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Background
M-effective squares

After last week’s summary of recent work on category-theoretic
stable independence, we turn to more practical matters:

◮ We show that, if K has a weakly stable, ℵ-continuous
independence notion, and stable independence on a nicely
embedded subcategory, it has stable independence.

◮ Using this result and recent work ([KMA],[MA1],[MA2]) we
show that a large number of familiar categories from algebra
have a stable independence notion.

◮ Returning to the crucial special case from last week—K
locally presentable—we show that the existence of stable
independence implies excellence; that is, stable independence
in all dimensions.

We begin with a short review...
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Background
M-effective squares

We think of independence on an abstract category K as follows:

Definition
An independence notion ⌣ on K is a family of commutative
squares in K (suitably closed). We say that ⌣ is weakly stable if
it satisfies

1. Existence: Any span M1 ← M0 → M2 can be completed to an
independent square.

2. Uniqueness: there is only one independent square for each
span, up to equivalence.

3. Transitivity: horizontal and vertical compositions of
independent squares are independent.

As I suggested last week, an independence notion—particularly if
weakly stable—can be thought of as a replacement for pushouts
that may be lacking in K, or, more tellingly, KM.
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M-effective squares

Locality is achieved by requiring accessibility of arrow category K↓:

◮ Objects: Morphisms f : M → N in K.

◮ Morphisms: A morphism from f : M → N to f ′ : M ′ → N ′ is
a ⌣-independent square

M ′ !!

⌣

N ′

M

""

!! N

""

Definition

1. We say that ⌣ is λ-continuous if K↓ is closed under
λ-directed colimits.

2. We say that ⌣ is λ-accessible if K↓ is λ-accessible.

3. We say ⌣ is λ-stable if it is weakly stable and λ-accessible.
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M-effective squares

Given a category K and family of morphisms M, recall that the
induced subcategory KM has a natural candidate for ⌣:

Definition
We say a square

M1
!! M3

M0

""

!! M2

""

in K is M-effective if

1. all morphisms are in M,

2. the pushout of M1 ← M0 → M2 exists, and

3. the induced map from the pushout to M3 is in M.

If M = {regular monos}, these are the effective unions of Barr.
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To force these squares to form a nice independence relation, we
need a few additional properties:

Definition
Let K be a category.

1. We say that M is coherent if whenever gf ∈ M and g ∈ M,
f ∈ M.

2. We say that M is a coclan if pushouts of morphisms in M
exist, and M is closed under pushouts.

3. We say M is almost nice if it is a coherent coclan, and nice
if, in addition, it is closed under retracts.

Proposition

If M is almost nice, the M-effective squares give a weakly stable
independence notion on KM.
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The setup
The main theorem

Let us assume that K is an accessible category with all morphisms
monomorphisms (hence, morally speaking, a µ-AEC).

As we saw last week, failure of the order property implies the
existence of stable independence on a cofinal subcategory. We will
see presently that this also follows from Galois-stability.

It is natural, then, to ask: Given a subcategory L of K that has
stable independence, under what conditions on

◮ the category K, and

◮ the embedding L ↩→ K
can we infer the existence of stable independence on K?
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Conditions on K

We will not be able to manufacture stable independence on K out
of whole cloth.

In particular, K must have an independence notion that is

1. weakly stable, and

2. ℵ0-continuous.

The latter property implies only that K↓ is closed under directed
colimits—lacking the local character that would come with, say,
ℵ0-accessibility.

So we assume a lot, but much less than stability.
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Conditions on L ↩→ K

The term cofinal has already been bandied about. To be precise:

Definition
We say that a functor F : L → K is cofinal if for any K ∈ K and

any finite sequence (FLi
fi→ K )i∈I , there is L ∈ L, K g→ FL, and

(FLi
Fgi→ FL)i∈I such that Fgi = fi ◦ g for all i ∈ I . A subcategory is

cofinal if the inclusion is cofinal.

This is weaker than the usual category-theoretic notion.

◮ If L is a full subcategory of K and for every K ∈ K there is a
morphism f : M → L with L ∈ L, then L is a cofinal
subcategory of K in the above sense.

◮ The category of λ-saturated models of a µ-AEC is a cofinal
subcategory.
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Conditions on L ↩→ K

In addition to cofinality, we will need to ensure that the embedding
L ↩→ K plays well with the accessible structure on K:

Definition
We say that a subcategory L of a category K is accessibly
embedded if

◮ L is a full subcategory, and

◮ L is closed under λ-directed colimits in K for some λ.

This is, somewhat confusingly, different from requiring that the
embedding L → K is accessible—that involves preservation of
colimits.
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Theorem
Let K be an accessible category with all morphisms
monomorphisms, and let L be an accessibly-embedded, cofinal
subcategory of K. If:

◮ K has an ℵ0-continuous weakly stable independence notion.

◮ L has a stable independence notion.

Then K has a stable independence notion.

Proof: (Sketch) Let ⌣ be the ℵ0-continuous, weakly stable notion
on K. We must show that K↓ is accessible.

By ℵ0-continuity, K has directed colimits, meaning L has directed
bounds. Since the restriction of ⌣ to L will be weakly stable
(check!), the canonicity theorem ensures that it is, in fact, stable.
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This implies that the restriction of ⌣ to L is accessible, meaning
L is accessible. Take µ with K, L, and L↓ all µ-accessible.

Let Kµ be the subcategory on the µ-presentable objects of K. Let
K∗ be the set of all µ-directed colimits of Kµ-morphisms in K↓. It
suffices to show that K∗ = K2, the full arrow category. Notice that
L2 ⊆ K∗, in any case.

To achieve this, we show:

(i) K∗ is closed under composition.

(ii) K∗ is left cancellable.

(iii) If M ∈ K, there is a morphism M → N in K∗ with N ∈ L.
We show sufficiency, but give only brief sketches of the proofs of
(i)-(iii).
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(i) K∗ is closed under composition.

(ii) K∗ is left cancellable.

(iii) If M ∈ K, there is a morphism M → N in K∗ with N ∈ L.

Sufficient: for any f : M → N in K2, (iii) implies there is
g : M → M ′ in K∗ with M ′ ∈ L. There is h : M ′ → M∗ with M
λ-saturated, λ > µ. Then there is t : N → M∗ with tf = hg .

By cofinality, there is p : M∗ → L with L ∈ L, and ph ∈ L2 ⊆ K∗.
By (i), phg ∈ K∗. Since ptf = phg , (ii) implies that f ∈ K∗, and
we are done.

Proof of (i): Given composable f and g in K∗, we can decompose
them as µ-directed colimits and, with a little fiddling, ensure that
(enough of) the arrows in these colimits are composable—this
gives gf ∈ K∗.
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(i) K∗ is closed under composition.

(ii) K∗ is left cancellable.

(iii) If M ∈ K, there is a morphism M → N in K∗ with N ∈ L.

Sufficient: for any f : M → N in K2, (iii) implies there is
g : M → M ′ in K∗ with M ′ ∈ L. There is h : M ′ → M∗ with M
λ-saturated, λ > µ. Then there is t : N → M∗ with tf = hg .

By cofinality, there is p : M∗ → L with L ∈ L, and ph ∈ L2 ⊆ K∗.
By (i), phg ∈ K∗. Since ptf = phg , (ii) implies that f ∈ K∗, and
we are done.

Proof of (ii): Quite finicky. Skip...
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(i) K∗ is closed under composition.

(ii) K∗ is left cancellable.

(iii) If M ∈ K, there is a morphism M → N in K∗ with N ∈ L.

Sufficient: for any f : M → N in K2, (iii) implies there is
g : M → M ′ in K∗ with M ′ ∈ L. There is h : M ′ → M∗ with M
λ-saturated, λ > µ. Then there is t : N → M∗ with tf = hg .

By cofinality, there is p : M∗ → L with L ∈ L, and ph ∈ L2 ⊆ K∗.
By (i), phg ∈ K∗. Since ptf = phg , (ii) implies that f ∈ K∗, and
we are done.

Proof of (iii): By contradiction. Uses well µ-filtrability of K
([LRV]); that is, objects are colimits of smooth chains.
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Galois-stability and stable independence
Groups and modules

Recall from last week that stable independence implies
Galois-stability:

Theorem
Let K be a (µ-)AEC with a stable independence relation. For any
α, there is a proper class of cardinals Sα such that for any λ ∈ Sα
and M ∈ Kλ, |ga-S<α(M)| = λ.

There is no hope, of course, that Galois-stability will correspond to
the existence of stable independence: the latter implies
amalgamation, for one thing.

Given how well understood Galois-stability is, though, and how
many nice categories have this property, we should pursue
whatever limited converses we can.
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Galois-stability and stable independence
Groups and modules

We will, of course, use the theorem just discussed. But of critical
importance, too, is:

Lemma
Let K be an AEC. If

1. K has the amalgamation property,

2. K is Galois-stable, and

3. types in K are < ℵ0-short over models,

then there is a stable independence notion on a full, cofinal
subcategory of K—consisting of sufficiently saturated models.

Proof: (Sketch) Essentially the same as the construction of stable
independence over saturated models of a stable first-order theory:
ℵ0-shortness stands in for compactness (cf. [V]).
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Galois-stability and stable independence
Groups and modules

Thus Galois-stability, in an AEC with amalgamation and
ℵ0-shortness, buys us much of what we need to derive existence of
stable independence on the AEC itself.

We still require a weakly stable, ℵ0-continuous independence
notion. But we already have an excellent candidate:

Lemma
Let K be a category, and M an almost nice family of morphisms.

◮ KM has a weakly stable independence notion consisting of the
M-effective squares.

◮ If M is closed under directed colimits, this independence
notion is ℵ0-continuous [LRV2].

So, if our AEC is formed by taking an almost nice, direct-colimit
closed set of morphisms, we are in business. In all of the algebraic
examples to follow, happily, this is the case.
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Galois-stability and stable independence
Groups and modules

We now stand on the shoulders of giants—Kucera and
Mazari-Armida—who have done all of the model-theoretic heavy
lifting. First, a template:

Proposition

For any ring with unit R, the category of left R-modules,
R-Modpure , has a stable independence notion.

Proof: By [KMA], R-Modpure forms an AEC, has amalgamation,
is stable, and types are < ℵ0-short over models. So, by the lemma,
there is stable independence on a cofinal, full subcategory.

By inspection, or the fact that pure monomorphisms are the left
half of a coherent WFS, pure monomorphisms are almost nice,
closed under directed colimits. So M-effective squares are weakly
stable, ℵ0-continuous.

The main theorem then yields stable independence on R-Modpure .
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Groups and modules

We note that this is a special case of the result of [LPRV]: the
latter was obtained by other means, but discovered by these.

The same template can be applied to, e.g. the following categories
of modules. Here R is an integral domain.

1. Torsion R-modules with pure monomorphisms.

2. R-divisible modules (for any nonzero m and nonzero r ∈ R ,
there is n with m = rn) with pure monomorphisms.

Similarly, we obtain stable independence on many categories of
groups, including:

1. Abelian groups and (pure) monos.

2. (Reduced) Torsion-free abelian groups with pure monos.

3. Abelian p-groups with (pure) monos.
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Basic definition
Back to locally presentable K

We turn now to something which is still in search of applications:
higher-dimensional stable independence on an abstract category.

Definition
Let K be a category. For n ≥ 1, we define an n-dimensional stable
independence relation on K, Γ, and its induced category KΓ by
induction on n:

◮ We say Γ is a 1-dimensional stable independence notion on K
just in case it is Mor(K). In this case, define KΓ = K.

◮ An (n + 1)-dimensional stable independence relation on K
consists of a pair (Γn, Γ), where

1. Γn is an n-dimensional stable independence relation on K.
2. Γ is a stable independence notion on KΓn

◮ Given (n + 1)-dimensional Γn+1 = (Γn, Γ) on K, define
(KΓn+1 = KΓn)Γ, whose objects are morphisms of KΓn and
whose morphisms are Γ-independent squares (that is, K↓ with

⌣ = Γ).
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Basic definition
Back to locally presentable K

That is too much to internalize in one sitting, of course.

(As an exercise, one might check that 2-dimensional stable
independence notions correspond to stable independence notions
as already defined.)

The best-case—and presumably rare—scenario is the following:

Definition
We say that a category K is excellent if for all n ≥ 1, K has an
n-dimensional stable independence relation Γn such that KΓn has
directed colimits.

We return to our favorite special case: K locally presentable.

Theorem
Let K be a locally presentable category, and let M be a nice,
accessible, ℵ0-continuous class of morphisms in K. If KM has a
stable independence relation, it is excellent.
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Basic definition
Back to locally presentable K

Theorem
Let K be a locally presentable category, and let M be a nice,
accessible, ℵ0-continuous class of morphisms in K. If KM has a
stable independence relation, it is excellent.

Proof: (Sketch) We wish to proceed by induction on dimension.

Recall that, under these hypotheses, KM has stable independence
just in case M is cofibrantly generated.

So really, the inductive step involves showing that, given the above
assumptions, the class of M-effective morphisms in K2—call it
M!—is well-behaved in exactly the same ways:

◮ M! is cofibrantly generated in K2.

◮ M! is nice, ℵ0-continuous, and accessible.

Nearly everything is just bookkeeping, aside from showing M! is a
coclan and that it is cofibrantly generated (easier via stability!).
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There are plenty of open questions, some of which have already
occurred naturally in this discussion:

◮ What happens if we weaken different conditions in the
definition of stable independence, particularly uniqueness?

◮ Do superstability, simplicity, etc. admit clean
category-theoretic characterizations, e.g. via properties of
WFSs?

◮ How much use can we get out of stable independence and
related constructions, e.g. independent sequences, in an
abstract category?

◮ In what other contexts can we get stability via the induced
route taken here?

◮ What is excellence good for in an abstract category? Does it
correspond to any existing notions?
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