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We consider the interplay between three areas. Template:

Theorem (Boney/Unger, ‘16)

The following are equivalent:

1. There is a proper class of almost strongly compact cardinals.

2. The powerful image of any accessible functor is accessible.

3. Every abstract elementary class (AEC) is tame.
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We consider the interplay between three areas. Template:

Theorem (Boney/Unger, ‘16)

The following are equivalent:

1. There is a proper class of almost strongly compact cardinals.

2. The powerful image of any accessible functor is accessible.

3. Every abstract elementary class (AEC) is tame.

(1)⇒ (3): Boney, ‘14.
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We consider the interplay between three areas. Template:

Theorem (Boney/Unger, ‘16)

The following are equivalent:

1. There is a proper class of almost strongly compact cardinals.

2. The powerful image of any accessible functor is accessible.

3. Every abstract elementary class (AEC) is tame.

(1)⇒ (3): Boney, ‘14.

Extensive use of ultraproducts.
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We consider the interplay between three areas. Template:

Theorem (Boney/Unger, ‘16)

The following are equivalent:

1. There is a proper class of almost strongly compact cardinals.

2. The powerful image of any accessible functor is accessible.

3. Every abstract elementary class (AEC) is tame.

(2)⇒ (3): L/Rosický, ‘16.
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We consider the interplay between three areas. Template:

Theorem (Boney/Unger, ‘16)

The following are equivalent:

1. There is a proper class of almost strongly compact cardinals.

2. The powerful image of any accessible functor is accessible.

3. Every abstract elementary class (AEC) is tame.

(2)⇒ (3): L/Rosický, ‘16.

Simple argument involving relevant categories of diagrams.
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We consider the interplay between three areas. Template:

Theorem (Boney/Unger, ‘16)

The following are equivalent:

1. There is a proper class of almost strongly compact cardinals.

2. The powerful image of any accessible functor is accessible.

3. Every abstract elementary class (AEC) is tame.

(1)⇒ (2): Makkai/Paré, ‘89; Brooke-Taylor/Rosický, ‘16.
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We consider the interplay between three areas. Template:

Theorem (Boney/Unger, ‘16)

The following are equivalent:

1. There is a proper class of almost strongly compact cardinals.

2. The powerful image of any accessible functor is accessible.

3. Every abstract elementary class (AEC) is tame.

(1)⇒ (2): Makkai/Paré, ‘89; Brooke-Taylor/Rosický, ‘16.

Refined by latter from strongly compact to almost strongly
compact.
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We consider the interplay between three areas. Template:

Theorem (Boney/Unger, ‘16)

The following are equivalent:

1. There is a proper class of almost strongly compact cardinals.

2. The powerful image of any accessible functor is accessible.

3. Every abstract elementary class (AEC) is tame.

(3)⇒ (1): Boney/Unger, ‘16.
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We consider the interplay between three areas. Template:

Theorem (Boney/Unger, ‘16)

The following are equivalent:

1. There is a proper class of almost strongly compact cardinals.

2. The powerful image of any accessible functor is accessible.

3. Every abstract elementary class (AEC) is tame.

(3)⇒ (1): Boney/Unger, ‘16.

Hart-Shelah style construction.
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We consider the interplay between three areas. Template:

Theorem (Boney/Unger, ‘16)

The following are equivalent:

1. There is a proper class of almost strongly compact cardinals.

2. The powerful image of any accessible functor is accessible.

3. Every abstract elementary class (AEC) is tame.

We will focus on the machinery provided by (2), and its
consequences in abstract model theory.

In particular, we will consider the phenomenon of tameness, first in
AECs, but then much, much more broadly.
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Key theorem

Roughly speaking, an accessible category is one that is generated
from a set of small objects.
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Accessibility
Motivation
Key theorem

Roughly speaking, an accessible category is one that is generated
from a set of small objects.

Definition
For a regular cardinal λ, we say a category C is λ-accessible if

I it has at most a set of λ-presentable objects.

I it is closed under λ-directed colimits.

I every object is a λ-directed colimit of λ-presentable objects.
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Accessibility
Motivation
Key theorem

Roughly speaking, an accessible category is one that is generated
from a set of small objects.

Definition
For a regular cardinal λ, we say a category C is λ-accessible if

I it has at most a set of λ-presentable objects.

I it is closed under λ-directed colimits.

I every object is a λ-directed colimit of λ-presentable objects.

Note
A general λ-accessible category need not be closed under arbitrary
directed colimits. . .

Lieberman Abstract tameness from large cardinals



Accessible Images
Tameness

Accessibility
Motivation
Key theorem

Roughly speaking, an accessible category is one that is generated
from a set of small objects.

Definition
For a regular cardinal λ, we say a category C is λ-accessible if

I it has at most a set of λ-presentable objects.

I it is closed under λ-directed colimits.

I every object is a λ-directed colimit of λ-presentable objects.

Definition
A functor F : C→ D is λ-accessible if C and D are λ-accessible,
and F preserves λ-directed colimits.
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Accessibility
Motivation
Key theorem

Roughly speaking, an accessible category is one that is generated
from a set of small objects.

Definition
For a regular cardinal λ, we say a category C is λ-accessible if

I it has at most a set of λ-presentable objects.

I it is closed under λ-directed colimits.

I every object is a λ-directed colimit of λ-presentable objects.

Definition
A functor F : C→ D is λ-accessible if C and D are λ-accessible,
and F preserves λ-directed colimits.

“Accessible” means “λ-accessible for some λ.”
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Let Ab denote the category of abelian groups, and F the full
subcategory of free abelian groups.
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Let Ab denote the category of abelian groups, and F the full
subcategory of free abelian groups.

Question: Ab is beautifully accessible, but is F?
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Let Ab denote the category of abelian groups, and F the full
subcategory of free abelian groups.

Question: Ab is beautifully accessible, but is F?

Theorem (Eklof/Mekler, ‘77)

Assume V=L. For every successor κ, there is a nonfree abelian
group A of size κall of whose subgroups of size less than κ are free.
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Let Ab denote the category of abelian groups, and F the full
subcategory of free abelian groups.

Question: Ab is beautifully accessible, but is F?

Theorem (Eklof/Mekler, ‘77)

Assume V=L. For every successor κ, there is a nonfree abelian
group A of size κall of whose subgroups of size less than κ are free.

Corollary

Assuming V = L, F is not accessible.
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Let Ab denote the category of abelian groups, and F the full
category of free abelian groups.

Ab is beautifully accessible, but is F?
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Let Ab denote the category of abelian groups, and F the full
category of free abelian groups.

Ab is beautifully accessible, but is F?

Theorem (Eklof/Mekler, ‘90)

Assume there is a proper class of strongly compact cardinals. Then
F is accessible.
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Let Ab denote the category of abelian groups, and F the full
category of free abelian groups.

Ab is beautifully accessible, but is F?

Theorem (Eklof/Mekler, ‘90)

Assume there is a proper class of strongly compact cardinals. Then
F is accessible.

Notes

I The free abelian group functor F : Sets→ Ab is accessible,
and F is its image.
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Let Ab denote the category of abelian groups, and F the full
category of free abelian groups.

Ab is beautifully accessible, but is F?

Theorem (Eklof/Mekler, ‘90)

Assume there is a proper class of strongly compact cardinals. Then
F is accessible.

Notes

I The free abelian group functor F : Sets→ Ab is accessible,
and F is its image.

I F is closed under subobjects, hence the powerful image of F .
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Theorem (Makkai/Paré)

Assume there is a proper class of strongly compact cardinals. Then
the powerful image of any accessible functor is accessible.
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Theorem (Makkai/Paré)

Assume there is a proper class of strongly compact cardinals. Then
the powerful image of any accessible functor is accessible.

This can be weakened (Brooke-Taylor/Rosický) to a proper class of
almost strongly compact cardinals.
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Theorem (Makkai/Paré)

Assume there is a proper class of strongly compact cardinals. Then
the powerful image of any accessible functor is accessible.

This can be weakened (Brooke-Taylor/Rosický) to a proper class of
almost strongly compact cardinals.

Given an abstract class of structures K, we often ask: can every
diagram of shape D be completed to a diagram of shape D ′?
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Theorem (Makkai/Paré)

Assume there is a proper class of strongly compact cardinals. Then
the powerful image of any accessible functor is accessible.

This can be weakened (Brooke-Taylor/Rosický) to a proper class of
almost strongly compact cardinals.

Given an abstract class of structures K, we often ask: can every
diagram of shape D be completed to a diagram of shape D ′?
The forgetful functor

F : KD′ → KD

picks out precisely the completable diagrams.
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Theorem (Makkai/Paré)

Assume there is a proper class of strongly compact cardinals. Then
the powerful image of any accessible functor is accessible.

This can be weakened (Brooke-Taylor/Rosický) to a proper class of
almost strongly compact cardinals.

Given an abstract class of structures K, we often ask: can every
diagram of shape D be completed to a diagram of shape D ′?
The forgetful functor

F : KD′ → KD

picks out precisely the completable diagrams.
If image is accessible, completability is determined entirely on the
small models...
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In abstract classes of structures (AECs, µ-CAECs, µ-AECs, metric
AECs, etc.) ambient logics are shunted into the background.
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In abstract classes of structures (AECs, µ-CAECs, µ-AECs, metric
AECs, etc.) ambient logics are shunted into the background.

This necessitates a new notion of type: Galois type.
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In abstract classes of structures (AECs, µ-CAECs, µ-AECs, metric
AECs, etc.) ambient logics are shunted into the background.

This necessitates a new notion of type: Galois type.

Definition
Let K be, say, an AEC.

I Version 1: Given a monster C in K, the type of a ∈ C over
M ∈ K is the orbit of a in K under automorphisms fixing M.
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In abstract classes of structures (AECs, µ-CAECs, µ-AECs, metric
AECs, etc.) ambient logics are shunted into the background.

This necessitates a new notion of type: Galois type.

Definition
Let K be, say, an AEC.

I Version 2: For M≺KNi and ai ∈ UNi , i = 0, 1, the triples
(M, a0,N0) and (M, a1,N1) have the same Galois type over M
if there are fi : Ni → N such that U(f0)(a0) = U(f1)(a1) and
f0 and f1 agree on M.
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In abstract classes of structures (AECs, µ-CAECs, µ-AECs, metric
AECs, etc.) ambient logics are shunted into the background.

This necessitates a new notion of type: Galois type.

Definition
Let K be, say, an AEC.

I Version 2: For M≺KNi and ai ∈ UNi , i = 0, 1, the triples
(M, a0,N0) and (M, a1,N1) have the same Galois type over M
if there are fi : Ni → N such that U(f0)(a0) = U(f1)(a1) and
f0 and f1 agree on M.

This notion behaves as you would like. Version 2 has unexpected
benefits.
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In the classification theory of e.g., AECs, one typically hopes to
analyze the structure of a class K given information about the
small models, often categoricity or stability in some λ (or possibly
several λs).
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In the classification theory of e.g., AECs, one typically hopes to
analyze the structure of a class K given information about the
small models, often categoricity or stability in some λ (or possibly
several λs).

One route: ensure, via tameness, that Galois types over arbitrary
models are determined by their restrictions to submodels of a
uniform small size...
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Definition
We say that an AEC K is χ-tame if for any M ∈ K and types p
and q over M, when p � K = q � K for all K≺KM with |UK | ≤ χ,
then p = q.
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Definition
We say that an AEC K is χ-tame if for any M ∈ K and types p
and q over M, when p � K = q � K for all K≺KM with |UK | ≤ χ,
then p = q.

“Tame” means “χ-tame for some χ.”
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Definition
We say that an AEC K is χ-tame if for any M ∈ K and types p
and q over M, when p � K = q � K for all K≺KM with |UK | ≤ χ,
then p = q.

“Tame” means “χ-tame for some χ.”

Question: But is every AEC tame?
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Definition
We say that an AEC K is χ-tame if for any M ∈ K and types p
and q over M, when p � K = q � K for all K≺KM with |UK | ≤ χ,
then p = q.

“Tame” means “χ-tame for some χ.”

Question: But is every AEC tame?

Answer: Not absolutely. Under V=L, Baldwin/Shelah, ‘08,
produce nontame class of short exact sequences of groups. Uses
Shelah’s construction of non-Whitehead group of size ℵ1.
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Theorem (Boney, ‘14)

Assuming a proper class of strongly compact cardinals, every AEC
is tame.
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Theorem (Boney, ‘14)

Assuming a proper class of strongly compact cardinals, every AEC
is tame.

As already seen, almost strongly compact cardinals suffice. The
argument is via ultraproducts.

Lieberman Abstract tameness from large cardinals



Accessible Images
Tameness

Discrete
Metric

Theorem (Boney, ‘14)

Assuming a proper class of strongly compact cardinals, every AEC
is tame.

As already seen, almost strongly compact cardinals suffice. The
argument is via ultraproducts.

We can also argue via the diagrams themselves, using the
accessibility of powerful images...
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Metric abstract elementary classes (mAECs) are a recent
development (due to Hirvonen/Hyttinen) in the project to develop
a model theory relevant to structures arising in analysis, e.g.
Banach spaces.

Slogan

Metric AECs represent an amalgam of AECs and the program of
continuous logic.

Roughly, an mAEC is an AEC whose structures are built on
complete metric spaces, rather than discrete sets.
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Given reasonable assumptions on an mAEC K, we have a metric
on the Galois types over any M ∈ K, given, equivalently, by
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Given reasonable assumptions on an mAEC K, we have a metric
on the Galois types over any M ∈ K, given, equivalently, by

I d(p0, p1) is the Hausdorff distance between the orbits in C.
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Given reasonable assumptions on an mAEC K, we have a metric
on the Galois types over any M ∈ K, given, equivalently, by

I d(p0, p1) is the Hausdorff distance between the orbits in C.

I d(p0, p1) is the infimum of dN(U(f0)(a0),U(f1)(a1)) ranging
over all possible amalgams N over M.
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Given reasonable assumptions on an mAEC K, we have a metric
on the Galois types over any M ∈ K, given, equivalently, by

I d(p0, p1) is the Hausdorff distance between the orbits in C.

I d(p0, p1) is the infimum of dN(U(f0)(a0),U(f1)(a1)) ranging
over all possible amalgams N over M.

Here tameness looks different: if p, q over M should be close
together whenever their restrictions to small submodels are
sufficiently close together.

Lieberman Abstract tameness from large cardinals



Accessible Images
Tameness

Discrete
Metric

Definition
An mAEC K is χ-d-tame if for every ε > 0, there is δ > 0 such
that for any M ∈ K and p, q over M, if d(p � K , q � K ) < δ for all
K≺KM of size ≤ χ, then d(p, q) < ε.
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Definition
An mAEC K is χ-d-tame if for every ε > 0, there is δ > 0 such
that for any M ∈ K and p, q over M, if d(p � K , q � K ) < δ for all
K≺KM of size ≤ χ, then d(p, q) < ε.
We say K is strongly χ-d-tame if we can take δ = ε.
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Definition
An mAEC K is χ-d-tame if for every ε > 0, there is δ > 0 such
that for any M ∈ K and p, q over M, if d(p � K , q � K ) < δ for all
K≺KM of size ≤ χ, then d(p, q) < ε.
We say K is strongly χ-d-tame if we can take δ = ε.

Theorem (Boney/Zambrano, ‘16)

Assuming a proper class of almost strongly compact cardinals,
every mAEC is χ-d-tame for some χ.
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Definition
An mAEC K is χ-d-tame if for every ε > 0, there is δ > 0 such
that for any M ∈ K and p, q over M, if d(p � K , q � K ) < δ for all
K≺KM of size ≤ χ, then d(p, q) < ε.
We say K is strongly χ-d-tame if we can take δ = ε.

Theorem (Boney/Zambrano, ‘16)

Assuming a proper class of almost strongly compact cardinals,
every mAEC is χ-d-tame for some χ.

Here again, the proof involves ultraproducts, but now metric
ultraproducts. Everything much more delicate.
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Theorem (L/Rosický)

Assuming a proper class of almost strongly compact cardinals,
every mAEC is strongly χ-d-tame for some χ.
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Theorem (L/Rosický)

Assuming a proper class of almost strongly compact cardinals,
every mAEC is strongly χ-d-tame for some χ.

Proof: A (fiddly) repurposing of the discrete argument.
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Theorem (L/Rosický)

Assuming a proper class of almost strongly compact cardinals,
every mAEC is strongly χ-d-tame for some χ.

Proof: A (fiddly) repurposing of the discrete argument.

Gε : Lε → L

where Lε is the category of diagrams witnessing distance ≤ ε.
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Theorem (L/Rosický)

Assuming a proper class of almost strongly compact cardinals,
every mAEC is strongly χ-d-tame for some χ.

Proof: A (fiddly) repurposing of the discrete argument.

Gε : Lε → L

where Lε is the category of diagrams witnessing distance ≤ ε.
1. The image of each Gε is powerful, hence κ-accessible.
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Theorem (L/Rosický)

Assuming a proper class of almost strongly compact cardinals,
every mAEC is strongly χ-d-tame for some χ.

Proof: A (fiddly) repurposing of the discrete argument.

Gε : Lε → L

where Lε is the category of diagrams witnessing distance ≤ ε.
1. The image of each Gε is powerful, hence κ-accessible.

2. Suppose d(p � K , q � K ) < ε for all K≺KM of size ≤ κ.
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Theorem (L/Rosický)

Assuming a proper class of almost strongly compact cardinals,
every mAEC is strongly χ-d-tame for some χ.

Proof: A (fiddly) repurposing of the discrete argument.

Gε : Lε → L

where Lε is the category of diagrams witnessing distance ≤ ε.
1. The image of each Gε is powerful, hence κ-accessible.

2. Suppose d(p � K , q � K ) < ε for all K≺KM of size ≤ κ.

3. By counting and κ-directedness, there is cofinal diagram of
K≺KM giving the same distance δ < ε.
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Theorem (L/Rosický)

Assuming a proper class of almost strongly compact cardinals,
every mAEC is strongly χ-d-tame for some χ.

Proof: A (fiddly) repurposing of the discrete argument.

Gε : Lε → L

where Lε is the category of diagrams witnessing distance ≤ ε.
1. The image of each Gε is powerful, hence κ-accessible.

2. Suppose d(p � K , q � K ) < ε for all K≺KM of size ≤ κ.

3. By counting and κ-directedness, there is cofinal diagram of
K≺KM giving the same distance δ < ε.

4. After some fiddling, pass to colimit, obtaining d(p, q) < ε.
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I Quantale-valued structures, Ω-structures, sheaves (?). Joint
with Rosický and Zambrano.

I Less obvious contexts? Abstract model theory over
combinatorial geometries/matroids?

I Suggestions?
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