of k-vectors give the linear space C{, a

multivector structure C€, = R R" @ /\2 R"d...& A"R".
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1, e1, e3, e15 which have the multiplication table

el €2 €12

el 1 e19 e
e |—e2 1 —e;
€12 —e9 e -1

1.10 Exterior product = bivector part of the Clifford product
Extracting the scalar and bivector parts of the Clifford product we have as
products of two vectors a = aje; + ase; and b = bie; + beey

a-b=aib +asbs, the scalar product ‘a dot b’,

aAb = (a1by — azbi1)erz, the exterior product ‘a wedge b’.
The bivector a Ab represents the oriented plane segment of the parallelogram

with sides a and b. The area of this parallelogram is |a;bs —azb1|, and we will
take the magnitude of the bivector aAb to be this area |aAb] = |a1bs —azby|.

y

! Area = ]a1b2 — a2b1|
. — — | "

1 z

The parallelogram can be regarded as a kind of geometrical product of its

sides:
a

a

The bivectors a A b and b A a have the same magnitude but opposite senses
of rotation. This can be expressed simply by writing

aAb=-bAa.



1.11 Components of a vector in given directions 11

Using the multiplication table of the Clifford algebra C£2 we notice that the
Clifford product

(a1e1 + azez)(brey + baez) = a1by + azbz + (a1ba — aszbi)e;s

of two vectors a = aje; + azes and b = bje; + boes is a sum of a scalar
a-b = a1b1 + azbz and a bivector aAb = (a1bs — azbi)e;2. ! In an equation,

ab=a-b+aAb. (a)
The commutative rule a-b = b - a together with the anticommutative rule
aAb=—b Aa implies a relation between ab and ba. Thus,

ba=a-b-aAb. (d)

Adding and subtracting equations (a) and (b), we find
1 1
a-b= 5(ab+ba) and aAb= E(ab—ba).

Two vectors a and b are parallel, a || b, when they commute, ab = ba, that
is, aAb =0 or ajbs = azb;, and orthogonal, alb, when they anticommute,
ab = —ba, that is, a-b = 0. Thus,

ab=ba <= al|lb <= aAb=0 <= ab=a-b,
ab=-ba <= alb <= a-b=0 <= ab=aAb.

1.11 Components of a vector in given directions

Consider decomposing a vector r into two components, one parallel to a and
the other parallel to b, where a }f b. This means determining the coefficients
a and S in the decomposition r = aa+ Bb. The coeflicient o may be obtained
by forming the exterior product r Ab = (aa+ fb) Ab and using bA b = 0;
this results in r Ab = a(aAb). Similarly, aAr = f(a Ab). In the last two
equations both sides are multiples of e;2 and we may write, symbolically, 12

rAb g aAr
a= = .
aAb

T aAb’

11 The bivector valued exterior product a A b = (ajbz — azb1)ey2, which represents a plane
area, should not be confused with the vector valued cross product ax b = (a1b2 —azb;)es,
which represents a line segment.

12 As an element of the exterior algebra AR? the bivector a A b is not invertible. As an
element of the Clifford algebra C£; a non-zero bivector a A b is invertible, but since the
multiplication in C£; is non-commutative, it is more appropriate to write

a=(rAb)(aAb)~! and f=(aAr)(aAnb)”l.

However, since rAb, aAr and a Ab commute, our notation is also acceptable.
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The coefficients & and 3 could be obtained visually by comparing the oriented
areas (instead of lengths) in the following figure:

r=aa+ b rAb
b v\\
aAb
r
Gb
alAr
0 aa :
Ezercise 5

1.12 Perpendicular projections and reflections

Let us calculate the component of a in the direction of b when the two vectors
diverge by an angle , 0 < ¢ < 180°. The parallel component a is a scalar
multiple of the unit vector b/|b]:
b b
ay; = |al cosp— = |a||b]cos p—.
In other words, the parallel component aj is the scalar product a-b =

|a||b|cos ¢ multiplied by the vector b=! = b/|b|?, called the inverse ® of
the vector b. Thus,

= (a-b)— a ayL

> b
a

The last formula tells us that the length of b is irrelevant when projecting into
the direction of b.
The perpendicular component a; is given by the difference
aj=a—3a =a— (a-b)b‘1
=(ab—a-b)b~!=(aAb)b~ L

13 The inverse b~! of a non-zero vector b € R2 C C#, satisfies b~1b = bb=! =1 in the
Clifford algebra Cf2. A vector and its inverse are parallel vectors.
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Note that the bivector ej2 anticommutes with all the vectors in the ejes-plane,
therefore
(aAb)b~!=—-b"}(aAb)=b ! (bAa)=—(bAa)b~l.
The area of the parallelogram with sides a, b 1s seen to be
laib| = |aAb| = |a||b|sine
where 0 < ¢ < 180°.

The reflection of r across the line a is obtained by sending r =) +r to
r' =1 —ry, where r = (r-a)a~!. The mirror image r’ of r with respect to
a is then

r=(r-a)a”! —(rAa)a!
=(r-a—rAa)al
=(a-r+aAr)a?
= ara~!

and further

r = (2a-r—ra)a~!
a-r

=2——a-r.
a2

The formula r' = ara™! can be obtained directly using only commutation

properties of the Clifford product: decompose r = r|| + ry, where ar||a’1 =
rjaa~! =y, while ar;a™!

The composition of two reflections, first across a and then across b, is given
by

=-rjaa~!=-r,.

r—r' =ara~! 5 r” =br'b-! =b(ara~!)b~! = (ba)r(ba)~!.

PII

The composite of these two reflections is a rotation by twice the angle between
a and b. As a consequence, if a triangle ABC with angles «, 3, is turned
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about its vertices A, B,C by the angles 2¢, 28,2y in the same direction, the
result is an identity rotation.
Ezercises 6,7

1.13 Matrix representation of Cly

In this chapter we have introduced the Clifford algebra Cf; of the Euclidean
plane R?. The Clifford algebra Cf; is a 4-dimensional algebra over the reals
R. It is isomorphic, as an associative algebra, to the matrix algebra of real
2 x 2-matrices Mat(2,R), as can be seen by the correspondences

10
1_(0 1>’
(1 0 (01
“=\o 10 2T\1 o)
(0 1
e X -1 0 .

However, in the Clifford algebra Cf; there is more structure than in the matrix
algebra Mat(2,R). In the Clifford algebra C¢; we have singled out by definition
a privileged subspace, namely the subspace of vectors or 1-vectors R% C Cls.
No similar privileged subspace is incorporated in the definition of the matrix
algebra Mat(2,R). *

For arbitrary elements the above correspondences mean that
up+uy uz+ u12>

ug + uie; + uzez + uizen
Ug — U1z U — U

and
%[(a +d)+ (a—d)e; + (b+ c)ea + (b — c)era] ~ (Z 3) .

In this representation the transpose of a matrix,
a b\' _fa ¢
c d) ~\b d)’

u = ug + uje; + ugez — uizer?

corresponds to the reverse

14 For instance, we might choose u; = V2e1 + ej2, uz = e3. This also results in the
commutation relations u? =1, u% = 1, ujuz + ugu; = 0, which define a different
representation of C¢; as Mat(2,R).
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of u = ug + ujer + ugey + ujzerz in Cfz. The complementary (or adjoint)

matrix
(d "’) [:(ad—bc)(z 3)_1 for ad—b6¢0]

— a
corresponds to the Clifford-conjugate 1°
U = ug — uie; — Uzey — Ujge13.

The reversion and Clifford-conjugation are anti-involutions, that is, involutory
anti-automorphisms,

1 £n
1]

8 s
e &
e' ez
i
SIS
ISR

We still need the grade involute

@t = up — ure; — uzey + Urzer

for which 4 =4~ = a".
Exercises

1. Let a=e3 —ej3, b =e; +e3, ¢ =1+ ep. Compute ab, ac. What did you
learn by completing this computation?

2. Let a=ey+eqs, b= %(1 + e;1). Compute ab, ba. What did you learn?

3. leta=1+e;, b=—1+4+e;1, c=e; +ey. Compute ab, ba, ac, ca, bc and
cb. What did you learn?

4. Let a = %(1 +e1), b=-e; + e;z. Compute a2, b2.

5. Let a=e; —2e;, b=e; +e3, r = be; — e;. Compute a, 3 in the
decomposition r = aa + Sb.

6. Let a = 8e; — ez, b = 2e; + e3. Compute aj, a; .

7. Let r = 4e; — 3e;, a = 3e; — ez, b = 2e; + es. Reflect first r across a
and then the result across b.

8. Show that for any u € Cf, uu = 4u € R, and that u is invertible, if

u@ # 0, with inverse
~1_ U
u = —.
uil
9. Let u=1+e; + e13. Compute u~!. Show that
! = a(ud)"! # (ui) 14, vl = (du)"ld # 4(du)"! and
™l = @(ud)" # (ui)"ta, vt = (du)"la £ G(au) L

15 In some countries a vector u = uje; + uzez € R? is denoted by @ in handwriting, but
this practice clashes with our notation for the Clifford-conjugate.



16 Vectors and Linear Spaces

10. Consider the four anti-involutions of Mat(2,R) sending

a b ¢ a ¢ a -—c d b d -b

cd)] ° \bd)'\-b d)' \c a)’\= a)
Define two anti-automorphisms ¢, § to be similar, if there is an
intertwining automorphism v such that a4y = 483. Determine which ones of

these four anti-involutions are similar or dissimilar to each other. Hint:
keep track of what happens to the matrices

1 0 01 0 -1
0 -1/’ 1 0/’ 1 0
with squares I, I, and —1.

Remark. In completing the exercises, note that an arbitrary element of Cf
is most easily perceived when written in the order of increasing indices as

up + uie; + uzey + ujzeps. |

Solutions

1. ab=ac=1-e; + e3 — e13; one can learn that ab=ac % b=c.

2. ab =0, ba = ey + ej3; one can learn that ab =0 ba = 0 (and also that

ba=a#Hb=1).

3.ab=ba=0, ac=14+e;1+es+es ca=1+e; +e;—eqz,
be=1—e; —e; +e3, cb=1—e; — ey — ejs; one can learn that
ab=ba=0%ac=0or ca=0.

.al=ga, b>=0.

. r=2a+ 3b.

cay= 6e; + dez, a; = 2e) — 4ey.

. ¥ =ara~! = 5e;, r’ =br'b™! = 3e; + 4e,.

cuti=uu=ul—u?—ultud, eR

u™l=1-—e; — ey and (u@t)~ 4 = d(iu)"! =1+ 3e; — 4e; — 5e;2 and

d(fdu)~! = (uit) "1 = 1 + 3e; + 4e; — eya.

10. Only two of the anti-involutions are similar,

(0 )= 7)o )-(00)

as can be seen by choosing the intertwining automorphism

(2 D50 ) C D5

for which ay = ~vp.

© 00 =N OO
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Complex Numbers

The feature distinguishing the complex numbers from the real numbers is that
the complex numbers contain a square root of —1 called the imaginary unit
i = v/—1. ! Complex numbers are of the form

z=z+1y

where z,y € R and ¢ satisfies i? = —1. The real numbers z,y are called the
real part = Re(z) and the imaginary part y = Im(2). To each ordered pair
of real numbers z,y there corresponds a unique complex number z + iy.

A complex number z + iy can be represented graphically as a point with
rectangular coordinates (z,y). The zy-plane, where the complex numbers are
represented, is called the complex plane C. Its z-axis is the real azis and y-axis
the imaginary azis.

A complex number z = z + iy has an opposite —z = —z — iy and a complez
conjugate Z = x — iy, ? obtained by changing the sign of the imaginary part.

Im
z=z+yi
i..
1 Re
—z=—-z—1y =z —1y

1 Electrical engineers denote the square root of —1 by j = +/-1.
2 In quantum mechanics the complex conjugate is denoted by z* = & — 1y.

18
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The sum of two complex numbers is computed by adding separately the real
parts and the imaginary parts:

(214 i) + (22 +1y2) = (21 + z2) + i(y1 + v2)-

Addition of complex numbers can be illustrated by the parallelogram law of
vector addition.
The product of two complex numbers is usually defined to be

(z1 + 1) (22 + iy2) = 122 — yiy2 + i(z192 + n122),
although this result is also a consequence of distributivity, associativity and
the replacement 2 = —1.
Examples. 1. i3 =—i, i*=1 ® =i 2. (14+4)?=2i 1
The product of a complex number 2 = z + iy and its complex conjugate

Z = z — iy is a real number zZ = z2 + y?. Since this real number is non-zero
for z # 0, we may introduce the inverse

or in coordinate form
1 z-uy
c+iy z2+y?

Division is carried out as multiplication by the inverse: z1/2; = 2125 L
If we introduce polar coordinates 7, ¢ in the complex plane by setting z =
rcosy and y = rsinyp, then the complex number z = z+ iy can be written as

z=r(cos p +isinyp).

This is the polar form of z. 3 The distance r = /22 + y? from z to 0 is
denoted by |z| and called the norm of z. Thus *

2| = Vzz.

The real number ¢ is called the phase-angle or argument of z [sometimes all
the real numbers ¢ + 2mk, k € Z, are assigned to the same phase-angle].

The familiar addition rules for the sine and cosine result in the polar form
of multiplication,

7129 = r1recos(ip1 + p2) + isin(p1 + p2)],

3 Electrical engineers denote the polar form by r/¢.
4 The scalar product Re(21%2) is compatible with the norm |z|. Incidentally, Im(z;z2}
measures the signed area of the parallelogram determined by z; and z;.
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of complex numbers
z1 =ri(cospy +ising;) and z3 = ro(cos g2 + isinps).
Thus, the norm of a product is the product of the norms,
|z122] = |1]]zl,

and the phase-angle of a product is the sum of the phase-angles (mod 2).
The exponential function can be defined everywhere in the complex plane by
22 28 2
exp(z)=1+z+?+g-+...+ﬁ

We write e* = exp(z). The series expansions of trigonometric functions result

+...

in Euler’s formula
€' = cosp + isinp
which allows us to abbreviate z = r(cos ¢ + isinp) as z = re'®.

Im Im

z=z+1y z=re'¥

e

z Re Re
The exponential form of multiplication seems natural:

(r1€791)(r2e9?) = (ri7q)ei(¥rte3),
Powers and roots are computed as
(re*?)* = rmein?  and  Vreiw = frefe/ntiZtkin L e,

Examples. (1+4)~'={(1-i), Vi=xg(1+i), ¢7/2=i. 1

2.1 The field C versus the real algebra C

Numbers are elements of a mathematical object called a field. In a field numbers
can be both added and multiplied. The usual rules of addition

a+b=b+a commutativity
(a+bd)+c=a+(b+c) associativity
a+0=a zero 0

a+(—a)=0 opposite —a of a
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are satisfied for all numbers a,b, ¢ in a field F. The multiplication satisfies

g‘zb:bl‘; - Z;i I;cc } distributivity

(ab)e = a(be) associativity

la=a unity 1

aa"l =1 inverse a=! of a # 0
ab = ba commutativity

for all numbers a, b, ¢ in a field F. The above rules of addition and multiplica-
tion make up the azioms of a field F.

Examples of fields are the fields of real numbers R, complex numbers C,
rationals Q, and the finite fields F, where ¢ = p™ with a prime p. °

It is tempting to regard R as a unique subfield in C. However, C contains
several, infinitely many, subfields isomorphic to R; choosing one means intro-
ducing a real linear structure on C, obtained by restricting a in the product
CxC —C, (a,b) = ab to be real, a € R. Such extra structure turns the field
C into a real algebra C.

Definition. An algebra over a field F is a linear space A over F together with
a bilinear ® function A x A — A, (a,b) = ab. ” 1

To distinguish the field C from a real algebra C let us construct C as the
set R x R of all ordered pairs of real numbers z = (z,y) with addition and
multiplication defined as

(z1,31) + (22,%2) = (€1 + 22,11 + 32) and
(z1,91) (22, 32) = (2122 — Y192, Z192 + T2y1)-
The set R x R together with the above addition and multiplication rules makes
up the field C. The imaginary unit (0, 1) satisfies (0,1)2 = (—1,0).
Since (z1,0) + (22,0) = (21 + 22,0) and (z1,0)(z2,0) = (z122,0), the real
field R is contained in C as a subfield by R — C, z — (z,0). If we restrict
multiplication so that one factor is in this distinguished copy of R,

(X, 0)(z,y) = (Az, Ay),

then we actually introduce a real linear structure on the set R? = R x R. This

5 The finite fields Fq, where ¢ = p™ with a prime p, are called Galois fields GF(p™).

6 Bilinear means linear with respect to both arguments. This implies distributivity. In other
words, distributivity has no independent meaning for an algebra.

7 Note that associativity is not assumed.
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real linear structure allows us to view the field of complex numbers intuitively
as the complex plane C. &

The above construction of C as the real linear space R? brings in more
structure than just the field structure: it makes C an algebra over R. ° We
often identify R with the subfield {(z,0) | z € R} of C, and denote the
standard basis of R? by 1 =(1,0), i = (0,1) in C.

A function « : C — C is an automorphism of the field C if it preserves addition
and multiplication,

a(z1 + z2) = a(z1) + a(z2),

a(z122) = a(z1)e(z),
as well as the unity, (1) = 1. A function a : C — C is an auiomorphism of

the real algebra C if it preserves the real linear structure and multiplication (of
complex numbers),

a(z1 + z2) = a(z1) + a(z2), a(Az) =Xa(z), X ER,
a(2122) = a(z1)a(z),
as well as the unity, (1) = 1.

The field C has an infinity of automorphisms. In contrast, the only auto-
morphisms of the real algebra C are the identity automorphism and complex
conjugation.

Theorem. Complex conjugation is the only field automorphism of C which is
different from the identity but preserves a fixed subfield R.

Proof. First, note that (i) = +i for any field automorphism a of C, since
a(i)? = a(i?) = a(-1) = —1. If o : C = C is a field automorphism such that
a(R) C R, then a(z) = z for all z € R, because the only automorphism of
the real field is the identity. It then follows that, for all = + iy with z,y € R,

afz +iy) = a(2) + a(i)aly) = 2 + alily
where a(i) = i. The case a(i) =i gives the identity automorphism, and the
case a(i) = —i gives complex conjugation. ]

The other automorphisms of the field C send a real subfield R onto an iso-
morphic copy of R, which is necessarily different from the original subfield R.
However, any field automorphism of C fixes point-wise the rational subfield Q.

8 The geometric view of complex numbers is connected with the structure of C as a real
algebra, and not so much as a field.

9 In the above construction we introduced a field structure into the real linear space R? and
arrived at an algebra C over R, or equivalently at a field C with a distinguished subfield
R.
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Example. It is known that there is a field automorphism of C sending v/2 to
—1/2 and v/2 to i¥/2, but no one has been able to construct such an automor-
phism explicitly since its existence proof calls for the axiom of choice. ]

If a field automorphism of C is neither the identity nor a complex conjugation,
then it sends some irrational numbers outside R, and permutes an infinity of
subfields all isomorphic with R. Related to each real subfield there is a unique
complex conjugation across that subfield, and all such automorphisms of finite
order are complex conjugations for some real subfield. The image o(R) under
such an automorphism « of a distinguished real subfield R is dense in C [in the
topology of the metric |z| = \/zZ given by the complex conjugation across R].
This can be seen as follows: An automorphism o must satisfy a(rz) = ra(z)
when r € Q. So if there is an irrational £ € R with ¢t = a(z) ¢ R, and nec-
essarily ¢ ¢ Q + iQ, the image a(R) of R contains all numbers of the form
a(r + sz) =r+ st with r,s € Q. This is a dense set in C.

The above discussion indicates that there is no unique complex conju-
gation in the field of complex numbers, and that the field structure of C
does not fix by itself the subfield R of C. The field injection R — C is an extra
piece of structure added on top of the field C. If a privileged real subfield R
is singled out in C, it brings along a real linear structure on C, and a unique
complex conjugation across R, which then naturally imports a metric structure
to C.

Our main interest in complex numbers in this book is C as a real algebra,
not so much as a field.

2.2 The double-ring *R of R

There is more than one interesting bilinear product (or algebra structure) on
the linear space R%. For instance, component-wise multiplication

(-’Bl,yl)(xz,yz) = (131132,3/13/2)

results in the double-ring 2R of R. The only automorphisms of the real algebra
2R are the identity and the swap

R = 2R, (A, p) = swap(\, ) = (u, ).
The swap acts like the complex conjugation of C, since
swapla(l,1) + b(1,-1)] = a(1,1) — b(1, -1).

The multiplicative unity 1 = (1,1) and the reflected element j = (1,—1) are
now related by j% = 1.
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Alternatively and equivalently we may consider pairs of real numbers (a,b) €
R? as Study numbers
atib, =1, j#1.
Study numbers have Study conjugate (a + jb)~ = a — jb, Lorentz squared
norm (a + jb)(a — jb) = a% — b2, and the hyperbolic polar form a + jb =

p(cosh x + jsinhy) for a? — b2 > 0. 1° In products Lorentz squared norms
are preserved and hyperbolic angles added. Study numbers have the matrix

. a b
a+]b_(b a)'

representation

Ezxercise 4

2.3 Representation by means of real 2 x 2-matrices

Complex numbers were constructed as ordered pairs of real numbers. Thus we
can replace

z=z+1iy in C by (;) in R2?
making explicit the real linear structure on C. The product of two complex
numbers ¢ = a + ib and z,
cz = az — by + i(bz + ay),
can be replaced by / factored as
az—by\ (a —b z\ f(a b z -y 1
bx+ay) \b a y) \b a y z 0/°

One is thus led to consider representing complex numbers by certain real 2 x 2-
matrices in Mat(2,R): 1

C — Mat(2, R), a+ib-—)(‘; _ab)

10 The linear space R? endowed with an indefinite quadratic form (a,b) — a2 — b? is the
hyperbolic quadratic space R!»1. The Clifford algebra of R1:! is C#¢1,1 which has Study
numbers as the even subalgebra 0[1'.,1'

11 In this matrix representation, the complex conjugate of a complex number becomes the
transpose of the matrix and the (squared) norm becomes the determinant. The norm is
preserved under similarity transformations, but ‘transposition = complex conjugation’ is
only preserved under similarities by orthogonal matrices.
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The multiplicative unity 1 and the imaginary unit 7 in C are represented by

the matrices
1 0 0 -1
e )

However, this is not the only linear representation of C in Mat(2,R). A sim-
ilarity transformation by an invertible matrix U, det U # 0, sends the repre-
sentative of the imaginary unit J to another ‘imaginary unit’ J' = UJU ! in
Mat(2, R).

Example. Choosing U = ((1) }), we find J' = i '_'f), and the matrix repre-

sentation z + iy — (’;y ;_z_z) 1

GEOMETRIC INTERPRETATION OF i =+/—1

In the rest of this chapter we shall study introduction of complex numbers by
means of the Clifford algebra Cf; of the Euclidean plane R2. This approach
gives the imaginary unit i = /=1 various geometrical meanings. We will see
that ¢ represents

(i) an oriented plane area in R?,
(ii) a quarter turn of RZ.

The Euclidean plane R? has a quadratic form
r=ze; +yes = |r|? =22 + ¢,
We introduce an associative product of vectors such that
r’=r? or (zes+ye)? =244
Using distributivity this results in the multiplication rules
e?=el=1

, ejeg = —ejze;.

The element e;es satisfies

(ere2)? = -1

and therefore cannot be a scalar or a vector. It is an example of a bivector, the
unit bivector. Denote it for short by e1s = eje,.
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2.4 C as the even Clifford algebra CfF

The Clifford algebra C¢; is a 4-dimensional real algebra with a basis {1, e;, e, e15}.
The basis elements obey the multiplication table

€1 e e

e1 1 €12 (5]
€9 —e12 1 —-el
€12 —en el -1

The basis elements span the subspaces consisting of 12

1 R scalars
e;,es R?  vectors
2 .
e12 A°R? bivectors.

Thus, the Clifford algebra Cf; contains copies of R and R?, and it is a direct
sum of its subspaces of elements of degrees 0,1,2:

2
ct=RoR*® \R%.
The Clifford algebra is also a direct sum Cly = C€} @® CL; of its

even part CfF =R /\2 R2?,
odd part Cf; =RZ

The even part is not only a subspace but also a subalgebra. It consists of
elements of the form z + ye;2 where z,y € R and e?, = —1. Thus, the even
subalgebra Cf} = R® A’ R? of Cf; is isomorphic to C. The unit bivector e;3
shares the basic property of the square root i of —1, that is i = —~1, and we
could write i = ejo. It should be noted, however, that our imaginary unit e
anticommutes with e; and e; and thus e;; anticommutes with every vector

in the ejey-plane: 13

rej; = —ejor for r=ze; +yes and ej; = ejes.

12 In higher dimensions the Clifford algebra C£, of R™ is a sum of its subspaces of k-vectors:
Cln =ROR" G A’R"®...d» A"R".

13 In a complex linear space, or complex algebra, where scalars are complex numbers, the
imaginary unit commutes with all the vectors, ir = ri.
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r

rejs

e1' = —rejs

2.5 Imaginary unit = the unit bivector

Multiplying the vector r = ze; + yes by the unit bivector e;s gives another
vector rejs = res — ye; which is perpendicular to r. The function r — re;s is
a left turn, and the effect of two left turns [e12-e12] is to reverse direction [—1];
or, in a more picturesque way, is a U-turn. The statement ‘e, = —1 is just
an arithmetic version of the obvious geometric fact that the sum of two right
angles, 90° +90°, is a straight angle, 180°. In the vector plane R? the sense of
rotation depends on what side the vector r = ze; +ye; is multiplied by e;; so
that the rotation r — ejsr = ye; —xes is clockwise and r — re;; = —ye; +zres
is counter-clockwise.

In the complex plane C = R /\2 R? both the rotations sending z = z+ye;s
to ejpz and zejp are counter-clockwise. Multiplying a complex number z =
z + yejs by the unit bivector ejs results in a left turn, ze1s = —y + zejs,
and the effect of two left turns [ejs - e12] is direction reversal [—1]; that is a
half-turn in the complex plane C:

—z = ze%z - Z€]2

!

—2 7

The square root of —1 has two distinct geometric roles in R?: it is the
generator of rotations, i = ejes € CQ,L, and 1t represents a unit oriented plane
area e; Aes € /\2 R2 14

A complex number z =z + ye;2 ER@ /\2 R? is a sum of

~ areal number £ = Re(z) and
—~ a bivector yejz = e12Im(z).

14 In an n-dimensional vector space R™ rotations can be represented by multiplications
in Clifford algebras C{,, while certain simple elements of the exterior algebra AR"™ =

ROR*@®AZR"@--- @ A" R" represent oriented subspaces of dimensions 0,1,2,...,n.
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2.6 Even and odd parts

The Clifford algebra Cf; of R? contains both the complex plane C and the
vector plane R? so that

R? is spanned by e; and e,
C is spanned by 1 and e;3.

The only common point of the two planes is the zero 0. The two planes are both
parts of the same algebra Cf;. The vector plane R? and the complex field C are
incorporated as separate substructures in the Clifford algebra Cfy = C£F ®CL5
so that the complex plane C is the even part C£F and the vector plane R? is
the odd part Cf.

y Im
r = ze; + yes z=z+yt
e r ey = i+
ell z 1 Re
Vector plane R? = C¢, Complex plane C = C£F

The names even and odd mean that the elements are products of an even or
odd number of vectors. Parity considerations show that

— complex number times complex number is a complex number,
— vector times complex number is a vector,

— complex number times vector is a vector, and

— vector times vector is a complex number.

The above observations can be expressed by the inclusions

cereey ceef,

Cty CLF C Cey,

cedce; c ey,

Cey Cly; C CeF.
By writing (Cf)o = C£f and (Cf;); = C£;, this can be further condensed to
(Cl3);(Cla)k C (CLy)j4k, where j, k are added modulo 2. These observations

are expressed by saying that the Clifford algebra C¢; has an even-odd grading
or that it is graded over Z, = {0,1}. 1®

15 We have already met a Z;-graded algebra, namely the real algebra C = R @ iR with even
part R = Re(C) and odd part R = i Im(C}.
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2.7 Involutions and the norm

The Clifford algebra Cfs has three involutions similar to complex conjugation
in C. For an element u = (u)o + (u); + (u)s € Cly, (u)x € A\*R?, we define

grade involution @ = (u)g — (uh + (u)s,
reversion &t = (u)o + (u)1 — (u)2,
Clifford-conjugation % = (u)e — (u)1 — (u)2.

The grade involution is an automorphism, v = 44, while the reversion and
the Clifford-conjugation are anti-automorphisms, uv = %it, W0 = v4.

For a complex number z = z + ye;s the complex conjugation z — z =
z — yejs 1s a restriction of the Clifford-conjugation u — % in C¢; and also of
the reversion u — @ in C#,. Likewise, the norm |z| = /2% + y? in C, obtained
as the square root of zz = z2 + y2, is a restriction of the norm |u| = \/{uii)o
in Cls.

A complex number is a product of its norm r = |z| and its phase-factor
cosp + ejasiny, where £ = rcosyp and y = rsing. The expression z =
r(cos ¢ + e1asinp) can be abbreviated as z = rexp(ej2¢), and read as ‘r in
phase .’

2.8 Vectors multiplied by complex numbers

The product of a vector r = ze; + ye; and a unit complex number el =
cos ¢ + isin ¢, where for short i = e;s, is another vector in the e;e;-plane:

rcosy +risinp = re'’.

The vector ri = ze; — ye; is perpendicular to r so that a rotation to the left
by m/2 carries r to ri.

Since the unit bivector 1 anticommutes with every vector r in the e;es-
plane, the rotated vector could also be expressed as

rcosp +rising =rcosyp — irsinp = e~ **r.

Furthermore, we have cos¢ +ising = (cos £ + isin £)? and thus the rotated

vector also has the form s~lrs where s = €'#/2 and s~! = e~%/2. The ro-
tation of r to the left by the angle ¢ will then result in rz = z7!r = s~ !rs
where z = €l%, 271 = e~ and 52 = z. There are two complex numbers s and
—s which result in the same rotation s~!rs = (—s)~1r(—s). In other words,
there are two complex numbers which produce the same final result but via

different actions.
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s = ei‘p/z rz

—s = e—-i(21r—<p)/2 - ei<p/2e—i1r

ei1r =1 14

2T —

2.9 The group Spin(2)

The unit complex numbers z € C, |z| = 1, form the unit circle S! = {z €
C | |2| = 1}, which with multiplication of complex numbers as the product
becomes the unitary group U(1) = {z € C | zz = 1}. A counter-clockwise
rotation of the complex plane C by an angle ¢ can be represented by complex
number multiplication:

¢ +iy — (cosp+ isingp)(z +1iy), cosp+ising € U(1).

A counter-clockwise rotation of the vector plane R? by an angle ¢ can be
represented by a matrix multiplication:

(z) R (c?scp —s1n<p) (z), (c?sgo —smgo) € 50(2)
y sing cosg y sing cosyp
where SO(2) = {R € Mat(2,R) | R'TR = I, det R = 1}, the rotation group.

The rotation group SO(2) is isomorphic to the unitary group U(1).
Rotations of R? can also be represented by Clifford multiplication: 16

ze; + yez — (cos g + e sin g)‘l(zel + yez)(cos % + ej2sin %)

where cos £ + eypsin € € Spin(2) = {s € Cf} | s5 = 1}, the spin group.
The fact that two opposite elements of the spin group Spin(2) represent the
same rotation in SO(2) is expressed by saying that Spin(2) is a two-fold 17
cover of SO(2), and written as Spin(2)/{£1} ~ SO(2). Although SO(2) and
Spin(2) act differently on R?, they are isomorphic as abstract groups, that is,

16 We use this particular form to represent the rotation because the expression ze; + ye; —
(cos £+e1z sin g)—l (ze1+yez)(cos £+eiz sin £) can be generalized to higher dimensions.
The expression ze; + yez — (ze; + yez)(cosy + €12 sin ) is not generalizable to higher-
dimensional rotations.

17 You are already familiar with two-fold covers: 1. A position of the hands of your watch
corresponds to two positions of the Sun. 2. A rotating mirror turns half the angle of
the image. 3. Circulating a coin one full turn around another makes the coin turn twice
around its center,
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Spin(2) ~ SO(2). 18
Ezercise 6

History

Imaginary numbers first appeared around 1540, when Tartaglia and Cardano
expressed real roots of a cubic equation in terms of conjugate complex num-
bers. The first one to represent complex numbers by points on a plane was
a Norwegian surveyor, Caspar Wessel, in 1798. He posited an imaginary axis
perpendicular to the axis of real numbers. This configuration came to be known
as the Argand diagram, although Argand’s contribution was an interpretation
of i = /=1 as a rotation by a right angle in the plane. Complex numbers got
their name from Gauss, and their formal definition as pairs of real numbers is
due to Hamilton in 1833 (first published 1837).

Exercises
1. (3+4d)7Y, V3 +4i, V=4, V=1, log(—1+1).
2. Let 2z, = 27%/" £k =1,2,..., n—1. Compute
(T—=2)(1—22) - (1 = zn-1).
3. An ordering of a field F is an assignment of a subset P C [F such that

(i) 0¢ P,
(ii) for all non-zero a € I either a € P or —a € P, but not both,
(iii) a+ b€ P and ab€ P for all a,b€ P.

It is customary to call P the set of positive numbers, and the set

—P = {—a | a € P} the set of negative numbers. The statement a —b € P
is also written @ > b (and a —b € PU {0} is written a > b). Show that the
field C cannot be ordered.

4. Two automorphisms «, B of an algebra are similar if there exists an
intertwining automorphism v such that a+y = v8. The identity
automorphism is similar only to itself.

a) Show that the two involutions of the real algebra C are dissimilar, and
that the two involutions of the real algebra ?R are dissimilar.

b) Show that the two involutions (), ) = (1, A) and B(A, p) = (i, A) are
similar involutions of the real or complex algebra 2C [that is, find an
intertwining automorphism + of 2C such that ay = /).

5. A rotation is called rational if it sends a vector with rational coordinates to

18 Both SO(2) and Spin(2) are homeomorphic to S*.
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another vector with rational coordinates. Determine all the rational
rotations of R2. Hint: R € SO(2) \ {—I} can be written in the form
R=(I+A)(I—A)™! where AT = —A.

6. Write @t = (u)o + (u)1 — (u)s for u = (u)o + (u)1 + (u)2 € Cts,
(u)x € A¥R2. Let Pin(2) = {u € Cl, | iu =1},
R? - R?, x — R(x) = uxu~!, and O(2) = {R € Mat(2,R) | RTR = I}.
Show that Pin(2)/{+1} ~ O(2) and Pin(2) ~ O(2).

7. Show that a 2-dimensional real algebra with unity 1 is both commutative
and associative. Hint: First show that there is a basis {1,a} such that
a’=oal, a €R.

8. Show that a 2-dimensional real algebra with unity 1 and no zero-divisors
[ab = 0 implies @ = 0 or b = 0] is isomorphic to C.

Solutions

1. 1(3-4d), £(2+1), £144, V=i = {i,+¥ —il},
log(—1+¢) = Llog2 + i3F + i2nk.

2. Note that the roots of £" —1 =0 are 2z =¢€'?"*/* k=0,1,...,n—1.
Therefore ( — z0)(z — z1)(z — 22) - - (€ — zn—1) = 2™ — 1. Define
f(z) =(z — z1)(z — 22) - - - (z = 2n—1) which equals

fla) = " -1

z-—1
and f(z) =z""'+...+z+1 in general. Compute f(1) =n.
3. In an ordered field non-zero numbers have positive squares, and the sum of
such squares is positive, and therefore non-zero. The equality i2 + 1 =0 in
C can also be written as i2 + 12 = 0, which excludes the inequality
2 + 12 > 0. Consequently, it is impossible to order the field C.
4. b) Choose v(\, ) = (M, 1) or y(M ) = (A fi) to find ey = v8.

for z#1
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3
Bivectors and the Exterior Algebra

There are other kinds of directed quantities besides vectors, most notably bivec-
tors. For instance, a moment of a force, angular velocity of a rotating body,
and magnetic induction can be described with bivectors. In three dimensions
bivectors are dual to vectors, and their use can be circumvented. Scalars, vec-
tors, bivectors and the volume element span the exterior algebra A R3, which
provides a multivector structure for the Clifford algebra Cf€3 of the Euclidean
space R3.

3.1 Bivectors as directed plane segments

In three dimensions bivectors are oriented plane segments, which have a di-
rection and a magnitude, the area of the plane segment. Two bivectors have
the same direction if they are on parallel planes (the same attitude) and are
similarly oriented (the same sense of rotation).

Vector (directed line segment)

Q 1. magnitude (length of PQ)
2. direction
— attitude (line PQ)

P — orientation (toward the point Q)

Bivector (directed plane segment)

R Q 1. magnitude (area of OPQR)
2. direction
— attitude (plane OPQ)
— orientation (sense of rotation)

33
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Bivectors are denoted by boldface capital letters A, B, etc. ! The area or
norm of a bivector A is denoted by |A|. Two bivectors A and B in parallel
planes have the same attitude, and we write A || B. Parallel bivectors A and
B can be regarded as directed angles turning either the same way, A 11 B, or
the opposite way, A 1} B. If two plane segments have the same area and the
same direction (= parallel planes with the same sense of rotation), then the
bivectors are equal:

A=B <= |A|=|B|] and A{tB

joys

A bivector A and its opposite —A are of equal area and parallel, but have
opposite orientations. A unit bivector A has area one, |A] = 1.

The shape of the area is irrelevant.

Representing a bivector as an oriented parallelogram suggests that a bivector
can be thought of as a geometrical product of vectors along its sides. With this
in mind we introduce the exterior product aAb of two vectors a and b as the
bivector obtained by sweeping b along a.

/ 7 /

The bivectors a Ab and b A a have the same area and the same attitude but
opposite senses of rotations. This can be simply expressed by writing

aAb=-bAa.

3.2 Addition of bivectors

The geometric interpretation of bivector addition is most easily seen when
the bivectors are expressed in terms of the exterior product with a common

1 In handwriting, bivectors can be distinguished by an angle on top of the letter, j‘l, ﬁ .
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vector factor. In three dimensions this is always possible because any two
planes will either be parallel or intersect along a common line. 2 Thus let
A = aAc and B = b A c; then the bivector A + B is defined so that
A+B=aAc+bAc=(a+b)Ac. The geometric significance of this can be
depicted as follows:

) by,

By decomposing the vectors a and b into components parallel and perpendic-
ular to a+ b, 3 so that

a:a||+aJ_ and b:b“—}-bl

where b; = —a,, we are able to reduce the general addition of bivectors in
three dimensions to the addition of coplanar bivectors. This is evident in the
equality

aAc+bAc=(a+b)Ac=(ay+bj)Ac=a;Ac+bjAc.

3.3 Basis of the linear space of bivectors

Bivectors can be added and multiplied by scalars. This way the set of bivectors
becomes a linear space, denoted by /\2 R3. A basis for the linear space /\2 R3
can be constructed by means of a basis {e;,ez,e3} of the linear space R3.
The oriented plane segments of the coordinate planes, obtained by taking the
exterior products

e; Aes, e; Aes, ez Aes,

2 The two bivectors are first translated in the affine space R? so that they induce opposite
orientations to their common edge, that is, the terminal side of A = a A ¢ is opposite to
the initial side of B = (-c) A b,

3 A depiction of addition of bivectors does not require a metric, or perpendicular compo-
nents. It is sufficient that one component of both a and b is parallel to a + b, so that
the two components sum up to a + b, while the other component can be any non-parallel
component.
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form a basis for the linear space of bivectors /\2 R3.
€3

b — (WANGE

o

s

€2
e ey N\ey

An arbitrary bivector is a linear combination of the basis elements,
B = Bize; Aey+ Bise; Aes + Bazey Aes,

and such linear combinations form the space of bivectors /\2 R3. ¢ The con-
struction of bivectors calls only for a linear structure, and no metric is needed.

The scalar product on a Euclidean space R? extends to a symmetric bilinear
product on the space of bivectors \*IR3,

X1°¥Y1 X1-Y2

<X1 AX2, Y1 AY2> = .
X2:°Y1 X2-Y¥2

In particular, <a A b,aA b> = |a]?|b|? — (a- b)?. The norm or area of B =
Bisey A es + Biszep A ez + Bazeqg A es is seen to be

|B| = /<B,B> = \/sz + B}; + B;.

3.4 The oriented volume element

The exterior product a A b A ¢ of three vectors a = aje; + aze; + ases,
b = bie; + byey + bzez and ¢ = cie; + cye; + czes represents the oriented
volume of the parallelepiped with edges a, b, c:

a az ag
aAbAc=|b by b3 le;AeyAes.
(&) Cy C3

It is an element of the 1-dimensional linear space of 3-vectors /\3 R? with basis
e; A ez A es. The exterior product is associative,

(aAb)Ac=aA (bAc),

4 In three dimensions all bivectors are simple, that is, they are exterior products of two
vectors, B = x Ay for some x,y € R%. This is no longer true in four dimensions; for
instance e; A ez 4+ e3 A e4 is not simple.



3.5 The cross product 37

and antisymmetric,

aAbAc=bAcAa=cAaAb
=-cAbAa=-aAcAb=-bAaAc
for a,b,c € R3.
The exterior product of the orthogonal unit vectors ej, ez, e3 € R? is the

unit oriented volume element e; Aes Aesg € /\3 R3. The norm or volume |V|
of a 3-vector ®

V=VeiAes Aes
is [V|=|V|, that is, |[Vei AesAez]=V for V >0 and |Ve; Aex Aeg|= -V
for V < 0.

More formally, the scalar product on R3 extends to a symmetric bilinear
product on A®R3 by

X1-°¥Y1 X1°YyY2 X1°'Y3
<X AXa2AX3,y1AYy2Ays>=|X2-y1 Xz2'y2 X2-Y3
X3-°yY1 X3'y2 X3-Y¥y3

giving the norm as |V]|=+/<V,V>.

3.5 The cross product

Let a = aje; + azes + azes and b = bie; + byey + bzes. The bivector
aAb = (azbs — asbz)ex Aes + (azby — arbs)es A eq + (a1bs — azbi)er Aey

can be expressed as a ‘determinant’

esNes eshe e Aep
aAb= ay as as
by b2 b3

It is customary to introduce a vector with the same coordinates. Thus, we
define the cross product

axb= (azb3 - asbz)el + (a3b1 - albg)ez + (albz - azbl)es

of a and b. The cross product can also be represented by a ‘determinant’

€1 ey €3
axb= a1 Qay das
by by b3

5 V is a real number, positive or negative, while V is a 3-vector. The usual volume is |V|.
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The direction of axb is perpendicular to the plane of aAb and the length/norm
of a x b equals the area/norm of aA b,

|a x b| = |aAb| = |a]|b|sin¢p

where ¢, 0 < ¢ < 180°, is the angle between a and b.

In spite of the resemblance between the determinant expressions for the ex-
terior product a A b and the cross product a x b there is a difference: the
exterior product does not require a metric while the cross product requires or
induces a metric. The metric gets involved in positioning the vector a x b
perpendicular to the bivector a A b.

3.6 The Hodge dual

Since the vector space IR3 and the bivector space /\2 R3 are both of dimension
3, they are linearly isomorphic. We can use the metric on the vector space R3
to set up a standard isomorphism between the two linear spaces, the Hodge
dual sending a vector a € R3 to a bivector xa € A\°R3, defined by

bA*a=(b-a)e; AeyAes forall beR3,

The Hodge dual depends not only on the metric but also on the choice of
orientation - it is customary to use a right-handed and orthonormal basis

{e1, ez, es}.
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Vector a and its dual bivector A = aejs3

Thus, we have assigned to each vector
3
a=ae; + azex + azes ER

a bivector
2
A =xa=ajes ANes+asesAe; +ase; Aes € /\]Rs.

Using the induced metric on the bivector space /\2 R3 we can extend the Hodge
dual to a mapping sending a bivector A € /\2 R? to a vector xA € R3, defined
by
2
BA*A =<B,A>e;AezAes forall Be AR

Using duality, the relation between the cross product and the exterior pro-
duct can be written as ¢
aAb=x(axb),
ax b==x(aAb).

6 In terms of the Clifford algebra C¢3 the relation between the exterior product and the
cross product can be written as

aAb=(ax b)eps,
axb= —(a/\ b)elzs.

The metric gets involved in multiplying by ej23 = ejezes. Using the Clifford algebra
C{3 the Hodge dual can be computed as xu = iej23. This gives rise to the Clifford dual
defined as uejz3 for u € Cf3. Later we will see that in actual computations the Clifford
dual is more convenient than the Hodge dual (although in three dimensions the Hodge
dual happens to be symmetric/involutory).
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3.7 The exterior algebra and the Clifford algebra

The exterior algebra AR3 of the linear space R? is a direct sum of the

subspaces of | with basis

scalars R 1
vectors R2 ey, ep, e3
. 2
bivectors A“R3 e; Aez, e1Aes, e;Aes

volume elements /\3 R3 ejAe;Aes

We also write R = A°R3 and R? = A\'R3. Thus, AR3 is a direct sum of its
subspaces of homogeneous degrees 0,1,2, 3:

2 3
/\IR3=IR®R3®/\R3@/\IR3.

The dimensions of R, R3, A’R3, A’ R3 and AR® are 1,3,3,1 and 23 = 8,
respectively.
The exterior algebra /\R3 is an associative algebra with unity 1 satisfying

e;Ne; = —e; Ae; for i#£]
e;Ne; =0

for a basis {e;,es,es} of the linear space R®. The exterior product of two
homogeneous elements satisfies
i+] i J
aAbe AR® for ac AR? be AR®

The product of two elements u and v in the Clifford algebra Cf3 of the
Euclidean space R3 is denoted by juxtaposition, uv, to distinguish it from
the exterior product u A v. An orthonormal basis {e1, ez, e3} of the Euclidean
space R3 C Cl5 satisfies 7

eje; = —eje; for i#£j

eje; =1

7 These rules were invented by W.K. Clifford in 1882. In an earlier paper Clifford 1878 had
considered an associative algebra of dimension 8 with the rules e;e; = -1 for i =1,2,3.
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and generates a basis of Cf3, corresponding to a basis of AR3,
Cis | AR3
111

€1, €2, €3 | €1, €3, €3

€€z, e,e3, €3 | €; A €2, € A €3, €2 Aeg

ejezez | ey Aex Aes

The above correspondences induce an identification of the linear spaces Cf3
and AR3, and we shall write

2 3
Cls =]R63]R369/\]R369/\]R3.

This decomposition introduces a multivector structure into the Clifford algebra
Cf3. The multivector structure 1s unique, that is, an arbitrary element u € Cé3
can be uniquely decomposed into a sum of k-vectors, the k-vector parts (u)g

of u,
k

u = (u) + (u)y + (u)2 + (u)s where (u)g € /\]Ra.

3.8 The Clifford product of two vectors
A new kind of product called the Clifford product of vectors a and b is obtained
by adding the scalar a-b and the bivector aA b:

ab=a-b+aAb.

The commutative rule a-b = b - a together with the anticommutative rule
aAb = —bAa implies a relation between ab and ba. Thus,

ba=a-b—aAb.

Two vectors a and b are parallel, a || b, when their product is commutative,
ab = ba, and perpendicular, a 1 b, when their product is anticommutative,
ab = —ba.

Note that if a is decomposed into components parallel, a|, and perpendic-
ular, a;, to b, then ab=2ab+a,b=a-b+aAb.
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a-b = i(ab+ba)
aAb=1(ab - ba)
a-b = |a||b|cosyp

|a Ab|=|a|b]sin¢p

a

Compute the product abba to get a’b? = (a-b)2 — (a A b)? and use
(aAb)? = —|aADb|? to obtain the identity

a’b? = (a-b)? +|anb]%

3.9 Even and odd parts
The Clifford algebra is, like the exterior algebra, a direct sum of two of its
subspaces,

the even part R@ A’R3,

the odd part ~ R3® A’R®.
For both algebras the even part is also a subalgebra. The even subalgebra
(ARt =Ro /\2 R3 of AR? is commutative, but the even subalgebra C£3 =

R& /\2 R3 of Cf3 is not commutative; instead it is isomorphic to the quaternion
algebra: H ~ C£}. The odd parts are denoted by C¢; and (AR3)~.

3.10 The center

The center of an algebra consists of those elements which commute with all the
elements of the algebra. The center Cen(Cls) = R@ /\3 R3 of Cl3 is isomorphic
to C, and the center of AR? is Cen(AR%) =R & /\2 R3 @ /\31R3.

3.11 Gradings and the multivector structure
The exterior products of homogeneous elements satisfy the relations
i+j i ki
aAbe /\]R3 for aE/\]R3 and b e/\IRS.
Such a property of an algebra is usually referred to by saying that the algebra

is graded over the index group Z. We shall refer to this property of the exterior
algebra A\ R3 as the dimension grading, because simple homogeneous elements
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represent subspaces of specified dimension. The homogeneous elements in A R?
satisfy

i J
aAb=(-1)"bra for a€ AR® be AR?

that is, the exterior algebra A R3 is graded commutative. 8

The Clifford products of even and odd subspaces satisfy the inclusion rela-
tions

cereer ceer, cerees cee,
Cl7CeY C Cl7, Cl3Ce; C Cet.

These relations can be summarized by saying that the Clifford algebra C£3 has
an even-odd grading, or that it is graded over the index group Z, = {0, 1}.

The exterior algebra /A R? is also even-odd graded.

The Clifford algebra C{3 is not graded over Z. However, we can reconstruct
the exterior product from the Clifford product in a unique manner. We shall
refer to the dimension grading of the associated exterior algebra by saying that
the Clifford algebra has a multivector structure. Recall that R and R® have,
by definition, unique copies in C£3. The exterior product of two vectors equals
the antisymmetric part of their Clifford product,

] 2
xAy= §(xy —¥x) € /\]R"1 for x,y € R3,

whence the space of bivectors /\2 R? has a unique copy in Cf3. The subspace
of 3-vectors /\3 R3 can be uniquely reconstructed within C£3 by a completely
antisymmetrized Clifford product
3
1 3
XAyAz= g(xyz+yzx+zxy—zyx—xzy—yxz) € /\]R

of three vectors x,y,z € R3.
Thus, we have established a linear isomorphism sending A R3 to Cf; defined

8 The graded opposite algebra of A R? is the linear space AR? with a new product uowv
defined by

(wo +u1)o(vo+v1) =vo Aup +vo Aup +v1 Aug — v1 Ay

for ug, v € (AR®)t and uy,v1 € (AR®)~. Since AR? is graded commutative, that is
uov =uAuw, the graded opposite of AR? is just A R3.
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for k-vectors:

ARS | cts
a = a€R
x = x€eR3
XAy = ixy-yx)e \N’R?
XAyAz = %(xyz+yzx+zxy——zyx—xzy—yxz)E/\:SIR3

There is another construction of the subspace of 3-vectors /\3 R3, obtained by
using the reversion, xAy Az = 1(xyz—zyx) € N’ R3 for x,y,z € R3, related
to the following recursive construction, via an intermediate step in /\2 R3:

3 2
xAB=:(xB+Bx) e \R® for x€R? Be \R®

NG

3.12 Products of vectors and bivectors, visualization

A vector a € R3 and a bivector B € AR? can be multiplied to give a 3-vector
aAB = BAae A\*R3 The exterior product of a vector and a bivector can
be depicted as an oriented volume:

|
{ a |
t |
| a {
Jmm - Lo-—1-
// ///_B
aAnB BAa

The orientation is obtained by putting the arrows in succession. The commu-
tativity of the exterior product aA B = B A a means that the screws of aA B
and B A a can be rotated onto each other (without reflection).

A vector x € R3 and a bivector B € A’R3 can also be multiplied so that
the result is a vector BL x € R3. Consider a vector x tilted by an angle ¢ out
of the plane of a bivector B. Let a be the orthogonal projection of x in the
plane of B. Then |a| = |x|cosp. The right contraction of the bivector B by
the vector x is a vector y = B L x in the plane of B such that

(i) lyl=IBllal,
(i) yLa and aAyttB.
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By convention, we agree that

xdB=-BLlx,

that is, the left and right contractions have opposite signs.
x

y:BLx

[The inverse vector a~! of a has a geometrical meaning in this figure: it gives
the area of the rectangle, |B| = |a=!]|]y]|.]

Write xy = a and x; = x —x)). Then x1B =x)B and xAB =x, B so
that

x| = (x4B)B™! parallel component

xL = (xAB)B! perpendicular component

where B-! = B/B?, B? = —|BJ2.

3.13 Contractions and the derivation
The Clifford product of two vectors a and b is a sum of a scalar a-b and a
bivector aA b,

ab=a-b+aAb,

so that the terms on the right hand side can be recaptured from the Clifford
product:

1
2
The product of a vector a and a bivector B is a sum of a vector and a 3-vector:

a-b (ab + ba), aAb:—;-(ab—ba).

aB=alB+aAB
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where
1
2

In general, the Clifford product of a vector x € R? and an arbitrary element

1
aJBzi(aB—Ba), aAB = -(aB + Ba).

u € Cf3 can be decomposed into a sum of the left contraction and the exterior
product as follows: °

xu=xJdu+xAu
where we can write, in the case where u is a k-vector in /\k R3,
xdu= L(xu— (-1)Fux) € A* ' R?,
xAu=L(xu+(-1)*ux) € AR,
The exterior product and the left contraction by a homogeneous element, re-
spectively, raise or lower the degree, that is,
i+j j—i
anbe AR}, albe A\R®
for a€ \'R3 and b e \ R3.
The left contraction can be obtained from the exterior product and the Clif-
ford product as follows:
udv= [u A (’06123)]6;213.

This means that the left contraction is dual to the exterior product. The left
contraction can be directly defined by its characteristic properties

1) ny =Xy,

2) xJd(uAv)=(xJu)Av+aA(xdv),

3) (uAv)dw=ul(vdw),
where x,y € R? and u,v,w € AR3. Recalling that & = (—1)*u for u € A\*R3,
the second rule can also be written as

xd(uAv) = (xdu)Av+ (=1)Fun (xdv),

when u € /\k R3. The second rule means that the left contraction by a vector is
a derivation of the exterior algebra A R3. It happens that the left contraction
by a vector is also a derivation of the Clifford algebra, that is,

xd(uw) = (xJu)v+d(xdv) for x€R? u,v € Cls.

9 A scalar product on R* C AR3 induces a contraction on A R® which can be used to
introduce a new product xu = xJu+x Au for x € R® and u € AR3, which extends by
linearity and associativity to all of A R3. The linear space A R? provided with this new
product is the Clifford algebra C¢3.
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3.14 The Clifford algebra versus the exterior algebra

Both the Clifford algebra Cf3 and the exterior algebra A\ R3 contain a copy
of R3, which enables application of calculations to the geometry of R3. The
feature distinguishing Cf3 from AR3 is that the Clifford multiplication of
vectors preserves the norm, |ab| = |a||b| for all a,b € R3, whereas |aAb| <
|a||b|. The equality |ab| = ]a]|b| enables more calculations to be carried out
in R, most notably rotations become represented as operations within one
algebra, the Clifford algebra Cls.

Historical survey
The exterior algebra AR® of the linear space R?* was constructed by Grass-
mann in 1844. Grassmann’s exterior algebra /\R3 has a basis

1

e, €3, €3

e; ANez, e;1 Aez,ea Aeg
ej ANey Aeg

satisfying the multiplication rules
eiNej=—e;jAe; for i#j,
e; Ne; = 0.

Clifford introduced a new product into the exterior algebra; he kept the first
rule

eje; = —eje; for i #j,
that is e;e; = e; A e;, but replaced the second rule by

ee; =1 in 1882, and
e;e; = —1 in 1878.

These two algebras generated are Clifford’s geometric algebras
Cly = C[s)o ~ Mat(2, (C) and Cfo’;; ~HoH

of the positive definite and negative definite quadratic spaces R3 = R3? and
R%3, respectively.

Exercises

1. Find the area of the triangle with vertices (1, -4, —6), (5,—4,—2) and
(0,0,0).
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2. Find the volume of the parallelepiped with edges a = 2e; — 3es + 4eg3,
b =e; + 2e; —e3, c = 3e; — ey + 2es.

3. Compute the square of the volume element eq23 = ejezes (square with
respect to the Clifford product).

4. Show that e;ss commutes with e;, es, es.

5. Find the inverse of the bivector B = 3e12 + ea3 (inverse with respect to
the Clifford product).

6. Let a=2e; + 3es + Teg and B = 4ey, + He13 — ez3. Compute a AB and
alB.

7. Let a = 3e; + 4es + Tes and B = Tej; + e13. Compute the perpendicular
and parallel components of a in the plane of B.

8. Show that the Clifford product of a bivector B € A’ R3 and an arbitrary
element u € Cf3 can be decomposed as

Bu=Blu+ %(Bu—uB)+B/\u.
9. Reconstruct the dot product a-b with the help of the cross product a x b
and the exterior product aAb. Hint: a x (a xb) = (a-b)a— a’b.
Define the right contraction by u L v = eJ,3[(e123u) A v] for u,v € Cfa.

10. Show that the following properties — the characteristic properties — of the
right contraction hold:

1) xLy=x-y,
2) (uAv)Lx=uA(vlx)+ (ulx)AD,
3) uL(vAw)=(uLv)Lw,
for x,y € R? and u,v,w € AR3.
11. Show that aLb e A"/ IR3 for ae A'R3 and b e A’ R3.
12. Show that (udv)Lw =ud(vLw).
13. Show that udv = *(x"1(v) A @) and ul v =% 1(7 A *(u)).
14. Show that

ux=ulx+uAx
where, for a k-vector u € A\*R3,
ulx = L(ux — (=1)*xu) € A" ' RS,
uAx = L(ux+ (-1)*xu) € /\k+1 R3,
15. Show that uAv—vAu € A°R3 and uv —vu € R3® A’R3.
Let a € R3, BEA2R3, u=1+a+ B.
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16. The exterior inverse of u is uM~1) =1 - a— B + aa AB with some
o € R. Determine o. Hint: use power series or u A u(=1) =1,

17. The exterior square root of u is u*(1/2) =1 4 %a+ %B + BaAB with
some B € R. Determine 8. Hint: ur(1/2) A A (1/2) = 4,

18. Show that 1Ju=u for all u € AR

Solutions

1. a=e; —4ey; — Gez, b = be; — 4e; — 283, aAb = 16e,3 + 28e,3 — 16e,3,

tlanb|=1v/162 + 287 + 162 = 18.

2. aAbAc=—Teys, laAbAc|=T.
3. edpy=—1.
5. B2=-10, |B|= V10, B~1 = —1—10-(3812 + ea3).
6. aAB = llej23, alB = —4Te; + 15es + Tes.
7. a3 = —0.9es5 + 6.3e3, ay = 3e; +4.9e; + 0.7eg3.
9. Take a wedge product with b to obtain (a x (a x b)) Ab=(a-b)(aAb),
and
ab— (ax (axb))Ab for aftb
aAb
(the division is carried out in the Clifford algebra Cfs, or it is just a ratio
of two parallel bivectors).
16. a=2.
17. B = —%.

18. 1du=(1A1)du=11(14u) and so the contraction by 1 is a projection
with eigenvalues 0 and 1. The only idempotents of AR2 are 0 and 1, and
so 1Ju =20 or 1Ju=u, identically. The latter must be chosen, since
1d(x-y)=11(xJdy)=(1Ax)Jy =xdy=x -y # 0 for some x,y € R3.
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Pauli Spin Matrices and Spinors

. . . . 2 - - .
In classical mechanics kinetic energy %mv2 = £—, p = m7, and potential

energy W = W(F) sum up to the total energy !

2
E=2 1w
2m

Inserting differential operators for total energy and momentum,

E= ih—2 and p= —ihV,

ot
into the above equation results in the Schrodinger equation 2
oY h?
= —— Vi + W
"o 2m v+ WY,

a quantum mechanical description of the electron. The Schrédinger equation
explains all atomic phenomena except those involving magnetism and relativity.

The wave function ¥ is complex valued, ¥(F,t) € C. The square norm |¢|?
integrated over a region in space gives the probability of finding the electron
in that region. 3

The Stern & Gerlach experiment, in 1922, showed that a beam of silver atoms
splits in two in a magnetic field [there were two distinct spots on the screen,
instead of a smear of silver along a line]. Uhlenbeck & Goudsmit in 1925 pro-
posed that silver atoms and the electron have an intrinsic angular momentum,
the spin. The spin interacts with the magnetic field, and the electron goes up
or down according as the spin is parallel or opposite to the vertical magnetic
field.

1 This holds in a conservative system.

2 The Schrodinger equation arose out of the hypothesis that if light has both wave and
particle properties, then perhaps particles might have wave properties such as interference
and diffraction.

3 This is the Born interpretation.

50
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In an electromagnetic field E, B with potentials V, A the Schrodinger equa-

tion becomes 4

8 -
ma—'f = %[(—ihv —eA)%)y — eV, (1)

or after ‘squaring’

-3'/’_ 1 22 242 4 A A
ihor = 5—[~h*V + €2 A% + ihe(V - A+ A - V)] — eV,

This equation does not yet involve the spin of the electron. The differential
operator, known as the generalized momentum,

R=p—eA where P=—ihV
is such that its components mx = px — eAy satisfy the commutation relations
T Ty — mom = iheBs (permute 1,2,3 cyclically).

Pauli 1927 introduced the spin into quantum mechanics by adding a new
term into the Schrédinger equation. The Pauli spin matrices

a=(14) ==(0 ) »=(3 )

o109 = i03  (permute 1,2,3 cyclically)

satisfy

and the anticommutation relations

00k + 0k0; = 25jkI.
Applying the above commutation and anticommutation relations, and tem-
porarily using the old-fashioned notation

7% = 01m + 097y + o373,

we may see that

(- %)% = 2 — he(& - B)

where
P =p?+e2A’—e(p-A+A-P).

p
2 in equation (1)

Pauli replaced 7% by (¢ - )
W1, 3
th— = —[n° — he(d - B)]¢ — eV
Y = L[ = he(@ - )l - eV
4 A Schrodinger equation with W = 0 is brought into this form by a gauge transformation
P, 1) = o(7, 1)) | when eV = ﬁ%% and e = EVa.
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This Schrodinger-Pauli equation describes the spin by virtue of the term

he -

—(& - B).

5 @ - B)

The matrix & - B operates on two-component column matrices with entries in

C. The wave function sends space-time points to Pauli spinors

¢(F;t)= ($:>’ ¢1,'/)2€(C,

that is, it has values in the complex linear space C2.

The Schrodinger-Pauli equation in the Clifford algebra C¢3. The mul-
tiplication rules of the Pauli spin matrices 01,032,003 € Mat(2,C) imply the
matrix identity

(7-B)? = (B} + B + B3)I.

Thus, we may regard the set of traceless Hermitian matrices as a Euclidean
space R3 with an orthonormal basis {01,072, 03}.

The length (of the representative) of a vector B is preserved under a simi-
larity transformation U(& - E)U ~1 by a special unitary matrix U € SU(2),

SU(2) = {U € Mat(2,C) |UTU = I, detU = 1}.

In this way, not only vectors but also rotations becorne represented within the
matrix algebra Mat(2,C). In fact, each rotation R € SO(3) becomes repre-
sented by two matrices +U € SU(2), and we say that SU(2) is a two-fold
covering of SO(3):
L SU(2)
—— _{‘:m.

Pauli spinors could also be replaced by square matrices with only the first
column being non-zero,

_(¥1 O
¢_(¢2 0); ¢1;¢2€C-

Such square matrix spinors form a left ideal S of the matrix algebra Mat(2, C),
that is, for U € Mat(2,C) and ¢ € S we also have Uy € S. ®

The matrix algebra Mat(2, C) is an isomorphic image of the Clifford algebra
Ct3 of the Euclidean space R3. Thus, not only vectors in R and rotations in

50(3)

5 The left ideal can be written as S = Mat(2,C)f, where f = %(I + o03) is an idempotent
satisfying f2 = f. The idempotent is primitive and the left ideal is minimal.
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S0(3) have representatives in C£3, but also spinor spaces or spinor represen-
tations of the rotation group SO(3) ® can be constructed within the Clifford
algebra Cf3. 7
In the notation of the Clifford algebra Cf3 we could describe Pauli’s achieve-
ment by saying that he replaced 72 = #-F by @2 =7 - R+ A AT = n — heB
and came across the equation
8¢v 1
"5t = am.
where B € R3 C Cf5 and ¥(F,t) € S =Clsf, f = 3(1+es). All the arguments
and functions now have values in one algebra, which will facilitate numerical
computations.
In this chapter we shall study more closely the Clifford algebra C£3 and the
spin group Spin(3), and reformulate once more the Schrodinger-Pauli equation
in terms of C{3.

7? — heBlp — eV

4.1 Orthogonal unit vectors, orthonormal basis
The 3-dimensional Euclidean space R® has a basis consisting of three ortho-
gonal unit vectors ey, ey, es. The Clifford algebra Cé3 of R3 is the real asso-
ciative algebra generated by the set {e;, es, es} satisfying the relations
ef=1, e¥=1, e}=1,
ejes = —ege;, eje3 = —ege;, €3€e3 = —ezes.

The Clifford algebra C¢; is 8-dimensional with the following basis:

1 the scalar

ej, ey, €3 vectors

ejes, eje3, ezes bivectors

eieseg a volume element.

We abbreviate the unit bivectors as e;; = e;e;, when ¢ # j, and the unit
oriented volume element as ejz3 = ejeszes. An arbitrary element in Cl3 is a
sum of a scalar, a vector, a bivector and a volume element, and can be written
as a + a+ bejss + Beyz3, where o, € R and a,b € R3.

Example. Compute the product ejse;13. By definition ejze13 = (ere2)(eres)

6 Actually, spinor representations are representations of the universal covering group
SU(2) ~ Spin(3) of SO(3). The spinor representations cannot be reached by tensor
methods, as irreducible components of tensor products of antisymmetric powers of R3.

7 The orthogonal group O(3) also has a non-trivial covering group Pin(3) residing within
Cls.
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and by associativity (ejez)(e1es) = ejezejes. Use anticommutativity, ejes =
—ege;, and substitute e’f’ =1 to get ejesejes = —e%eze;; = —es3. ]

Imaginary units. The three unit bivectors e;e;, e;es, eses represent unit
oriented plane segments as well as generators of rotations in the coordinate
planes, and share the basic property of the imaginary unit, (e;e;)? = —1 for
i # j. The oriented volume element ejese; also shares the basic property of
the imaginary unit, (ejeze3)? = —1, and furthermore it commutes with all
the elements in Cf3. The unit oriented volume element ejejes represents the
duality operator, which swaps plane segments and line segments orthogonal to
the plane segments. 1

4.2 Matrix representation of C{3

The set of 2 x 2-matrices with complex numbers as entries is denoted by
Mat(2,C). Mostly we shall regard this set as a real algebra with scalar multi-
plication taken over the real numbers in R although the matrix entries are in
the complex field C. The Pauli spin matrices

(01 (0 —i (1 0
1=l1 0/ 2T\ o) BT\ -1

satisfy the multiplication rules

02=02=02=1 and
0102 = i03 = —0207,
0301 = {02 = —0103,
0'20'3:i0'1 = —0309.

They also generate the real algebra Mat(2,C). The correspondences e; ~ oy,
ey ~ 0y, es =~ o3 establish an isomorphism between the real algebras, Cf3 ~
Mat(2, C), with the following correspondences of the basis elements:

Mat(2,(C) Cfg

I 1

01, 02, 03 e;, ez, eg
0102, 0103, 0203 €32, €13, €23
010203 €123

Note that ej; = —ej; for i # j. The essential difference between the Clifford
algebra Cf; and its matrix image Mat(2, C) is that in the Clifford algebra Cf3
we will, in its definition, distinguish a particular subspace, the vector space R3,
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in which the square of a vector equals its length squared, that is, r?> = |r|2. No
such distinguished subspace has been singled out in the definition of the matrix
algebra Mat(2,C). Instead, we have chosen the traceless Hermitian matrices
to represent R3, and thereby added extra structure to Mat(2, C). 8

4.3 The center of C/3

The element e;23 commutes with all the vectors e;, ey, es and therefore with
every element of Cf3. In other words, elements of the form

T+ 0
-'B+y81232( 0 y x+iy)

commute with all the elements in Cf3. The subalgebra of scalars and 3-vectors

3
R® AR®={z +yeiss | z, y € R}

is the center Cen(Cl3) of Cfs, that is, it consists of those elements of C¢3 which
commute with every element of Cf3. Note that 010203 = il. Since €3, = —1,
the center of Cf3 is isomorphic to the complex field C, that is,

3
Cen(Cts) =R A\R*~C.

4.4 The even subalgebra Cf{3
The elements 1 and e = ejes, €13 = ejes, €33 = eseg are called even,
because they are products of an even number of vectors. The even elements
are represented by the following matrices:
w+iz x4+
w+ze23+ye31+ze12:(. .y).
ic—y w-—iz
The even elements form a real subspace
2
IRGB/\]R3= {w + zey3 + yes1 + ze12 | w, z,y,z € R}

~ {wl + zioy + yioy + zies | w,z,y,2z € R}

8 We could also have chosen, for the representatives of the anticommuting (and therefore
orthogonal) unit vectors in R3, the following matrices:

_1/3 5 _fo —i _ 1/ 5 -3
ME=T\s —3i)r T\ o) ®WTZ\-3 -5/

that is, u; = %(501 + 30102), ua = 02, uz = %(503 — 30203). These matrices are
non-Hermitian and satisfy u;u; + ugu, = 28,1
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which is closed under multiplication. Thus, the subspace R & /\2 R3 is a sub-
algebra, called the even subalgebra of C£s. We will denote the even subalgebra
by even(Cf3) or for short by C£}. The even subalgebra is isomorphic to the
division ring of quaternions H, as can be seen by the following correspondences:

H ce

i —e23
J —e31
k —e1s

Remark. The Clifford algebra C£3 contains two subalgebras, isomorphic to C
[the center] and H [the even subalgebra], in such a way that [temporarily we
denote these subalgebras by their isomorphic images|

1. ab=baforaeC and beH,
2. Cf3 is generated as a real algebra by C and H,
3. (dimC)(dimH) = dimCf3.

These three observations can be expressed as

CQH ~ Cts. 1

4.5 Involutions of C/{3

The Clifford algebra C£3 has three involutions similar to complex conjugation.
Take an arbitrary element

u = (uo + (uhy +(u)2 + (u)s in Cfs,
written as a sum of a scalar (u)o, a vector (u)q, a bivector (u); and a volume
element (u)3. We introduce the following involutions:
% = (u)o — (u)1 + (u)2 — (u)s,  grade involution,
% = (u)o + (u)1 — (u)2 — (u)3,  reversion,
% = (u)o — (u)1 — (u)2 + (u)s,  Clifford-conjugation.

Clifford-conjugation is a composition of the two other involutions: 4 = 4~ =

~

The correspondences o1 ~ €1, 03 ~ es, 03 ~ ez fix the following represen-
tations for the involutions:

u:(a b>, a,b e, deC,
c d

- s —c* - a* c* o d -—b
Y=o o ) v= o d* )’ U= — a )’
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where the asterisk denotes complex conjugation. We recognize that the reverse
i is represented by the Hermitian conjugate u! and the Clifford-conjugate @
by the matrix u~!detu € Mat(2,R) [for an invertible u].

The grade involution is an automorphism, that is,

uv = i,
while the reversion and the conjugation are anti-automorphisms, that is,

v=791 and TV = vu.

The grade involution induces the even-odd grading of Cf3 = C & C¢3 .
The reversion can be used to extend the norm from R3 to all of Cls by
setting

Jul? = (uil)o.

The norm of

u = up + ure; + uzez + uzegz + uize€i12 + uize13 + uzseas + ui23€123
can be obtained from

[uf? = Juol? + |u1)? + Jual? + Jua)?® + |u1a|? + Jura|? + Juaa|? + |u1as|?.
The norm satisfies the inequality

luv| < V2|ullv] for wu,v € Cls.
The conjugation can be used to determine the inverse

ul=

gll 1]

of u € Cf3, uit # 0. The element ui = #u is in the center R ® /\3 R3 of Cts,
so that division by it is unambiguous.

4.6 Reflections and rotations

In the Euclidean space R® the vectors r and ara™! = 2(a-r)a™! — r are
symmetric with respect to the axis a [use the definition of the Clifford product,
ar + ra = 2a - r]. The opposite of ara™!, the vector

1 a-r

—ara” =r—2-——-4,
a

is obtained by reflecting r across the mirror perpendicular to a [reflection
across the plane aejs3).
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AV

—ara

Two successive reflections in planes perpendicular to a and b result in a
rotation r — bara~!b~! around the axis which is perpendicular to both a
and b. Indeed, r can be decomposed as r = rp+ry where T and r; are
parallel and perpendicular, respectively, to the plane of a and b. The per-
pendicular component r; remains invariant under both the reflections while
the two successive reflections together rotate the parallel component ry in the
plane of a and b by twice the angle between a and b.

Consider a vector a = aje; + aze, + azes and the bivector aej93 = ajex3 +
ases; + aze1s dual to a. The vector a has positive square

a’ =|a|?, where |a|=1/a}+ a2+ a2,

but the bivector ae;s3 has negative square
(ae123)2 = —|al%.
It follows that

a .
exp(aeqq3) = cosa + ez —sina

where o = |a|. A spatial rotation of the vector r = ze; + yep + zes around
the axis a by the angle « is given by

r—ara™!, a= exp(%aelzg).

The sense of the rotation is clockwise when regarded from the arrow-head of
a. The axis of two consecutive rotations around the axes a and b is given by
the Rodrigues formula

, _a’ +b'+a xb a

here a’ = —
C ——T—_a,—b"—— where a_atani.
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This result is obtained by dividing both sides of the formula

exp(%ce123) = exP(%beua) exp(%aelzs)

by their scalar parts and then by inspecting the bivector parts.

4.7 The group Spin(3)
The Clifford algebra Cf3 of R3 can be employed to construct the universal
covering group for the rotation group SO(3) of R3. A vector x € R3 can be
rotated by the formula
R? 5 R?, x — p(s)x = sxs~?
where s is an element of the group
Spin(3) = {s€Cl3 |5s =1, 55 =1}.

The group Spin(3), called the spin group, is a two-fold covering group of the
rotation group SO(3).

In the matrix formulation provided by the Pauli spin matrices, the spin group
Spin(3) has an isomorphic image, the special unitary group

SU(2) = {s € Mat(2,C) | sTs = I, dets = 1}.

For an element s € SU(2) the function x — p(s)x = sxs' is a rotation of the
Euclidean space of traceless Hermitian matrices,

{x € Mat(2,C) | trace(x) = 0, x! = x} ~R3.

Every element in SO(3) can be represented by a matrix in SU(2). There are
two matrices s and —s in SU(2) representing the same rotation R = p(+s) €
SO(3). In other words, the group homomorphism p : Spin(3) — SO(3) is
surjective with kernel {31}. This can be depicted by a sequence

1 — {£1} — Spin(3) £ S0(3) — 1

which is exact, that is, the image of a homomorphism coincides with the kernel
of the successive homomorphism.

The spin group Spin(3) is a universal cover of the rotation group SO(3),
that is, the Lie group Spin(3) is simply connected. ® The group SO(3) is
doubly connected. 1°

9 A Lie group is simply connected if it is connected and every loop in the group can be
shrunk to a point.

L0 Rotations in SO(3) can be represented by vectors a € R3, |a| < w. Each rotation, |a] < =,
has a unique representative, and each half-turn, |a| = , is represented twice, +a. A loop
connecting the identity and a half-turn does not shrink to a point.
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4.8 Pauli spinors

In the non-relativistic theory of the spinning electron one considers column
matrices, the Pauli spinors

¢=(¢1>E(C2 where ,1- € C.
V2

An isomorphic complex linear space is obtained if one replaces Pauli spinors
by the square matriz spinors
¥ 0
o=
Y2 0

where only the first column is non-zero. The fact that only the first column is
non-zero can be expressed as

¥ € Mat(2,C)f where f:((l) g)

We shall regard the correspondences e; ~ o1, es ~ 03, ez ~ 03 as an
identification between Cf3 and Mat(2,C). If we multiply ¥ € Mat(2,C)f on
the left by an arbitrary element u € Cf3 = Mat(2,C), then the result is also of

the same type:
(Un u12> (¢1 0) _ (<P1 0)
uz1 uzz ) \¢2 0 w2 0/
Such matrices, with only the first column being non-zero, form a left ideal S
of Cl3, that is,

up € S forall uelCls and Y €5 CCls.

This left ideal S of Cés contains no left ideal other than S itself and the zero
ideal {0}. Such a left ideal is called minimal in Cfs.
As a real linear space, S has a basis {fo, f1, f2, fa} where

fo=3(1 +e3) ~ ((1) 0>,

0
0 0
fi=3(e3+e) =~ (i 0>,
0 0
f2= %(831 —e) = (_1 0) )
fa=1i(e12 +eas) =~ i 0
2 - 0 0/°

The element f = fy is an idempotent, that is, f2 = f.
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]F:fCEsf:{((c) 8) cE(C}

of Cf3 is a subring with unity f, that is, af = fa for a € F. None of the
elements of FF is invertible as an element of C¢3, but for each non-zero a € F
there is a unique & € F such that ab = f. Thus, F is a division ring with
unity f [this follows from the idempotent f being primitive in Cl3). As a 2-
dimensional real division algebra F must be isomorphic to C. The isomorphism
F ~ C is seen by the equation fZ = —f; relating the basis elements {fo, f3}
of the real algebra F.

The subset

Comment. The multiplication of an element i of the real linear space S on
the left by an arbitrary even element u € C£3, expressed in coordinate form in

the basis {fo, f1, f2, fa},
utp = (ug + ure23 + uzess + uzess) (vofo + vafi + 2 fs + ¥afa),

corresponds to the matrix multiplication

up —U1 —Uuy —us Yo
’l“,b ~ Uy Up us —Us ".bl
uz —uz U W (23
uz  uz —UuU; U Y3

The square matrices corresponding to the left multiplication by even elements
constitute a subring of Mat(4,R); this subring is an isomorphic image of the
quaternion ring HL 1

The minimal left ideal

s=cur={(}, o)

has a natural right FF-linear structure defined by

SxF—S, (,A) = A

¢1)¢2 € (C}

We shall provide the minimal left ideal S with this right F-linear structure,
and call it a spinor space. !

The map Cfz3 — Endy S, u — 7(u), where 7(u) is defined by the relation
T(u)y = uy, is a real algebra isomorphism. Employing the basis {fo, —f2} for
the F-linear space S, the elements 7(e;), T(es), 7(es) will be represented by

the matrices o, 049, 03. In this way the Pauli matrices are reproduced.

11 Note that multiplying a matrix ¥ in S, a left ideal, on the left by A € F does not result
in a left F-linear structure.
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There is a natural way to introduce scalar products on the spinor space
S C C{3. First, note that for all ¥, € S the product

. vi Ys (1 0 _ (dler+dier O
“\0 0 w2 0 0 0
falls in the division ring F (z — z* means complex conjugation). To show that
the map

SxS—F, (¥,0) = dp

defines a scalar product we only have to verify that the reversion ¢ — ¥ is
a right-to-left F-semilinear map. For all ¥ € S, A € F we have ()™ = ¢
where the map A — ) is an anti-involution of the division algebra F (actually
complex conjugation).

Multiplying a spinor % € S C Cf3 by an element s € Cf3 is a right F-
linear transformation S — S, 1% — sv. The automorphism group of the scalar
product is formed by those right F-linear transformations which preserve the
scalar product, that is,

(s9)"(sp) = forall y,p€S.

The automorphism group of the scalar product Py is seen to be the group
{s € Cf3 | 5s = 1} which is isomorphic to the group of unitary 2 x 2-matrices,

U(2) = {s € Mat(2,C) | s's = I}.

We can also use the Clifford conjugate v — @ of Cf3 to introduce a scalar
product for spinors. In this case, the element

0 0\ [e 0)_ 0 0
¢'<P—(_¢2 ¢1)(<P2 0)—(¢1<P2—¢2901 0)

does not appear in the division ring F = fCfl3f. However, we can find an
invertible element a € Cf3 so that ayp €F, e.g. a =e; or a = e3y. The map

SxS—F, (¥,0) = ap
defines a scalar product. Writing
0 1
=(50)
we find that agp ~ 7(¢)TJ7(p). Hence, the automorphism group {s € Cf3 |

s = 1} of the scalar product atp is the group of symplectic 2 x 2-matrices,

Sp(2,C) = {s € Mat(2,C) | s"Js = J}.
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4.9 Spinor operators

Up till now spinors have been objects which have been operated upon. Next we
will replace such passive spinors by active spinor operators. Instead of spinors

[t O
1l]_(tbz 0>EC£3f

in minimal left ideals we will consider the following even elements:

¢1 _';b; ) +
¥ = 2even(y) = . ) ece,
w=( i) ecy
also computed as ¥ = 1 + 9 for ¥ € Cfsf. Classically, the expectation values
of the components of the spin have been determined in terms of the column
spinor 9 € C? by computing the following three real numbers:

s1=9loy, sy =9logy, s3=logy.
In terms of 1 € C43f this computation could be repeated as
s1=2yerPlo, 2= 2Avervdo, s3 = 2(vesio.

However, in terms of ¥ € CZ;' we may compute s = sjej + spes + szes directly
as -
s = \I’e3\I’.

Since ¥ acts here like an operator, we call it a spinor operator. It should be
emphasized that not only did we get all the components of the spin vector s
at one stroke, but we also got the entity s as a whole.

Remark. The mapping CfF — R3 ¥ — Wo3¥' = Wes¥ is the KS-
transformation (introduced by Kustaanheimo & Stiefel 1965) for spinor regu-
larization of Kepler motion, and its restriction to norm-one spinor operators
¥ satisfying v =1 (or equivalently ¥¥' = I) results in a Hopf fibration
S3 — S? (the matrix Uos ¥t is both unitary and involutory and represents a
reflection of the spinor space with axis ).

The above mapping should not be confused with the ‘Cartan map’, see Car-
tan 1966 p. 41 and Keller & Rodriguez-Romo 1991 p. 1591. A ‘Cartan map’
C? x C? = Cl3, (v,p) = 2¢e1p, where C? = Cl3f, sends a pair of square
matrix spinors to a complex 4-vector zg + x,

P11 — a2
zo = — (Y12 — ¥2p1), x=| (1 + 2p2)
— (Y12 + Y201)

When 1 = ¢, x2 = 0. ]
Note also that trace(yy!) = 2(1&1;)0 = ¥¥ which equals ¥¥ = det(¥).
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In operator form the Schrodinger-Pauli equation

ov 1 he
ih— = U — — —eVV
] 5t o 5 B‘Ile3 eV

shows explicitly the quantization direction e3 of the spin. The explicit occur-
rence of es is due to the injection C? — Clsf, ¥ — ¥; technically 2 even(§¢) =
Bes. If we rotate the system 90° around the y-axis, counter-clockwise as seen
from the positive y-axis, then vectors and spinors transform to

B'=uBu™! and ¥ =u¥ where u= exp(%ew),

and the Pauli equation transforms to

: v’ 1 129! he sITY '
Zh—g—t——%ﬂw—%B\I’es—CV\I’.
If this equation is multiplied on the right by u~!, then es goes to e; = uezu™?!,

and the equation looks like

ov” | he -
. — ‘I’” _ B,‘I’” _ \Il”
ih ot om 2m e~ eV,
where ¥” = yuW¥u~!. Both the transformation laws give the same values for

observables, that is, ¥'es¥’ = ¥"e, ¥".

Exercises

1. Compute the square of a 4+ be;z3 where a,b € R3,

2. Compute p?, ¢? and pq for p= (1 +e3) and ¢ = 3(1 —es).

3. Compute the squares of 1(1 + es) & (1 — es)er2.

4. Find all the four square roots of cos ¢ + e;2sin . Hint: ejzes = ezeqs.

5. Find the exponentials of -7 (1 — e3)e;s. Hint: e;2 and ej23 commute [or

g = 3(1 — e3) is an idempotent satisfying ¢ = ¢].
. Let u=a +a+ bejzs+ Berss [a,8 €R and a,b € R3]. Compute ui.
7. Find the inverse of u = a + a + beys3 + Be1s. Hint: ui is of the form
z + yejas, T,y ER.
8. Find the exponential of u = o + a + beys3 + Be;23. Hint: compute
(a + bejas)?.
9. Show that each non-zero even element in C[ is invertible.
10. Show that uii € R @ R3 for all u € Cfs.
11. Show that |uaii| = |uf?|a] for a € R3, ue R A’R3.
12. Show that the norm on Cf3, defined by |u|? = (uit)o, agrees with the

(2]
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norm given by |u|? = <u,u> where the symmetric bilinear product is
determined by

<a,f>=aff for a,B€ER,
<a,b>=a-b for a,beR?

and by
X1-¥y1 ... X1-Yk
<XA L AXEIAN L AYE> =
Xe*Yr ... Xk Yk

in /\k R3, k> 2. [One also needs to assume orthogonality of the
components in Cfs = RGR3@® A’R3 @ A*R3)]

13. Show that the reflection across the plane of the bivector A is obtained by
r—r =—-ArA-l

14. Let x,y,z € R3. Compute (xyz); and (xyz)s. Hint: use reversion.

Solutions

1. (a+bejzs)’ =a-a—b-b+2(a-b)es.

2. p? = p and ¢? = ¢, that is, p and ¢ are idempotents; and pg = 0 [and so
there are zero-divisors in the Clifford algebra CZa].

. e3 [this shows that vectors can have square roots].

. *(cos £ + ejzsin £), tes(cos £ + ejosin £).

. e3 [this shows that vectors also have logarithms].

a?—pf%—a-a+b-b+2(aff—a-b)es.

. Denote r = v/(a + beyz3)2 €ER® A\’R3, v = (a +bejzs)/r, v = 1. Then
exp(u) = exp(a + Beya3)[2(1 + v) exp(r) + (1 — v) exp(—7)] when r # 0.
When 7 = 0: exp(u) = exp(a + fei23)(1 + a + bejas).

10. u = a+a+bejsa+ Peiss, uii =a?+ 4% +a?+b?+2(aa+b+axb)

which is in R @ R3. Direct proof:

(u))” = 4it = uit
which implies uii € R @ R3, since the reversion sends bivectors and
3-vectors to their opposites.
13. Decompose r into components parallel, r), and perpendicular, ry, to A,
and note that A anticommutes with vectors in its plane,
A(ry+ry) = (- +rL)A. Then
A(l‘” + rJ_)A—l = (—I‘" + r_|_)AA—1 = —r'.
14. First, (xyz)~ = zyx and (xyz)~ = (xyz)1 — (xyz)s. Therefore,
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(xyz)1 = 1(xyz + zyx) and (xyz)s = }(xyz — zyx), and also
(xyz)1 = (y-2z)x — (2 -xX)y + (x-y)z and (xyz)s = xAyAz.
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5

Quaternions

We saw in the chapter on Complex Numbers that it is convenient to use the real
algebra of complex numbers C to represent the rotation group SO(2) of the
plane R2. In this chapter we shall study rotations of the 3-dimensional space
R3. The composition of spatial rotations is no longer commutative, and we
need a non-commutative multiplication to represent the rotation group SO(3).
This can be done within the real algebra of 3 x 3-matrices Mat(3,RR), or by
the real algebra of quaternions, H, invented by Hamilton.

The complex plane C is a real linear space R?, and multiplication by a
complex number ¢ = a+1b, that is, the map C — C, z — ¢z, may be regarded

. . . -b . .
as a real linear map with matrix a ) operating on (z) in R2. The

a
b
complex plane is also a real quadratic space R%°, in short IR?, with a quadratic
form

CoR, z=z+iy—zz=22+4%
and norm |z| = +/zZ. Multiplication of complex numbers preserves the norm,
that is, |cz| = |¢||2| for all ¢, z € C, and so multiplication by ¢ is a rotation of
R? if, and only if, |¢] = 1. Conversely, any rotation of R? can be represented
by a unit complex number ¢, |¢| =1, in C. The unit complex numbers form a
group
U(l)={ceClecc=1},

called the unitary group, which is isomorphic to the rotation group SO(2) =
{U € Mat(2,R) | UTU = I, detU = 1}, that is, U(1) ~ SO(2). The unitary
group U(1) can be visualized as the unit circle

S'={e+iyeCla®+y* =1}

67
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of the complex plane C.

Im

Similarly, the algebra of quaternions H may be used to represent rotations
of the 3-dimensional space R3. It will turn out that quaternions are also con-
venient to represent the rotations of the 4-dimensional space R*.

Quaternions as hypercomplex numbers

Quaternions are generalized complex numbers of the form ¢ = w+iz + jy+ k=
where w, z,y, z are real numbers and the generalized imaginary units i, j, k
satisfy the following multiplication rules:

2=j2=k2= -1,

ij=k=—ji, jk=1i=—kj, ki=j=—ik.
Note that the multiplication is by definition non-commutative. One can

show that quaternion multiplication is associative. The above multiplication
rules can be condensed into the following form:

2= =k =ijk=—1

where in the last identity we have omitted parentheses and thereby tacitly
assumed associativity.
The generalized imaginary units will be denoted either by 4, j, k or by 1, j, k.
They have two different roles: they act as generators of
rotations, that is, they are bivectors, or
translations, that is, they are vectors.

This distinction is not clear-cut since bivectors are dual to vectors in R3.
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5.1 Pure part and cross product

A quaternion ¢ = w + 1z + jy + kz is a sum of a scalar and a vector, called
the real part, Re(q) = w € R, and the pure part, Pu(q) = iz + jy + kz € R3.
The quaternions form a 4-dimensional real linear space H which contains the
real axis R and a 3-dimensional real linear space R? so that H =R ®R3. We
denote the pure part also by a boldface letter so that ¢ = gg + q where go € R
and q = ig; +jg2 +kga € R3. The real linear space R@®R3 with the quaternion
product is an associative algebra over R called the quaternion algebra H. The
product of two quaternions @ = ag + a and b = by +b can be written as

ab=agby —a-b+asb+aby+axb.

A quaternion ¢ = ¢o + q is pure if its real part vanishes, ¢gg = 0, so that
¢ = q € R3. A product of two pure quaternions a = ia; + jas + kasz and
b = ib; + jbs + kb3 is a sum of a real number and a pure quaternion:

ab=-a-b+axb

where we recognize the scalar product a-b = a1b; + agbs + asbs and the cross
product a xb = i(02b3 - a3b2) +j(£13b1 - a1b3) + k(a1b2 - agbl).

The vector space R® with the cross product a x b is a real algebra, that is,
it i1s a real linear space with a bilinear map

R3® xR® > R3, (a,b) —» a xb.
The cross product satisfies two rules
axb=-bxa,
ax(bxc)+bx(cxa)+ecx(axb)=0,

the latter being called the Jacobi identity; this makes R? with the cross product
a Lie algebra. In particular, the cross product is not associative, a x (b x ¢) #
(axb)xe.

We can reobtain the cross product of two pure quaternions a,b € R? as the
pure part of their quaternion product: a x b = Pu{ab).

5.2 Quaternion conjugate, norm and inverse

The conjugate ¢ of a quaternion ¢ = w+ iz + jy + kz is obtained by changing
the sign of the pure part:

§=w-—iz — jy—kz.

We shall also refer to § as the quaternion conjugate of q. The conjugation is
an anti-automorphism of H; ab = ba for a,b € H.
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A quaternion ¢ multiplied by its conjugate ¢ results in a real number ¢ =
w? + 22 + y? + 22 called the square norm of ¢ = w + iz + jy + kz. The norm
lg| of ¢ is given by |¢] = +/¢7 so that

lw+ iz + jy + kz| = Vw? + 22 + 42 + 22.

The norm of a product of two quaternions a and b is the product of their
norms — as an equation, |abl = |a||b| for a, b € H - which turns H into a
normed algebra.
The inverse ¢~
more explicitly by

1 1

of a non-zero quaternion q is obtained by ¢~ = g/|q|? or
1 _ w—ir—jy—kz
w+iz+jy+ ks w?+z24y2+ 22
In particular, ab = 0 implies a = 0 or b = 0, which means that the quaternion
algebra is a division algebra (or that the ring of quaternions is a division ring).

5.3 The center of H

The set of those elements in H which commute with every element of H forms
the center of H,

Cen(H) = {w € H | wg = qw for all ¢ € H}.

The center is of course closed under multiplication. The center of the division
ring H is isomorphic to the field of real numbers R. In contrast to the case
of the complex field C, the real axis in H is the unique subfield which is the
center of H.

5.4 Rotations in three dimensions
Take a pure quaternion or a vector
r=ir+jy+kz€R3 where H=Rg@RS

of length |r| = /22 + y2 + 22. For a non-zero quaternion a € H, the expression

ara~! is again a pure quaternion with the same length, that is,

ara”eR® and |ara”!| = |r|.
In other words, the mapping
R®* 5 R3 r—are!

is a rotation of the quadratic space of pure quaternions R3. Each rotation in
S0(3) = {U € Mat(3,R) | UTU = I, detU = 1} can be so represented,
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and there are two unit quaternions a and —a representing the same rotation,
ara~! = (—a)r(—a)~!. In other words, the sphere of unit quaternions,

SP={geH]|lql =1},

is a two-fold covering group of SO(3), that is, SO(3) ~ $3/{+1}.

A rotation has three parameters in dimension 3. In other words, SO(3) and
S? are 3-dimensional manifolds. The three parameters are the angle of rotation
and the two direction cosines of the axis of rotation.

To find the axis of this rotation we take a unit quaternion a, |a| = 1, and write
it in the form a = €®? where a € R3. Note that

a a . «
¢*? = cos — + —sin —
2« 2
where o = |a|. The rotation r — ara~! turns r about the axis a by the

angle a. The sense of the rotation is counter-clockwise when regarded from
the arrow-head of a.

The composite of two consecutive rotations, first around a by the angle
a = |a] and then around b by the angle 8 = |b], is again a rotation around
some axis, say c. The axis of the composite rotation can be found by inspection
of the real and pure parts of the formula e®/2 = eP/2¢8/2, Divide both sides by
their real parts and substitute

¢' = Stan 1, where = |c|,
v 2
to obtain the Rodrigues formula
, a+b —a xb’
c =—
l1—a' b

5.5 Rotations in four dimensions

The mapping H — H, ¢ — agb™!, where a,b € H are unit quaternions |a| =
|b] = 1, is a rotation of the 4-dimensional space R* = H. In other words, the
real linear mapping

H—-H ¢-agb™!, where a,b€H and |a|=|b]=1,

is a rotation of R*. Each rotation in SO(4) can be so represented, and there
are two elements (a,b) and (—a,—b) in $3x.S3 representing the same rotation,
that is, agb~! = (—a)q(—b)~!. In other words, the group S x S2 is a two-fold
covering group of SO(4), that is,

- S3 x §3

- {(1’ 1)7 (_17 —1)} '

S0(4)
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A rotation in dimension 4 can be represented by a pair of unit quaternions,
and so it has six parameters, in other words, dim SO(4) = dim(52 x $2) = 6.
A rotation has two completely orthogonal invariant planes; both the invariant
planes can turn arbitrarily; this takes two parameters. Fixing a plane in R*
takes the remaining four parameters: three parameters for a unit vector in
53, plus two parameters for another orthogonal unit vector in $2%, minus one
parameter for rotating the pairs of such vectors in the plane.

5.6 Matrix representation of quaternion multiplication

The product of two quaternions ¢ = w+iz+jy+kz and u = ug+iug +jus+kus
can be represented by matrix multiplication:

w -z -y -z Ug Vo
T w -z Y ui _ 51
Yy oz w -z uy | | e
z -y x w Uus Vs

where qu = v. Swapping the multiplication to the right, that is, ug = v', gives
a partially transformed matrix:

w -z -y -z Ug vp
r w oz -y up | |
y -z w oz uz | | v
z Yy -z w u3 A

Let us denote the above matrices respectively by Ly and R, that is,
Ly(u) =qu (=v) and R,(u) =ug (=v').
We find that !
LiL;Ly = -1 and RiRjRx=1.
The sets {L, € Mat(4,R) | ¢ € H} and {R,; € Mat(4,R) | ¢ € H} form two
subalgebras of Mat(4,R), both isomorphic to H. For two arbitrary quaternions
a,b € H these two matrix representatives commute, that is, Lo Ry = RpL,. Any

real 4 x 4-matrix is a linear combination of matrices of the form L,Ry. The

above observations together with (dimH)? = dim Mat(4,R) imply that
Mat(4,R) ~ H® H,

or more informatively Mat(4,R) = HQ H*. 2

1 Note that RiTRjTRI =-1I.

2 For unit quaternions a,b € H such that |a| = |b| = 1 we may choose Ls € Q@ and R, € Q”

or alternatively Ls € @* and R, € Q. For a discussion about the meaning of @ and Q*,
see the chapter on The Fourth Dimension.
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Take a matrix of the form U = L, R, in Mat(4,R). Then UTU = |a|?|b|?I,
but in general U 4+ UT # al. Take a matrix of the form V = L, + R, in
Mat(4,R). Then V + VT = 2(Re(a) + Re(b))I, but in general V'V # BI.
Conversely, if U € Mat(4,R) is such that U+ UT = ol and UTU = SI then
the matrix U belongs either to H or to H*.

Besides real 4 x 4-matrices, quaternions can also be represented by complex

2 x 2-matrices:
w+iz+jy+kz~ (1.1;+1z zz+.y) .
it—y w-—iz
The orthogonal unit vectors i,J,k are represented by matrices obtained by
multiplying each of the Pauli matrices o1,09,03 by i =+/-1:

= (0 0) = (5% 0) = (5 0

5.7 Linear spaces over H

Much of the theory of linear spaces over commutative fields extends to HL
Because of the non-commutativity of H it is, however, necessary to distinguish
between two types of linear spaces over H, namely right linear spaces and left
linear spaces.

A right linear space over Hl consists of an additive group V and a map

VxH-SV, (x,A)—>x\

such that the usual distributivity and unity axioms hold and such that, for all
A p€eH and x€eV,

(xA)p = x(Ap).
A left linear space over H consists of an additive group V' and a map
Hx V=V, (Ax)—Xx

such that the usual distributivity and unity axioms hold and such that, for all
Mp€H and xe 'V,

A(ux) = (Ap)x.

A mapping L : V — U between two right linear spaces V and U is a right
linear map if it respects addition and, for all x € V, A € H, L(xA) = (L(x))A.

Comment. In the matrix form the above definition means that

(@)= ED-1C D ED
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Remark. Although there are linear spaces over H, there are no algebras
over H|, since non-commutativity of H precludes bilinearity over H: A(zy) =

(Az)y # (2A)y = z(\y) # z(yA) = (zy)) 1

5.8 Function theory of quaternion variables

The richness of complex analysis suggests that there might be a function theory
of quaternion variables. There are several different ways to generalize the
theory of complex variables to the theory of quaternion functions of quaternion
variables, f : H — H. However, many generalizations are uninteresting, the
classes of functions are too small or too large. In the following we will first
eliminate the uninteresting generalizations.

First, consider quaternion differentiable functions such that

f'(q) = lim(f(g+ k) — f(g)]h™", where g¢,h€H,
exists. The derivative f’(q) is a real linear function
R* 5 R*:h— f'(g)h

corresponding to multiplication by a quaternion a € H on the left, f'{(¢)h = ah
for h € H = R*. However, since ah # ha the only quaternion differentiable
functions are the affine right H-linear functions

f(¢) =ag+b where a,bel

We conclude that the set of quaternion differentiable functions reduces to a
small and uninteresting set.

Second, if we consider power series in a quaternion variable ¢ = w+iz +jy+
kz, then we get the set of all power series in the four real variables w, z, y, z.
For instance, the coordinates are first-order functions

w = }(g —igi — jgj — kek),

z = }(g—igi +jgj +kek)i™,

y = (g +igi — jgj + kgk)j~?,

z= %(q +igi + jgj — kgk)k™?,
and so the set of power series in ¢, with left and right quaternion coefficients,
is the set of all power series in the real variables w,z,y,z. This set is too big
to be interesting.

Third, we could consider power series in ¢ with real coefficients, that is,

functions of type f(g) = ao + a1¢ + asq® + ... where ag,ai,as,... are real.
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Restrict such a function to the complex subfield C C H, and send z = = + iy
to f(z) = u+iv, where u = u(z,y) and v = v(z, y). Decompose the quaternion
¢ into real and vector parts, ¢ = go + q, and note that q/|q| is a generalized
imaginary unit, (q/|q])? = ~1. Then

f(g0 + q) = u(qo, lal) + %v(%, la)-

So this generalization just rotates the graph of C —» C, z — f(z), or rather
makes i = i sweep all of S2 = {r € R® | |r| = 1}, and thus gives only (a
subclass of) axially symmetric functions.

Fourth, we could consider functions which are conformal almost everywhere
in R*. This leads to Mobius transformations of R*, or its one-point compact-
ification R* U {oo}. The Mobius transformations are compositions of the four
mappings sending ¢ to

agh™! a,b € 8% rotations
g+b beH translations
g A>0 dilations
(¢l+c)"! ceH transversions.

A nice thing about quaternions is that all Mobius transformations of R* can
be written in the form (ag + b)(cqg +d)~!, where a,b,¢,d € H.

Fifth, we could focus our attention on a generalization of the Cauchy-Riemann
equations,

af f 0f L Of .
—a—+ 3z 3 +ka =0 where f:H—H

Using the differential operator

a .0 0

V:x +ka—z

3z +J 3_:!/
the above equation can be put into the form

Of O GV £V xE=0
ow Ow

where f = fo+f with fo : H - R and f : Hl — R®. This decomposes into
scalar and vector parts

0fo
Bw

There are three linearly independent first-order solutions to these equations

—V-f=0 and §-+Vfo+fo=0.
ow

g = T —iw, ¢y =y —jw, ¢; = z —kuw.
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Higher-order homogeneous solutions are linear combinations of symmetrized
products of g, gy, q;. For instance, the symmetrized product of degrees 2,1,0
with respect to ¢,qy,q. 1s seen to be

ay + 19yl + aya2 = 3(2® — w?)y — bwzyi + (v® — 3wz?)j.

This already shows that the last alternative results in an interesting class of
new functions, to some extent analogous to the class of holomorphic functions
of a complex variable.

Historical survey

Hamilton invented his quaternions in 1843 when he tried to introduce a product
for vectors in R3 similar to the product of complex numbers in C. The present-
day formalism of vector algebra was extracted out of the quaternion product
of two vectors, ab = —a-b + a x b, by Gibbs in 1901.

Hamilton tried to find an algebraic system which would do for the space
R3 the same thing as complex numbers do for the plane R2. In particular,
Hamilton wanted to find a multiplication rule for triplets a = ayi + as) + ask
and b = byi + byj + b3k so that |ab| = |a||b|, that is, a multiplicative product
of vectors a,b € R3. However, no such bilinear products exist (at least not
over the rationals), since 3 x 21 = 63 # n?+n2 +n2 for any integers ni, ns, n3
though 3 = 12412412 and 21 = 12422442 (no integer of the form 4%(8b+7),
with @ > 0, b > 0, is a sum of three squares, a result of Legendre in 1830).

Hamilton also tried to find a generalized complex number system in three
dimensions. However, no such associative hypercomplex numbers exist in three
dimensions. This can be seen by considering generalized imaginary units i and
j such that i? = j2 = —1, and such that 1,i,j span R3. 3 The product must
be of the form ij = a + i + jy for some real «, 8, 4. Then

i(ij) = ia — B+ (ij)y =ia = B+ (¢ +iB+i7)y
=—f+ay+i(a+ )+,
whereas by associativity i(ij) = 1%j = —j which leads to a contradiction since
4% > 0 for all real ¥.

Hamilton’s great idea was to go to four dimensions and consider elements of
the form ¢ = w+iz + jy + kz where the hypercomplex units i, j, k satisfy the
following non-commutative multiplication rules

2= =k =1,

ij:k:—ji,jk:i:—kj,ki:j:—ik

3 Actually, it is not necessary to assume that j2 = —1. The computation shows that there
is no embedding C C R3, where R? is an associative algebra.
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Hamilton named his four-component elements quaternions. Quaternions form
a division ring which we have denoted by H in honor of Hamilton.

Cayley in 1845 was the first one to publish the quaternionic representation of
rotations of R® = R3 r — ara—!, but he mentioned that the result was known
to Hamilton. Cayley, in 1855, also discovered the quaternionic representation
of 4-dimensional rotations:

R* > ]R4, q— aqb"l,

where we have identified R* =

The differential operator V = i— 9

0
P +.la +ka

his symbol for nabla was turned 30°. The first one to study solutions of

of  .of .of . Of
3w T3, Hi5, kg,
was Fueter 1935.

is due to Hamilton, although

=0, where f:H — H,

Comment

The quaternion formalism might seem awkward to a physicist or an engineer,
for two reasons: first, the squares of i,j,k are negative, i2 = j2 = k? = —
and second, one invokes a 4-dimensional space which is beyond our ability of
visualization.

Exercises

1. Let u be a unit vector in R3, |u| = 1. Show that R®* 5 R3, x s uxu isa
reflection across the plane ut.

2. Determine square roots of the quaternion ¢ = ¢go + q.

3. Hurwitz integral quaternions ¢ = w + iz + jy + kz are Z-linear
combinations of i, j,k and %(1 + 1+ j+ k), that is, either all w, z,y,z are

integers or of the form n+ 1. Show that |g|? is an integer, and that the set
{w+iz+jy+ke|wz,y2€Z or wz,yz€EZ+1}

is closed under multiplication
4. Clearly, ab = ba implies e%e® = ¢**?, but does e®e® = e*t® imply ab = ba?

5. Denote
a b\ _
c d) —
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Show that
a b —l_l add — bde cbb—dba\~
c d ~ A \ béc—aed daa— cab

for a non-zero A = |a|?|d|? + |b]?|c|* — 2Re(a&d b).

. Verify that only one of the matrices

_ 1 _ 1 j
“‘(j k) and b‘(z‘ k)

is invertible.

. Does an involutory automorphism of the real algebra Mat(2, H) necessarily

send a diagonal matrix of the form

(a 0) where a€H
0 a

to a diagonal matrix?

. Suppose A (# R) is a simple real associative algebra of dimension < 4

with center R. Show that A is H or Mat(2,R).

. Suppose A (# R) is a simple real associative algebra with center R and

an anti-automorphism z — a(z) such that £ + a(z) €R and za(z) € R.
Show that A is H or Mat(2,R).

10. Show that all the subgroups of Qg = {*1,+i,+j,+k} are normal, that is,

11

for a subgroup H C Qg and elements g € Qs, h € H, ghg™' € H.

. Take two vectors a,b in R®, such that |a| = |b|, and a = €®, b =¢P in

S53. Determine the point-wise invariant plane of the simple rotation
g — agb~! of R*.

Solutions

2.

If ¢ = 0, then there is only one square root, 0. If q =0, go > 0, then there
are two square roots, +./go. If ¢ =0, ¢o < 0, then there is an infinity of
square Toots, 1/—go u, where u is a unit pure quaternion u € R® C H],

|[a] = 1. If q # 0, then there are two square roots,

q
1(lal + q0) + T 1(lg] - q0)

and its opposite.

. Hint: consider the quaternions a = 3w and b = 4xj, or the matrices

0 -1 0 ¢
a_37r(1 0> and b_47r(z, 0).
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6. a is mvertible, but b is not.

11. If @ = b~!, the point-wise invariant plane is at in R2. Otherwise the
point-wise invariant plane is spanned by a 4+ b and
la]|b] — ab = |ajlb] +a-b—ax b.
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The Fourth Dimension

In this chapter we study the geometry of the Euclidean space R*. The purpose
is to help readers to get a solid view, or as solid a view as possible, of the first
dimension beyond our ability to visualize. This is an important intermediate
step in scrutinizing higher dimensions. We start by reviewing regular figures
in lower dimensions.

6.1 Regular polygons in R?

The equilateral triangle, the square, the regular pentagon, ..., are regular poly-
gons. We shall also call them a 3-cell, 4-cell, 5-cell, ..., denoted by {3}, {4}, {5},
..., respectively. Therefore, we call a regular p-gon a p-cell, denoted by {p}.
As p grows toward infinity, we get in the limit an oo-cell, where the line is
divided into line segments of equal length. As a degenerate case we get a 2-cell,
which is bounded by 2 line segments in the same place. The interior angle of a
regular p-gon at a vertex is (1 — 2/p)m.

6.2 Regular polyhedra in R?

A regular polyhedron is a convex polyhedron bounded by congruent regular
polygons, for instance, by p-gons. The number of regular p-gons meeting at a
vertex is the same, say ¢; it satisfies

q(l —%)w < 2m,

because the sum of angles of faces meeting at a vertex cannot exceed 2w. The

above inequality can also be written in the form
1 n 1 > 1
p q° 2

80
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The same result is obtained by inspection of the topological properties of a
regular polyhedron: the numbers Ny, N1, Ny of vertices, edges and faces satisfy
the Euler formula:

No—-— N1+ Ny =2,

On the other hand, each edge of a regular polyhedron is a boundary of two
faces, each with p sides, so that 2N; = pNj; and a vertex is a meeting point
of ¢ edges, each with 2 end points, so that ¢Ng = 2N;. The above inequality
is a consequence of the Euler formula and the equation

qNo = 2N; = pN,.

A\

3,3 34 4,3

A regular polyhedron (p,q > 3) must satisfy the foregoing inequality, and so
only a few pairs p, ¢ are possible. These regular polyhedra are called Platonic
solids, or p, g-cells with Schldfli symbols {p, ¢}. There are five Platonic solids.

— =

Name {r,q} No N Ny
Tetrahedron {3,3y 4 6 4
Octahedron {3,4} 6 12 8
Cube 43 8 12 6

Icosahedron {3,5} 12 30 20
Dodecahedron {5,3} 20 30 12

When ¢ = 2 in the above inequality we get a dihedron with Schiafli symbol
{p,2}. A dihedron is bounded by two regular polygons positioned in the same
place.

When a plane is covered by regular polygons so that at each vertex there
meet ¢ regular p-gons, we are solving the equation

1 1 1

p g 2
There are three solutions to the above equation; they have Schlafli symbols
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{4,4}, {3,6} and {6,3} corresponding to tilings of the plane by squares, equi-
lateral triangles and regular hexagons. These regular tilings are called tessel-
lations.

6.3 Regular polytopes in R*

A polyhedron is regular if its faces and vertices (= parts of the polyhedron near
a vertex point) are regular. A regular polyhedron with Schlifli symbol {p, ¢}
has p-cells as faces and g-cells as vertices. A vertex is regular, if a plane cuts
off a regular polygon whose central normal passes through the vertex.

A regular vertex

A polytope is a higher-dimensional analog of a polyhedron. A polytope is
regular if its faces and vertices are regular. A 4-dimensional regular polytope
with p, g-cells as faces must have ¢, r-cells as vertices. This drops the number
of 4-dimensional regular polytopes from 52 = 25 to 11. The sum of the solid
angles of the faces meeting at a vertex cannot exceed 4m. As a consequence,
there remain six possible combinations of p,¢ and ¢,r. A closer inspection
shows that all these six combinations are in fact 4-dimensional regular poly-
topes; we shall call them p, ¢, r-cells with Schlafli symbols {p, ¢, }.

{pa,r} Ny N1 Ny N3 Face Vertex

{3,3,3} 5 10 10 5 Tetrahedron Tetrahedron
{3,3,4} 8 24 32 16 Tetrahedron Octahedron
{4,3,3} 16 32 24 8 Cube Tetrahedron
{3,4,3} 24 96 96 24 Octahedron Cube

{3,3,5} 120 720 1200 600 Tetrahedron  Icosahedron
{5,3,3} 600 1200 720 120 Dodecahedron Tetrahedron

There are the regular simplex {3, 3,3} and the hypercube {4, 3, 3}, also called
a tesseract. There is the octahedron analog {3, 3,4}, a dipyramid with octahe-
dron as a basis. There are the analogs of the icosahedron and the dodecahedron,
{3,3,5} and {5,3,3}; and there is an extra regular polytope {3,4, 3}.

The 3-dimensional space can be filled with cubes, a configuration with
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Schlafli symbol {4,3,4}. The 4-dimensional space can be filled with hyper-
cubes, dipyramids and the extra regular polytope, configurations with Schlafli
symbols {4,3,3,4}, {3,3,4,3} and {3,4,3,3}.

In a higher-dimensional space, n > 4, there are only the regular simplex,
dipyramid and hypercube, and it can only be filled with hypercubes.

6.4 The spheres

A circle with radius r in R? has circumference 27rr and area mr2. A sphere with

radius r in R? has surface 4nr? and volume $7r3. A hypersphere with radius r

in R? has 3-dimensional surface 27?r® and 4-dimensional hypervolume gmird.

For lower-dimensional spheres we have the following table:

n | surface | volume

2 2r
2mr e
472 gmrd

2m2pd %7r2r4

8.2.4 | 8 2.5
smer® | gl

Tt W N

If the volume of the sphere in R" is denoted by w,r™ then its surface is
nw, "~ 1. Observe a rule mw,,7™~! = 2xr - w,r™® between the surface in di-
mension m = n+2 and the volume in dimension n. This leads to the recursion

y _ 27mwy,
n42 — n+ 9
and the formula
7‘.11/2
Wy = ——=—

(n/2)!
which can be computed for odd n by recalling that (1/2)! = /7/2.

6.5 Rotations in four dimensions

Let A be an antisymmetric 4 x 4-matrix, that is, A € Mat(4,R), AT =
—A. Then the matrix e represents a rotation of the 4-dimensional Euclidean
space R*. In general, a rotation of R* has two invariant planes which are
completely orthogonal; in particular they have only one point in common.
The antisymmetric matrix A has imaginary eigenvalues, say +ia and +if,
the eigenvalues of the rotation matrix e are unit complex numbers e*** and
e*#  and the invariant planes turn by angles o and 3 under e4. First, assume
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that o > # > 0 (and « < 7). Each vector is turned through at least an angle
B and at most an angle a. In the case § = 0 we have a simple rotation leaving
one plane point-wise fixed. If 8/« is rational, then e!4 = I for some ¢ > 0. If
B/a is irrational, then e # I for any ¢ > 0.

By the Cayley-Hamilton theorem e4 is a linear combination of the matrices
I, A, A% and A3 so that

e = hol + hiA + hyA? + haA®

and direct computation shows that

ho = a21 2(oﬂcosﬁ—ﬁzcoscx),
hy = Ez—i?(f‘ﬁisinﬂ— %Zsina),
hy = m(cosﬂ—cosa),

hs = &—Zi—ﬂz(%sinﬂ— ésina).

Letting o now approach # and computing the coefficients in the limit give

lim e = I(cosa + 2 sin a)
a—f 2

+§(-g—sina - %cos a)
2

+—

£ (3ane)

+2—:(—;-sina— %cosa).

Observe that in the limit A2 = —a?I, which cancels some terms and results in

lim e? = Icosa + =sina.
a—f o

These rotations with only one rotation angle a have a whole bundle of invariant
rotation planes. In fact, every point of R* stays in some invariant plane, but
not every plane of R? is an invariant plane of e4.

If a rotation U of R? has rotation angles a and f we shall denote it by
U(a, B). Consider the set J = {U(a, ) € SO(4) | « = B} and the relation
‘~’1in the set J' = J\ {I,-1},

U~Ve=UVeJ,

which can be seen to be an equivalence relation. The equivalence class of a
matrix U € J’ is the set {X € J' | X ~ U}. This equivalence class together
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with the center {I,—I} of the rotation group SO(4) forms a subgroup of
SO(4), denoted in the sequel by the letter Q. Also (F\ Q)U {I,-I} is a
subgroup of SO(4); denote it by Q*. Observe that UV = VU for U € @ and
V € @Q*. 1t can be shown that @) and @Q* are isomorphic to the group of unit
quaternions S® = {g € H | |¢| = 1}.

Each rotation L € SO(4) of R* can be written in the form L = UV, where
U €@, VeQ*. Therotation angles of L are a4+ when the rotation angles
of U and V are a and 8. A pair of completely orthogonal planes, both with
a fixed sense of rotation, induces a pair of senses of rotations for all pairs of
completely orthogonal planes. There are two classes of such pairs of oriented
planes: those of the type @ and those of type Q*.

Furthermore, we have an isomorphism of algebras,

H~{X|A>0,¢€Q}u{0},

Q

[
© LS

which we shall regard as an identification. Introduce the algebra
H*={A¢|A>0,¢g€Q"}uU{0}.

and observe an isomorphism of algebras, H ~ H*.

6.6 Rotating ball in R*

A rotating ball in R® has an axis of rotation, like the axis going through the
North and South Poles, and a plane of rotation, like the plane of the equator. A
rotating ball in R* has two planes of rotation, which are completely orthogonal
to each other in the sense that they have only one point in common. Let the
angular velocities in these planes be bivectors wy and wy. The total angular
velocity 1s a bivector w = wy + wg. The velocity v of a point x on the surface
of the ball is

v=xJdw +xJws.
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Assume that ¢ is the angle between the direction x and the plane of w;. Then

Iv] = |x|v/|w1[?(cos )2 + w2 |?(sin p)?.
Therefore, the local angular velocity |v|/|x| is always between |w;| and |ws|.
If |wq1| = |ws|, then every point on the sphere is rotating at the same veloc-

ity and furthermore every point is travelling along some great circle, that is,
everybody is living on an equator!

6.7 The Clifford algebra C¢,
The Clifford algebra Cf; of R* with an orthonormal basis {e;, ez, es3, eq} is
generated by the relations

el=el=el=ej=1 and eje;=—e;e; for i#j.

It is a 16-dimensional algebra with basis consisting of

scalar 1
vectors ejp,es, ez, ey
bivectors ejs,e13, €14, €23, €24, €34
3-vectors ej23, €124, €134, €234
volume element e;534

where e;; = e;je; for i # j and ej334 = ejeseze,.
An arbitrary element u € Cly is a sum of its k-vector parts:
k
u = (u)o + (u)s + (u)s + (u)s + (u)s where (u)x € AR™
There are three important involutions of Cly4:
%= (u)o — (u)1 + (u)2 — (u)3 + (u)s grade involution
@ = (u)o + (u)1 — (u)2 — (u)s + (u)4 reversion
2 = (u)g — (u)1 — (u)z + (u)3 + (u)s Clifford-conjugation.
The Clifford algebra €44 is isomorphic to the real algebra of 2 x 2-matrices
Mat(2,H) with quaternions as entries,

(0 —i (0 —j (0 —k (01
=\ 02T\ 0 )%\ 00T o)

6.8 Bivectors in A\?R*C Cly

The essential difference between 3-dimensional and 4-dimensional spaces is
that bivectors are no longer products of two vectors. Instead, bivectors are
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sums of products of two vectors in R*%. In the 3-dimensional space R® there
are only simple bivectors, that is, all the bivectors represent a plane. In the
4-dimensional space R* this is not the case any more.

Example. The bivector B = e;; + e34 € /\2 R* is not simple. For all simple
elements the square is real, but B?2 = —2 + 2e;334 ¢ R. 1

If the square of a bivector is real, then it is simple. !

Usually a bivector in /\2 R* can be uniquely written as a sum of two simple
bivectors, which represent completely orthogonal planes. There is an excep-
tion to this uniqueness, crucial to the study of four dimensions: If the simple
components of a bivector have equal squares, that is equal norms, then the
decomposition to a sum of simple components is not unique.

Example. The bivector e e; + ezeq can also be decomposed into a sum of
two completely orthogonal bivectors as follows:

1 1
eje) + ezeq = -2'(61 +e3)(exs +eq) + 5(61 — e3)(ez2 — eq). 1

6.9 The group Spin(4) and its Lie algebra
The group Spin(4) = {s € C£} | s§ = 1} is a two-fold covering group of the
rotation group SO(4) so that the map

R* 5 R?, x — sxs™!, where s € Spin(4),
is a rotation, and each rotation can be so represented, the same rotation being
obtained by s and —s. The Lie algebra of Spin(4) is the subspace of bivectors
/\2 R* with commutator product as the product. The two sets of basis bivectors

1(e2s + e1q) 1(e2s — e14)
t(es1+e2q) and I(ess —e2q)
%(612 + esq4) %(612 — eaq)

in AZR* C C¢4 both span a Lie algebra isomorphic to the subspace A\’ R3 C
Cts3 with basis {}ess, Tea1, 1e12}, that is, they satisfy the same commutation
relations. In other words, the Lie algebras

2 2
1 1
5(1 — €1234) /\Iﬁl4 and -2-(1 + e1234) /\]R‘1

1 Although the square of a 3-vector is real, it need not be simple. For instance, V =
e123 +e456 € A° RS is not simple [this can be seen by computing Ve; V1, i =1,2,...,6,
and observing that they are not all vectors].
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are both isomorphic to /\2 R3. The two subspaces %(1 + e1234) /\2 R? of Cl,
annihilate each other, and consequently,

/2\]R4 ~ /:’\IRS @ /:’\IRS.
At the group level this means the isomorphism
Spin(4) ~ Spin(3) x Spin(3)
where Spin(3) ~ $% ~ SU(2).

6.10 The mapping F — (1+F)(1 - F)~! for F € \’R*
The exponential eF/2 € Spin(4) of a bivector F € A’R* corresponds to the
rotation e € SO(4), where A(x) = F L x, for x € R*. Every rotation of
R* can be so represented, and the two elements +eF/? represent the same
rotation.

The exterior exponential eF =1+ F + 1F AF of a bivector F € /\2 Risa
multiple of an element in Spin(4), that is,

eF .

1eF] € Spin(4).
Up to a sign, every element in Spin(4) can be so represented, except +ejga4.
The exterior exponential e¥ of the bivector F corresponds to the rotation
(I + A)(I — A)™!; every rotation of R* can be so represented, except —1I.

The above observations raise the question: What is the rotation correspond-
ing to (1 + F)(1 — F)~! € Spin(4)?7 This is an interesting and non-trivial
question in dimension 4. 2 Here follows the answer.

Let F € /\2 R?. The antisymmetric function induced by F is denoted by
A, that is, A(x) = FLx for all x € R%. Write s = (1 + F)(1 — F)~.
The rotation induced by s € Spin(4) is denoted by U € SO(4), that is,
U = (I +A)(I — A)~'. In other words, U(x) = sxs~! for all x € R% The
following cases can be distinguished:

I+A ) 2

: 2m3 _
) FeA'R thenU—(I_A

I+ A\?
(ii) If F € A2R* is simple, then U = (5—’_3%;2 :
(iii) If F € A?R? is isoclinic, then U = TJ_r_ﬂ.

2 It is also a non-trivial question in dimension 5. In dimension 6, (1+ F)(1 — F)~1 ¢
Spin(s6).
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(iv) In the case of an arbitrary F € /\2 R* we cannot express U as a rational
function of A [although U still has the same eigenplanes as A]. Instead,

A*+ B* - 2A?B? + 6A? —2B% + 1+ 4A(A2 - B2 + 1)

A4+ B4 -2A2B2 242 - 92B%2 4 | ’
where B(x) = (Fej2sa) L x, the dual of A. The denominator of U is a
multiple of the identity I. 2

U=

Summary

There are three different kinds of rotations in four dimensions depending on
the values of the rotation angles a, # satisfying # > a > 3> 0. Let R:R* —
R* be a rotation and a a non-zero vector with iterated images b = R(a),
¢ = R(b), d = R(c). In general, a,b,c,d are linearly independent, that is,
aAbAcAd#D0. In the case of a simple rotation with 8 = 0, only the vectors
a, b, ¢ are linearly independent, that is, aAbAc# 0 but aAbAcAd=0.In
the case of an isoclinic  rotation with o = 3, only the vectors a, b are linearly
independent, that is, aAb# 0 but aAbAc=0and aAbAd=0.
In general, a rotation of R? has six parameters, computed as

(B+2-1)+2=6.

The number 3 comes from picking up a unit vector a; the number 2 comes
from picking up a unit vector b in the orthogonal complement of a; the unit
bivector ab = a A b fixes a plane but the same plane is obtained by rotating
a and b in the plane of a A b, thus subtract 1; then finally add 2 for the two
rotation parameters/angles o and 8. On the other hand, an isoclinic rotation
has three parameters, computed as

B-1)+1=3.

The number 3 comes from picking up a unit vector a in S3; but in an isoclinic
rotation a stays in a plane or a great circle S, so subtract 1; and finally add
1 for the rotation/angle o = 3.

A simple bivector, an exterior product of two vectors, corresponds to simple

3 In dimension 5 the rotation U is given by the same expression, when

B(x):(FFAF)L

|IFAF|
The denominator is no longer a multiple of I, although it still commutes with the numer-
ator by virtue of AB = BA.

4 An isoclinic rotation with equal rotation angles corresponds to a multiplication by a quater-
nion.
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rotation turning only one plane. A simple bivector multiplied by one of the
idempotents %(1 + ej234) corresponds to an isoclinic rotation. An isoclinic
rotation has an infinity of rotation planes, and in fact, each vector is in some
invariant rotation plane of an isoclinic rotation.

The two-fold cover Spin(4) of SO(4) has three different subgroups isomor-
phic to Spin(3), each with a Lie algebra

2 2 2
1 1

3 4 4

/\]R , 5(1 + e1234) /\]R , -2'(1 — €1234) /\]R .

There i1s an automorphism of Spin(4) which swaps the last two copies of
Spin(3), but there is no automorphism of Spin(4) swapping the first copy
of Spin(3) with either of the other two copies.

Exercises

1. Compute the squares of %(1 + ey + e3q > e1234).

2. Take a vector a € R* and a bivector B = ae; + fesq € /\2 R%. Show that
BaB € R%.

3. Compute exp(ae;z + Sesq).

4. Let a=aje; + azey + azez and b = bje; + byes + bzes. Compute
A = ae;33 and B = be;j3. Determine %(1 + e1234)A and %(1 - e1234)B,
and show that these bivectors commute.

5. Compute C = %(l + eiz3q)A + %(l — e1234)B, and express exp(C) using
la] and |b|. What are the two rotation angles of the rotation
R* 5 R%, x — cxc™! where ¢ = exp(C)?

6. Consider the Lie algebra /\2 R* with the commutator product
(a,b] = ab — ba, and its three subalgebras spanned by

V: %823, %831, %812
I : %(823 - 814), %(931 - 324), %(812 — e34)
Iy: %(ezs + 814), %(e31 + e24), %(912 + e34),

each isomorphic to /\2 R3. Show that there is no automorphism of the Lie
algebra /\2 R* which permuts V,Z;,Z; cyclically or swaps V for Z; or Zs.

7. In two dimensions we can place 4 circles of radius r inside a square of side
4r, and put a circle of radius (v/2 — 1)r in the middle of the 4 circles. In
three dimensions we can place 8 spheres of radius r inside a cube of side
4r, and put a sphere of radius (v/3 — 1)r in the middle of the 8 circles. In
n dimensions we can place 2" spheres of radius r inside a hypercube of
side 4r, and put a sphere of radius (y/n — 1)r in the middle of the 2"
spheres.
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Dimensions 2 and 3 differ topologically: in dimension 3 one can see the
middle sphere from outside the cube. Let the dimension be progressively
increased. In some dimension the middle sphere actually emerges out of
the hypercube. In some dimension the middle sphere becomes even bigger
than the hypercube, in the sense that its volume is larger than the volume
of the hypercube. Determine those dimensions.

Solutions

1.
3.
5.

€1234, €12 + €34.

cos a cos  + ejg sin a cos B + e3zq cosasin B + eja34 sin a sin 3.

The rotation angles are o = (|a| + |b|)/2 and 8 = (|a] — |b|)/2 and
s1n|b|)

1 1
5(1 + e1234) (cos|a| + — al s1n|a|) —(1 — e1234) (cos|b| + =

=cosacosf} — ejgassinasinf

o — fe1zsq
of — B2

. In dimension 9 the middle sphere touches the surface of the hypercube,
and in dimension 10 it emerges out of the hypercube. In dimension 1206
the volume of the middle sphere is larger than the volume of the hypercube.

+C (sin & cos B + e1234 cos asin §).
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7
The Cross Product

The cross product is useful in many physical applications. It measures the
angular velocity w = 7 x U about O of a body moving at velocity 7 at the

p051t10n P 7= OP It is used to describe the torque # x F about O of a
force F acting at 7. It also gives the force F=qixB acting on a charge ¢
moving at velocity ¥ in a magnetic field B.

The usefulness of the cross product in three dimensions suggests the following
questions: Is there a higher-dimensional analog of the cross product of two
vectors in R3? If an analog exists, is it unique?

The first question is usually responded to by giving an answer to a modified
question by explaining that there is a higher-dimensional analog of the cross
product of n—1 vectors in R®. However, such a reply not only does not answer
the original question, but also gives an incomplete answer to the modified
question. In this chapter we will give a complete answer to the above questions
and their modifications.

7.1 Scalar product in R3
The linear space R3 can be given extra structure by introducing the scalar
product or dot product

a-b=ab + azbs + agbs

for vectors a = aje; + azes + azes and b = bie; + byes + bzez in R3. The

scalar product is scalar valued, a-b € R, and satisfies
(a+b)-c=a-c+b-c
(Aa) b= A(a-b) }
a-b=b-.a symmetric
a-a>0 for a#0 positive definite.

linear in the first factor

92
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Linearity with respect to the first argument together with symmetry implies
that the scalar product is linear with respect to both arguments, that is, it
is bilinear. The symmetric bilinear scalar valued product gives rise to the
quadratic form

IRs—-)]R, a:a1e1+a2e2+a3e3—+a-a:-a%+a§+a§,

which makes the linear space R3 into a quadratic space R3. The quadratic
form is positive definite, that is, a -a = 0 implies a = 0, which allows us to
introduce the length ! |a| = \/a-a of a vector a € R3. The real linear space
R3 with a positive definite quadratic form on itself is called a Euclidean space
R3. The length and the scalar product satisfy

|a+b| < |a] + |b| triangle inequality
|a-b| < |a]|b] Cauchy-Schwarz inequality

where the latter inequality gives rise to the concept of angle. The angle ¢
between two directions a and b is obtained from
_a-b
T Talel
Thus, we can write the scalar product in the form
a-b = |a||b|cos,

a formula which is usually taken as a definition of the scalar product, although
this requires prior introduction of the concepts of length and angle.

7.2 Cross product in R3
In the Euclidean space R3 it is convenient to introduce a vector valued product,
the cross product a x b € R3 of a,b € R3, with the following properties:
(axb) La, (axb)Lb orthogonality
|a x b] = |a]|b|sin¢ length equals area
a,b,axb right-hand system.

In other words, the vector a x b is perpendicular to a and b, its length is
equal to the area of the parallelogram with a and b as edges, and the vectors

1 The function R® —+ R, a —+ |a| is a norm satisfying |[M\a| = |A|Jal, |]a + b| < |a| + |b],
|a] = 0 = a = 0. Since this norm can be obtained from a scalar product, it satisfies the
parallelogram law |a 4+ b|? 4 |a — b|? = 2/|a|? + 2|bJ?.
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a,b and a x b are oriented according to the right hand rule.

axb

a

The above definition results in the following multiplication rules:

e] Xep; =ez3=—ey Xeg,
ey X ez =e] = —e3 X ey,
ez X e —ey = —e; Xes.

It is convenient to write the cross product in the form
ey ey e3
axb=|a, ay a3
bi by b3
The cross product is uniquely determined by
(axb)-a=0, (axb)-b=0  orthogonality
|]a x b|? = |a]?|b]? — (a- b)? Pythagorean theorem
together with the right hand rule. The Pythagorean theorem can be written
using the Gram determinant as

2 |a-a a-b
laxbl" =, b-b(
which in coordinate form means Lagrange’s identity
2 2 2
az as as a4y a1 as
by b3 b3 b by by

= (af + a3 + a3) (6] + b3 + b3) — (a1b1 + azb; + asbs)’.
The cross product satisfies the following rules for all a, b, c € R3:

axb=-bxa antisymmetry
(axb)-c=a-(bxe) interchange rule.

The antisymmetry of the cross product has a geometric meaning: the lack of
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symmetry measures how much the two directions diverge. The cross product
is not associative, a x (b x ¢) # (a x b) x ¢, which results in an inconvenience
in computation, because parentheses cannot be omitted.

The cross product is dual to the exterior product of two vectors:

axb= —(a A b)e123.

Taking the exterior product of a x (a x b) = a(a-b) — |a|?’b and b one finds

that
_(ax(axb))Ab

a-b= D for al{b,

that is, the scalar product can be recaptured from the cross product [you can
also replace A by X in the above formula].

7.3 Cross product of n — 1 vectors in R"

We can associate to three given vectors a,b,c in R* a fourth vector
e e ez ey

a az as ag

by by b3 by

Ci €3 (€3 (4

axbxec=

which is orthogonal to the factors a,b,c and whose length is equal to the
volume of the parallelepiped with a,b, ¢ as edges, that is,

a-a a-b a-c
laxbxc?=|b-a b-b b-c
c-a ¢'b c-c

The cross product a x b x ¢ of three vectors a,b, ¢ in R* is completely anti-
symmetric and obeys the interchange rule slightly modified:

(axbxc)-d=-a-(bxcxd)

where d € R%. The oriented volume of the 4-dimensional parallelepiped with
a,b,c,d as edges is the scalar

det(a,b,c,d)=(axbxc)-d

multiplied by (the unit oriented volume) ej234.

2 The cross product is antisymmetric, a X b = —b X a, and satisfies the Jacobi identity
ax (bxc)+bx(cxa)+cx(axb)=0, which makes the linear space R?, with cross
product on R®, a non-associative algebra, called a Lie algebra. The Jacobi identity can
be verified using a x (b x c) = (a-c)b— (a-b)c.
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The cross product of three vectors in R* is dual to the exterior product:
axbxc=—(aAbAc)eiss

where the latter product is computed in the Clifford algebra C£,.

In a similar manner we can introduce in n dimensions a cross product of
n — 1 factors. The result is a vector orthogonal to the factors, and the length
of the vector is equal to the hypervolume of the parallelepiped formed by the
factors.

7.4 Cross product of two vectors in R
Is there a cross product in n dimensions with just two factors? If we require
the cross product to be orthogonal to the factors and have length equal to the
area of the parallelogram, then the answer is no, unless n =3 or n="7.

The cross product of two vectors in R? can be defined in terms of an ortho-
normal basis e1, ez, ...,e7 by antisymmetry, e; X e; = —e; X e;, and

€] Xex=e4, €2 Xe4q—=e1, €4 Xe] =ey,
ey Xez3=e;5 e€3Xe;—=ez, e Xey=e3,

ey Xep—=e3, € Xezg—=e7, €3 Xey—=e1.
The above table can be condensed into the form
€ X €11 = €43

where the indices are permuted cyclically and translated modulo 7.
This cross product of vectors in R7 satisfies the usual properties, that is,

(axb)-a=0,(axb)-b=0  orthogonality
|]a x b|2 = |a|?|b]? — (a - b)? Pythagorean theorem

where the second rule can also be written as |a x b| = |a||b|sin <(a, b). Unlike
the 3-dimensional cross product, the 7-dimensional cross product does not
satisfy the Jacobi identity, (a x b) x ¢+ (b x c¢) xa+(c xa) x b # 0, and
so it does not form a Lie algebra. However, the 7-dimensional cross product
satisfies the Malcev identity, a generalization of Jacobi, see Ebbinghaus et al.
1991 p. 279.

In R3 the direction of a x b is unique, up to two alternatives for the ori-
entation, but in R” the direction of a x b depends on a 3-vector defining the
cross product; to wit,

axb=—(aAb)dv [#—(aAb)v]
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depends on

3
7
Vv = e124 + €335 + €346 + €457 + €561 + €672 + €713 € /\IR .

In the 3-dimensional space a x b = ¢ x d implies that a,b,c,d are in the
same plane, but for the cross product a x b in R7 there are also other planes
than the linear span of a and b giving the same direction as a x b.

The 3-dimensional cross product is invariant under all rotations of SO(3),
while the 7-dimensional cross product is not invariant under all of SO(7), but
only under the exceptional Lie group G, a subgroup of SO(7). When we let
a and b run through all of R”, the image set of the simple bivectors aAb is a
manifold of dimension 2-7-3 =11 > 7in /\2 R7, dim(/\2 R7) = 17(7-1) =21,
while the image set of a x b is just R”. So the mapping

aAb—oaxb=—-(aAb)dv

is not a one-to-one correspondence, but only a method of associating a vector
to a bivector.

The 3-dimensional cross product is the pure/vector part of the quaternion
product of two pure quaternions, that is,

axb=Im(ab) for a,beR3>CH.

In terms of the Clifford algebra Cf3 ~ Mat(2,C) of the Euclidean space R3
the cross product could also be expressed as

axb= —<abelz3>1 for a,b € R3 C Cl3.

In terms of the Clifford algebra Cfy 3 ~ H xH of the negative definite quadratic
space R%3 the cross product can be expressed not only as

axb= —(abe123>1 for a,b c RO’S C C'eO,3

but also as 3

axb= (ab(l — 8123)>1 for a,be RO:3 C CZO,S-

Similarly, the 7-dimensional cross product is the pure/vector part of the
octonion product of two pure octonions, that is, axb = (aob);. The octonion
algebra O is a norm-preserving algebra with unity 1, whence its pure/imaginary
part is an algebra with cross product, that is, a x b = %(a ob—boa) for
a,beR”" C O =R@R’. The octonion product in turn is given by

aob=afl+ab+af—-—a-b+axb

3 This expression is also valid for a,b € R® C Cf3, but the element 1 — 125 does not pick
up an ideal of C¢;. Recall that C{3 is simple, that is, it has no proper two-sided ideals.
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fora=a+a and b=F+b in R®R’. If we replace the Euclidean space R7
by the negative definite quadratic space R%?, then not only

aob=af+ab+af+a-b+axb
for a,b € R®R%7, but also
aob={(ab(l —v))o,

3
where v = e124 + e235 + €346 + €57 + ese1 + es72 + er13 € AR

7.5 Cross products of £ vectors in R"

If one reformulates the question about the existence of a cross product of two
vectors in R", and also allows n — 1 factors, then one is led to a more general
problem on the existence of a cross product of k factors in R". If we were
looking for a vector valued product of k factors in R™, then we should first
formalize our problem by modifying the Pythagorean theorem, a candidate
being the Gram determinant. A natural thing to do is to consider a vector
valued product a; x ap X - -+ X a; satisfying

ayxagx---xag)-a=0 orthogonality
g
|]ai x ag x --- x ag|? = det(a; -a;)  Gram determinant

where the second condition means that the length of a; x a; x ... x a; equals
the volume of the parallelepiped with a;,a,,...,a; as edges.

The solution to this problem is that there are vector valued cross products
in

3 dimensions with 2 factors
7 dimensions with 2 factors
n  dimensions with n —1 factors
8 dimensions with 3 factors

and no others — except if one allows degenerate solutions, when there would

also be in all even dimensions n, n € 2Z, a vector product with only one factor

(and in one dimension an identically vanishing cross product with two factors).
The cross product of three vectors in R® can be expressed as

axbxc=(aAbAc)d(w—ves)=((aAbAc)(l- e s)W)
where

w = —(e124 + €235 + €346 + €457 + €561 + €672 + €713)€12..7

= e1236 — €1257 — €1345 + €1467 + €2347 — €2456 — €3567

and w € A'R7 c A\*RS.
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The trivial cross product with one factor in an even number of dimensions
rotates all vectors by 90°. Thus, let n be even and let a be the only factor
of a trivial cross product with value b, |b| = |a], b-a = 0. This can be
accomplished by

b=adl (eleg +ezes+ ...+ e,,._le,,).

Exercises

1. Show that the cross product a x r can be represented by a matrix
multiplication Ar = a x r, where

0 —az as z
Ar = as 0 —al1 y
—az a4 0 z

2. Express the rotation matrix e# in terms of I, A and A?. Hint: use the
Cayley-Hamilton theorem, A3 + |a|?A = 0.

3. Express the rotated vector er as a linear combination of r, a x r and

(a-r)a. Hint: A%r= (a-r)a— a’r.

4. Compute the square of w = —ve 3 7 € /\4 R7.
5. Show that 2(1+ w) is an idempotent of C¢7 ~ Mat(8, C).

Solutions
2

A . A
2. e =TI+ —sina+ (1 - cosa), where a = a|
i 1 —cosa

— (a-r)a.

3. eAr=cosar+ El%‘ia><r+
4. w2 =17+ 6w.
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