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Summary
This text deals with removing noise from inaccurate multilateration measurements. It
is used Bayesian estimation theory to find the posterior density of the real position (or,
moreover, velocity) of an airplane. Together with true position, we estimate on Bayesian
principle the geometry of a maneuver that an airplane obeys and so-called process noise,
which describes how much an airplane’s trajectory differs from the geometry. The es-
timation of the process noise is the essential part of the work. It is derived Bayesian
approach together with the maximum likelihood approach. Then, improvements to these
algorithms are introduced. They provide better results in particular cases, such as a ma-
neuver change of the target or initial uncertainty of the maximum likelihood estimation.
At the end of the text, the possibility of a combination of geometry and process noise
estimation is described.

Abstrakt
Táto práca sa zaoberá odstraňovaním šumu, ktorý vzniká z tzv. multilateračných meraní
leteckých cieľov. Na tento účel bude využitá najmä teória Bayesovských odhadov. Odvodí
sa aposteriórna hustota skutočnej (presnej) polohy lietadla. Spolu s polohou (alebo aj
rýchlosťou) lietadla bude odhadovaná tiež geometria trajektórie lietadla, ktorú lietadlo v
aktuálnom čase sleduje a tzv. procesný šum, ktorý charakterizuje ako moc sa skutočná
trajektória môže od tejto líšiť. Odhad spomínaného procesného šumu je najdôležitejšou
časťou tejto práce. Je odvodený prístup maximálnej vierohodnosti a Bayesovský prístup
a ďalšie rôzne vylepšenia a úpravy týchto prístupov. Tie zlepšujú odhad pri napr. zmene
manévru cieľa alebo riešia problém počiatočnej nepresnosti odhadu maximálnej vierohod-
nosti. Na záver je ukázaná možnosť kombinácie prístupov, t.j. odhad spolu aj geometrie
aj procesného šumu.

Keywords
target tracking, Bayesian estimate, maximum likelihood estimate, Kalman Filter, Inter-
active Multiple Model algorithm, estimation of the process noise, adaptive filtering
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Rozšírený abstrakt
Táto práca sa zaoberá odstraňovaním šumu, resp. nepresnosti, meraní vznikajúcom pri
tzv. multilateračných meraniach. Je to technológia, kedy objekt vyšle signál, ktorý
zachytia 4 vysielače v rôznych časoch aby následne z toho odhadol systém polohu leteckého
cieľa. Spolu s odhadom tejto polohy je systém schopný vydávať aj variančnú maticu šumu
týchto meraní. Jej výpočet je založený na fyzikálnych vlastnostiach signálu, ktorý systém
zachytil.

Ďalej je v práci predstavený Kálmánov filter. Je podrobne popísaný tzv. lineárny
stavový model, ktorý popisuje pohyb leteckého cieľa. Na základe tohoto modelu je po-
drobne odvodený spomínaný Kálmánov filter. Tento algoritmus predstavuje Bayesovský
odhad neznámej polohy cieľa z nepresných meraní. Funguje na princípe, že apriórnu hus-
totu odvodí z lineárneho stavového modelu a vierohodnosť z aktuálnych meraní. Ich vyná-
sobením dostávame aposteriórnu hustotu, ktorej strednú hodnotu považujeme za odhad
neznámej polohy cieľa. V prípade lineárneho stavového modelu je možné túto hustotu
spočítať jednoducho pomocou maticových operácii, čo je princíp Kálmánovho filtra.

Je popísaný problém využitia Kálmánovho filtra. Je dokázané, že je to najlepší nes-
tranný odhad neznámej polohy, ale za predpokladu, že lineárny stavový model dobre
popisuje sledovaný letecký cieľ. Čo žiaľ nie je možné vždy zaručiť. V prípade, že Kálmánov
filter neodhaduje neznámu polohu správne, tzn. odhad nie je nestranný (v takom prípade
model nepopisuje správne sledovaný cieľ), je možné model upraviť, aby Kálmánov filter
poskytol nestranný odhad. Takéto úpravy môžu byť dvoch typov – zmena geometrie tra-
jektórie modelu alebo zmena procesného šumu. Zmena geometrie predstavuje napríklad
zmenu z predpokladaného pohybu po priamke na predpokladaný pohyb po parabole alebo
kružnici. Toto je údaj, ktorý popisuje spomenutý lineárny stavový model. Procesný šum
prestavuje náhodnú veličinu, ktorá hovorí o samotnom modeli ako moc sa môže predpok-
ladaná geometria trajektórie leteckého cieľa líšiť od skutočnej.

Samozrejme, je nepraktické tieto zmeny nastavovať ručne a cieľom tejto práce je odhad-
núť okrem neznámej polohy aj trajektóriu a procesný šum leteckého cieľa. Na odhad tra-
jektórie sa dnes už bežne využíva algoritmus IMM (Interacting Multiple Model). Tento
je v práci podrobne odvodený. Spočíva v tom, že je potrebné vybrať niekoľko možných
trajektórii, z ktorých potom algoritmus odhadne ten najbližší k skutočnej trajektórii.
Problémom je, že každému modelu je potrebné nastaviť spomenutý procesný šum ako
konštantu.

Najpodstatnejšiu a originálnu časť tvorí kapitola o odhadovaní procesného šumu. Na
rozdiel od dostupnej literatúry je tu potrebné predpokladať, že merania sú ďaleko nepres-
nejšie než trajektória. Teda šum meraní je rádovo vyšší než procesný šum. To vyraďuje
takmer všetky spôsoby dostupné v literatúre, obzvlášť korelačné a kovariačné metódy. V
práci je odvodený Bayesovský prístup, prístup cez maximálnu vierohodnosť. Následne
úpravy ako vylepšený prístup cez maximálnu vierohodnosť alebo riešenie problému zmien
procesného šumu počas trajektórie. Čo popisuje manévrujúci cieľ.

Na záver je navrhnutá kombinácia aj odhadu trajektórie spolu s odhadom procesného
šumu. Nanešťastie sa ukázalo, že nie je možné tieto dva prístupy kombinovať spolu s
algoritmom IMM, avšak je navrhnutý prístup, ktorý odhadne geometriu trajektórie cez
výšku odhadnutého procesného šumu. T.j. uplatní princíp, že modely s nižším procesným
šumom lepšie popisujú geometriu trajektórie leteckého cieľa.
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1 | Introduction

Multilateration is the way of getting some flying object position. Unfortunately, it pro-
vides with high inaccuracy. In this text, we will try to develop techniques to suppress this
inaccuracy.

We will base our consideration on Bayesian estimation Assume that each flying object
(so-called target) flies according to some defined stochastic model. From this model, we
deduce the prior distribution of the target position, and from measurement, we deduce its
likelihood. The by Bayesian principle, we provide the posterior distribution of the target
position. Moreover, we can exclude that, and together with position, we can estimate the
target’s velocity.

The main problem studied in the text will be to find the proper stochastic model
in order to deduce the prior distribution of the state. The most significant part of the
developed theory and proofs will be based on Bayesian estimation theory. The author
follows the notation in [1] and assumes that the reader has knowledge from Bayesian
estimation [7].

This text will be used simulated multilateration measurements corresponding to the
real one used in real positioning systems.
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2 | Multilateration

Multilateration (MLAT) [27] is a technique for determining the position of a target. The
target transmits an energy wave (e.g., radio signal). It can be of two types: cooperative
target – transmits voluntary or non-cooperative target – transmits inadvertently. Posi-
tioning is based on comparing the time when the signal arrives to individual receivers.

2.1 | A Geometrical Approach to the TDOA Measurements

In this section, we will deal with target positioning from so-called TDOA measurements.
It will be defined below. Let us denote T ∈ E3 the (unknown) position of the target,
which we want to determine. So at first, we start with the definition of a positioning
system.

Definition 2.1 (Passive positioning system). Let R0, R1, R2, R3 be four points in E3.
They symbolize the known positions of 4 receivers. We call passive positioning system the
following ordered 4-tuple

〈R0, R1, R2, R3〉.

Definition 2.2 (Time of arrival (TOA) to the ith receiver). Consider the passive posi-
tioning system defined above. The difference between the time of transmission of a signal
from the target and the arrival of the signal to the i-th receiver we call the time of arrival
(TOA) to the ith receiver and denote τi.

Remark. In the passive positioning system, we have 4 TOAs at the same time. See it on
Figure 2.1.

T

R0

R1

R2

R3

τ1
τ0

τ2 τ3

Figure 2.1: Presented passive positioning system with 4 TOAs.
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Proposition 2.3. Let c = 299 792 458 m/s be the speed of light. Then distance between
target and i-th receiver ρ(T,Ri) is equal to cτi.

In order to find out the target position from TOAs, it is handy to consider differences
between them instead of TOAs themselves.

Definition 2.4 (Time difference of arrival (TDOA) on the jth receiver). Consider the
passive positioning system defined above. The difference between the TOA on j-th receiver
and the TOA on the 0th-th receiver we call the time difference of arrival (TDOA) on the
j-th receiver and denote

τ̂j := τj − τ0, j ∈ {1, 2, 3}. (2.1)

Remark. In passive positioning system we have 3 TDOA measurements. τ̂j ∈ R \ {0},
because in case τ̂j = 0 jth and 0th receiver have the same position, which is not feasible.
The sign of TDOA signify if target is closer to Rj (negative) or R0 (positive). From one
TDOA, we can generate a surface of potential target positions.

The idea of positioning from TDOA measurements is to generate 3 surfaces of potential
target position T from 3 TDOAs. Then the intersection of these surfaces is the demanded
position T of the target. We are going to show that surface of potential T from 1 TDOA
is one sheet from hyperboloid of two sheets. So, at first, we define what is a hyperboloid
of two sheets.

Definition 2.5 (Rigid transformation). Let be two affine frames 〈A, e1, e2, e3〉 and 〈B, e′
1,

e′
2, e′

3〉 in E3. The second is given byrigid transformation of first one iff its basis vectors
are given by rotation of the first frame:

e′
1 = R(φ, θ, ψ)e1, e′

2 = R(φ, θ, ψ)e2, e′
3 = R(φ, θ, ψ)e3; R(φ, θ, ψ) ∈ SO(3).

and origin B is given by translation of A:

B = A+ t; t ∈ R3. (2.2)

Remark. SO(3) denotes a nonabelian group of all rotations about the origin in R3 repre-
sented by following matrices

R(φ, θ, ψ) =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 ·

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ·

1 0 0
0 cosψ − sinψ
0 sinψ cosψ


By Euler’s rotation theorem, it is composition of 3 rotations: counterclockwise rotation
about the positive z-axis by angle φ after counterclockwise rotation about the positive
y-axis by angle θ after counterclockwise rotation about the positive x-axis by angle ψ.
Axis xyz are with respect to original affine frame 〈A, e1, e2, e3〉.

Definition 2.6 (Hyperboloid of two sheets). We call hyperboloid of two sheets a quadratic
surface defined with normal form

x′2

α2 − y′2

β2 − z′2

γ2 − 1 = 0,

where α, β, γ ∈ R+ and axis x′y′z′ are with respect to suitable affine frame 〈S, e′
1, e′

2, e′
3〉

given by rigid transformation of cartesian affine frame 〈O, e1, e2, e3〉.
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Proposition 2.7. Let R0, R1 be two points in E3. Consider affine frame 〈S, e′
1, e′

2, e′
3〉

given by rigid transformation of cartesian affine frame 〈O, e1, e2, e3〉, such that

S = 1
2(R0 +R1)

and R0 = [−d, 0, 0]x′y′z′ and R1 = [d, 0, 0]x′y′z′ with respect to 〈S, e′
1, e′

2, e′
3〉, where

2d = ρ(R0, R1).

Then the surface of possible points P ∈ E3, which have constant differences between
distances from P to R0 and R1

|ρ(P,R0) − ρ(P,R1)| = 2a, a ∈ R+ (2.3)

is defined by equation

x′2

a2 − y′2

b2 − z′2

b2 = 1, b2 = d2 − a2, (2.4)

where x′, y′, z′ are coordinates of X with respect to 〈S, e′
1, e′

2, e′
3〉.

Proof. Consider X = [x′, y′, z′] with respect to 〈S, e′
1, e′

2, e′
3〉. By notation introduced in

this proposition:

2a = |ρ(P,R0) − ρ(P,R1)|

2a = |
√

(x′ − (−d))2 + (y′ − 0)2 + (z′ − 0)2 −
√

(x′ − d)2 + a(y′ − 0)2 + (z′ − 0)2|;

2a = |
√

(x′ + d)2 + y′2 + z′2 −
√

(x′ − d)2 + y′2 + z′2|.

Due to absolute value there are 2 options. ρ(P,R0) − ρ(P,R1) > 0 or < 0. At first,
consider first option (greater then zero). Move the right square root to the left side of the
equation and continue with algebraic rearrangements:

2a+
√

(x′ − d)2 + y′2 + z′2 =
√

(x′ + d)2 + y′2 + z′2(
2a+

√
(x′ − d)2 + y′2 + z′2

)2
= (x′ + d)2 + y′2 + z′2

4a2 + 4a
√

(x′ − d)2 + y′2 + z′2 + (x′ − d)2 + y′2 + z′2 = (x′ + d)2 + y′2 + z′2

4a2 + 4a
√

(x′ − d)2 + y′2 + z′2 + x′2 − 2x′d+ d2 = x′2 + 2x′d+ d2

4a
√

(x′ − d)2 + y′2 + z′2 = 4x′d− 4a2

a2
(
(x′ − d)2 + y′2 + z′2

)
=
(
dx′ − a2

)2

a2x′2 − 2a2dx′ + a2d2 + a2y′2 + a2z′2 = d2x′2 − 2a2dx′ + a4

(a2 − d2)x′2 + a2y′2 + a2z′2 = a4 − a2d2 / b2 = d2 − a2

b2x′2 − a2y′2 − a2z′2 = a2b2

b2x′2

a2b2 − a2y′2

a2b2 − a2z′2

a2b2 = 1

x′2

a2 − y′2

b2 − z′2

b2 = 1
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Consider second option ρ(X,R0) − ρ(X,R1) < 0 :

|ρ(X,R0) − ρ(X,R1)| = −ρ(X,R0) + ρ(X,R1)

Then

2a−
√

(x′ − d)2 + y′2 + z′2 = −
√

(x′ + d)2 + y′2 + z′2(
2a−

√
(x′ − d)2 + y′2 + z′2

)2
= (x′ + d)2 + y′2 + z′2

4a2 − 4a
√

(x′ − d)2 + y′2 + z′2 + (x′ − d)2 + y′2 + z′2 = (x′ + d)2 + y′2 + z′2

4a2 − 4a
√

(x′ − d)2 + y′2 + z′2 + x′2 − 2x′d+ d2 = x′2 + 2x′d+ d2

−4a
√

(x′ − d)2 + y′2 + z′2 = 4x′d− 4a2

a2
(
(x′ − d)2 + y′2 + z′2

)
=
(
dx′ − a2

)2

Other steps are the same as above.

Remark. The surface in Proposition 2.7 is special case of two-sheets hyperboloid (sym-
metric about x′ axis). Compare with Definition 2.6.

Example 2.8. We have points R0, R1 such that ρ(R0, R1) = 2
√

2. The surface of points
X with differences between distances to these points equal to 2 (a = 1 according to (2.3))
is drawn in Figure 2.2.

R1

x′ y′

z′

S

1

1

(a) in three-dimensional x′y′z′ space

R1R0 x′

y′

z′

S

1

(b) projection into x′y′ plane

Figure 2.2: Surface with constant difference between distances to points R0, R1 (special
case of two-sheets hyperboloid).

Proposition 2.9. From 1 TDOA measurement τ̂i 6= 0, surface of possible target position
T is one sheet of hyperboloid of two sheets in Proposition 2.7. In case of τ̂i > 0, it is sheet
closer to receiver R0, in case τ̂i < 0, it is sheet closer to receiver R1.

Proof. With no loss of generality, we consider TDOA on the 1st receiver: τ̂1. So, consider
receivers R0, R1 with known positions. We identify these receivers with points R0, R1 in
Proposition 2.7.

Recall the Definition 2.4 of TDOA on the 1st receiver:

τ̂1 = τ1 − τ0.
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By Proposition 2.3:
ρ(T,R0) = cτ0, ρ(T,R1) = cτ1

⇒ ρ(T,R1) − ρ(T,R0) = cτ1 − cτ0 = c(τ1 − τ0) = cτ̂i (2.5)
In the case of both sides in (2.5) are in absolute value, the situation would is the same as
in Proposition 2.7. The surface of possible target position T would have been two-sheets
hyperboloid determined by (2.4).

But in this case, we have one more piece of information. We know, if ρ(T,R0) is
greater or not than ρ(T,R1) (recall that equality is not feasible). By that, only one sheet
of two-sheets hyperboloid would satisfy this additional condition. It is clear to state, that
in case of τ̂i > 0, it is sheet closer to receiver R0, in case of τ̂i < 0, it is sheet closer to
receiver R1.

Example 2.10. We have positioning system. ρ(R0, R1) = 2
√

2 km. Consider 1 TDOA
measurement on 1st receiver. We obtained its value: τ̂1 = 6, 6713 · 10−6 s. By that, we
can evaluate

ρ(T,R1) − ρ(T,R0) = cτ̂1 = 299 792 458 m/s · (−6, 6713 · 10−6 s) = −2 km.

Together knowledge of |ρ(T,R1) − ρ(T,R0)| and ρ(R0, R1) determines the hyperboloid of
two sheets from Proposition 2.7 and the sign of τ̂1 determines the sheet. In this case the
sheet closer to R1. See on Figure 2.3.

R0

x′

y′

z′

S

1

(a) in three-dimensional x′y′z′ space

R1R0 x′

y′

z′

S

1

(b) projection into x′y′ plane

Figure 2.3: The surface of possible target position T from 1 negative TDOA measurement.

Proposition 2.11. Let be τ̂1 = 0. Then, surface of possible target positions T is plane
x′ = 0 with respect to local affine frame 〈S, e′

1, e′
2, e′

3〉.

Proof. τ̂1 = 0 ⇒ ρ(T,R0) = ρ(T,R1). Then√
(x′ − d)2 + y′2 + z′2 =

√
(x′ + d)2 + y′2 + z′2

(x′ − d)2 + y′2 + z′2 = (x′ + d)2 + y′2 + z′2

(x′ − d)2 = (x′ + d)2

x′2 − 2dx′ + d2 = x′2 + 2dx′ + d2

−2dx′ = +2dx′ / d 6= 0
x′ = 0
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Example 2.12. We have positioning system. ρ(R0, R1) = 2
√

2 km. Consider 1 TDOA
measurement on 1st receiver. We obtained its value: τ̂1 = 0 s. By that, we can evaluate
surface of possible target positions T as plane x′ = 0. See on Figure 2.4

R1

x′ y′

z′

S

1

(a) in three-dimensional x′y′z′ space

R1R0

x′ = 0

x′

y′

z′ S

1

©•

1

(b) projection into x′y′ plane

Figure 2.4: The surface of possible target position T from 1 zero TDOA measurement.

Remark. By previous Proposition 2.11 we solved all situation for TDOA (zero and non-
zero time difference of arrival).

As it was mentioned above, the idea is to find the target position T by finding the in-
tersection of 3 surfaces from 3 TDOA measurements. Precise description of the algorithm
to find intersection is out of the scope of the text.

Example 2.13. We have passive positioning system with known positions of 4 receivers
in cartesian affine frame:

R0 = [−4980, 3154, 318] m, R1 = [−2143,−2986, 232] m,
R2 = [1997,−3154, 421] m, R3 = [5001, 3078, 157] m.

On that receivers obtain 3 TDOA measurements:

τ̂1 = 5, 4891 · 10−6 s, τ̂2 = 4, 4188 · 10−6 s, τ̂3 = −2, 8730 · 10−6 s.

Let us generate surfaces of possible target of individual TDOAs. We will skip the com-
putations, for sake of brevity only discuss the principle of them.

The idea is construct surface (1 sheet of two-sheets hyperboloid) from 1 TDOA in
local affine frame 〈S, e′

1, e′
2, e′

3〉. Then do that for all 3 TDOAs in their own local affine
frames. Use inverse rigid transformation to map these 3 surfaces to global cartesian affine
frame 〈O, e1, e2, e3〉. When we have 3 surfaces in global cartesian affine frame, we choose
some algorithm to find intersection of them. See the situation in Figures 2.5 and 2.6.

It is worth to mention, that due to rotational symmetry about x′ axis of the surface of
possible target position T , to find matrix R(φ, θ, ψ) is enough to find only angles φ and
θ. Because in that case is sufficient to consider not overall basis e′

1, e′
2, e′

3 but only the
rotation of vector e′

1.
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(a) (b)

(c) (d)

Figure 2.5: Surfaces of possible target position in cartesian affine frame.

(a) view from above (b) situation in height of the target

Figure 2.6: Surfaces of possible target position in cartesian affine frame in xy plane.

2.2 | Accuracy of the TDOA Measurements

In the previous section, we dealt with TDOA as precise measurements. In technical
practice, it is not a proper approach. TDOA always have some error. From estimation
theory including physical properties of radio signal, we can determine Cramér-Rao Lower
Bound [14] of TDOA measurements. Let be σ2

τ̂ ,j variance of TDOA on the jth receiver,
then following inequality is valid by [35]:

σ2
τ̂ ,j ≥

(
2 E

N0
B

2
)−1

. (2.6)
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where E is the signal energy [J], N0 is the noise spectral power density [W/Hz], and B

[Hz] is a width measure of the signal bandwidth. The errors are dependent on the signal
and its properties: noise levels and the signal’s bandwidth.

Definition 2.14 (Inexact TDOA on the jth receiver). Consider defined time difference of
arrival (TDOA) on the jth receiver denoted as τ̂j. We call inexact TDOA on jth receiver
following ordered couple

(τ̂j, σ
2
τ̂ ,j),

where τ̂j and σ2
τ̂ ,j are considered to be estimates of parameters of normal random variable

Υj.

In applications (including real data in this text), σ2
j is taken as its Cramér-Rao Lower

Bound (2.6). 3 TDOAs are considered as normal random vector Υ ∼ N(µτ̂ ,Στ̂ ) with
dimension of 3 with estimate of its parameters:

µ̂τ̂ =

τ̂1
τ̂2
τ̂3

 , Σ̂τ̂ =

σ
2
τ̂ ,1 0 0
0 σ2

τ̂ ,2 0
0 0 σ2

τ̂ ,3

 .
We are able to reformulate problem of finding intersection of 3 sheets of two-sheets hy-
perboloid to nonlinear transform from space of TDOA measurements to cartesian space.
In previous section, we have denoted T = [x, y, z] as target position in E3. Let us denote
Z as random vector of target position in R3. Consider in general nonlinear function of
random vector g such that

Z = g(Υ ).

In applications (including in this text), it is also assumed that Z has normal distribution,
Z ∼ N(z̄,R).
Remark. It is worth to mention that Z does not have normal distribution, because of
nonlinear mapping g. It does not preserve normality. But in practice, it is assumed that
distribution of Z is enough close to normal distribution. So, we are able to approximate it
by normal distribution. Variance matrix R is estimated on maximum-likelihood principle.
For sake of simplicity, denote the estimation also with R. Mean z is estimated as ˆ̄z =
z = g([τ̂1, τ̂2, τ̂3]>)

Definition 2.15 (Plot). We call plot a random variable Z ∼ N(z,R) described above.

Remark. Plots will be considered as raw measurements through this text. In the next
chapter, we will start with smoothing them with the aim of getting a better estimate of
target position T and the ability of its velocity estimation.
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3 | Kalman Filtering

The core of this chapter is Kalman filter. It is an algorithm invented and presented in 1960
in article [13] by Hungarian-American electrical engineer and mathematician Rudolph
Emil Kálmán. The first public known usage of this algorithm was in the Apollo program
estimating the space module trajectory.

Kalman filter forms a basic concept of recursive Bayesian estimation theory studied in
this text. In this chapter, we introduce a scheme of the linear state-space system, which is
the hidden Markov model and then derive the Kalman filter. At the end of this chapter,
we show that the Kalman filter is optimal Bayesian estimator.

We mainly use Bayesian estimation theory [7].

3.1 | Linear Dynamic System

Definition 3.1 (State vector). Let X ∼ N(x̄,P) ∈ Rn be random vector of true state
with normal distribution and dimension of n. We call it state vector.

Definition 3.2 (Control-input vector). Let u ∈ Rp be deterministic vector with dimen-
sion of p. In case its elements represent physics quantity we call it control input vector.

Definition 3.3 (Measurement vector). Let Z ∼ N(z̄,R) ∈ Rm be random vector of
normal distribution with dimension of m representing noisy measurements. We call it
measurement vector.

Remark. Latter in the text we will identify general measurement vector in Stochastic
Control Theory with plot defined in Chapter 2: Multilateration in order to deal with
target tracking problems. Estimation of variance matrix R in plot will be considered as
true value.
Remark. We add to the quantities defined above index symbolizes time index in discrete
time series. E.g. Xk,uk,Zk; k ∈ N symbolizes defined quantities at time epoch k.

Definition 3.4 (Linear state-space system). Let X0,X1, . . . ,Xk, . . . ∈ Rn be sequence
of state vectors, Z1,Z2, . . . ,Zk, . . . ∈ Rm sequence of measurement vectors and u0,u1,
. . . ,uk, . . . ∈ Rp be sequence of control-input vectors. We call linear state-space system
a following system of stochastic difference equations:

Xk = FkXk−1 + Gkuk + ΓkV k, (3.1)
Zk = HkXk + W k; (3.2)

where Fk ∈ Mn(R) is state transition model, Hk ∈ Mm,n(R) is observation model and
Gk−1 ∈ Mn,p(R) is the control-input model.Γk ∈ Mn,q is process noise transform model
into state space, V k ∼ N(o,Qk) is the process noise where Qk ∈ PDq(R) and W k ∼
N(o,Rk) is the measurement noise. Initial state X0 ∼ N(x̄0,P0) is given.
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Proposition 3.5. State vector Xk has normal distribution.

Proof. By Equation (3.1). For k = 1: X0 ∼ N(x̄0,P0) is given and V k ∼ N(o,Qk). uk

is not a random variable (it is known constant). Then X1 have also normal distribution,
because it is linear transformation of normal random variables and constant. Then Xk

has normal distribution inductively for k > 1.

Remark. For parameters of normal distribution of Xk we introduce notation

Xk ∼ N(x̄k,Pk).

To make clear previous terms in Definition 3.4, see the following example of thrown
ball with positioning sensor.

Example 3.6. Consider thrown ball with positioning sensor. We track its height. So
consider the state transition model and the state vector at time epoch k such that

Fk =
[
1 ∆tk
0 1

]
, Xk =

[
H
Ḣ

]
.

where H is true unknown height, Ḣ true unknown velocity in vertical direction to the
ground, ∆tk is time difference between epoch k and k−1; ∆tk := tk − tk−1. Control input
in that case is known gravitational acceleration g = 9, 81 m/s.

Gk =
[

∆t2
k/2

∆tk

]
, uk =

[
−g
]
, Qk =

[
∆t4

k/4 0
0 ∆t2

k/2

]
σ2

a.

σ2
a [m2/s4] is given (expected) variance of ball’s total acceleration in vertical direction.

Positioning sensor can measure height with known error variance such that

Hk =
[
1 0

]
, Rk =

[
σ2

w

]
,

where σ2
w [m2] is known. For completeness dimensions in this example are

n = 2, p = 1, m = 1.

3.2 | Recursive Bayesian Estimate of the States

The linear state-space system presented in previous section is one of the simplest dy-
namic Bayesian networks. The true states Xk are unobserved Markov process and the
measurements Zk are observed states of a hidden Markov model. See on Figure 3.1.

Z kZ k−1 Z k+1

X k−1 X k X k+1

Figure 3.1: Scheme of discussed Hidden Markov Model
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Let us denote xk as a realization of Xk. Then, by Markov assumption is valid this
equation

f(xk|x0, . . . ,xk−1) = f(xk|xk−1).
Similarly, let us denote zk as a realization of measurement vector Zk. Zk is depended
only on Xk and is independent from all state vector X0, . . . ,Xk−1:

f(zk|x0, . . . ,xk) = f(zk|xk)
Remark. It is worth to recall that by Definition 3.4 initial probability density function
f(x0) is known (respectively given and assumed to be true).

Before continue with study of recursive Bayesian estimation, recall very useful propo-
sition from [1] (Section 3.4, Page 57).
Proposition 3.7. For conditional density function is equation

f(y, z) = f(z|y)f(y)
valid almost everywhere.
Proposition 3.8. Consider Hidden Markov model described above, probability density
function of all states can be written as

f(x0, . . . ,xk, z1, . . . , zk) = f(x0)
k∏

i=1
f(zk|xi)f(xi|xi−1).

Proof. To make it clear, we will do this proof inductively:
• k = 0:

f(x0) = f(x0).

• k = 1:

f(x0,x1, z1) = f(x0,x1)f(z1|x0,x1) = f(x0)f(x1|x0)f(z1|x0,x1) =
= f(x0)f(x1|x0)f(z1|x1)

• k = 2:

f(x0,x1,x2, z1, z2) = f(x0,x1,x2)f(z1, z2|x0,x1,x2) =
= f(x0,x1,x2)f(z1|x0,x1,x2)f(z2|x0,x1,x2) = f(x0,x1,x2)f(z1|x1)f(z2|x2) =

= f(x2|x0,x1)f(x0,x1)f(z1|x1)f(z2|x2) =
= f(x2|x0,x1)f(x1|x0)f(x0)f(z1|x1)f(z2|x2) =

= f(x2|x1)f(x1|x0)f(x0)f(z1|x1)f(z2|x2)

• general k:

f(x0, . . . ,xk, z1, . . . , zk) = f(x0, . . . ,xk)f(z1, . . . , zk|x0, . . . ,xk) =

= f(x0, . . . ,xk)
k∏

i=1
f(zi|x0, . . . ,xk) = f(x0, . . . ,xk)

k∏
i=1

f(zi|xi) =

= f(xk|xk−1, . . . ,x0)f(xk−1, . . . ,x0)
k∏

i=1
f(zi|xi) =

= f(xk|xk−1)f(xk−1|xk−2)f(xk−2, . . . ,x0)
k∏

i=1
f(zi|xi) = . . . =

= f(x0)
k∏

i=1
f(zk|xi)f(xi|xi−1).
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Remark. This proposition shows sequential property of overall density. In next time epoch
k we can multiply density at k − 1 by f(zk|xk)f(xk|xk−1) in order to obtain probability
density function of all states in the Hidden Markov Model.

3.3 | Useful Matrix Identities

In this section, we mention and prove useful lemmas in order to derive Kalman filter.
First one is Woodbury matrix identity [41]. It is also known as matrix inversion lemma.
It will be used several times during derivation of the Kalman filter.

Lemma 3.9 (Woodbury1 matrix identity). Let be A,U,C and V be conformable matrices:
A ∈ Ms(R),U ∈ Ms,t(R),C ∈ Mt(R),V ∈ Mt,s(R), then

(A + UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1. (3.3)

Proof. We do direct proof. It also possible to do proof in other ways like algebraic way,
derivation via blockwise elimination and derivation from LDU decomposition. We prove
following identity given from (3.3):

Is = (A + UCV)
[
A−1 − A−1U(C−1 + VA−1U)−1VA−1

]
=
[
Is − U(C−1 + VA−1U)−1VA−1

]
+

+
[
UCVA−1 − UCVA−1U(C−1 + VA−1U)−1VA−1

]
=
[
Is − UCVA−1

]
−

−
[
U(C−1 + VA−1U)−1VA−1 + UCVA−1U(C−1 + VA−1U)−1VA−1

]
= Is − UCVA−1 − (U + UCVA−1U)(C−1 + VA−1U)−1VA−1

= Is − UCVA−1 − UC(C−1 + VA−1U)(C−1 + VA−1U)−1VA−1

= Is − UCVA−1 + UCVA−1

= Is.

Following Weinstein–Aronszajn identity [34] is useful matrix identity which will be
used in proof of a another identity called fundamental gaussian identity which will be
discussed below.

Lemma 3.10 ( Weinstein2–Aronszajn3 identity). Let be U ∈ Ms,t(R) and V ∈ Mt,s(R)
matrices. Then

det(Is + UV) = det(It + VU). (3.4)

Proof. Let M ∈ Ms+t(R) be block matrix comprising Is,−U,V, It:

M =
(

Is −U
V It

)
.

1Max Atkin Woodbury (*1917), American mathematician.
2Alexander Weinstein (1897 - 1979), Russian American mathematician.
3Nachman Aronszajn (1907 -1980), Polish American mathematician.



17

Is is invertible, so by the formula for the determinant of a block matrix

det
(

Is −U
V It

)
= det(Is) det(It − VI−1

s (−U)) = det(It + VU).

Similarly, It is invertible, so by the formula for the determinant of a block matrix

det
(

Is −U
V It

)
= det(It) det(Is − (−U)I−1

t V) = det(Is + UV).

Comparing equations above it is clear that

det(Is + UV) = det(It + VU).

The last useful identity is fundamental Gaussian identity [26]. It plays key role during
derivation of a prior and posterior densities in the Kalman filter. It express relation
between probability density functions of the normal distribution. The relation between
their arguments in exponential function is also called combination of quadratic forms [37].

Lemma 3.11 (Fundamental Gaussian identity). Let be Ψ ∈ Ms(R) and Σ ∈ Mt(R)
symmetric positive-definite matrices such that s ≤ t. Let be B ∈ Mt,s(R) matrix. Then

N(r; Bq + j,Σ) · N(q; p,Ψ) = N(r; Bp + j,Σ + BΨB>) · N(q; e,E) (3.5)

∀r ∈ Rt,∀q,p, j ∈ Rs and E, e are defined by

E−1 := B>Σ−1B + Ψ−1

e := p + EB>Σ−1(r − Bp − j).

Proof. Rewrite left side of Equation (3.5):

1√
(2π)t det(Σ)

exp
(

−1
2(r − Bq − j)>Σ−1(r − Bq − j)

)
·

· 1√
(2π)s det(Ψ)

exp
(

−1
2(q − p)>Ψ−1(q − p)

)
=

= 1√
(2π)t(2π)s det(Σ) det(Ψ)

exp
[
−1

2
(
(r − Bq − j)>Σ−1(r − Bq − j)+

+(q − p)>Ψ−1(q − p)
)]

Similarly rewrite the right side of Equation (3.5):

1√
(2π)t det(Σ + BΨB>)

exp
(

−1
2(r − Bp − j)>(Σ + BΨB>)−1(r − Bp − j)

)
·

· 1√
(2π)s det(E)

exp
(

−1
2(q − e)>E−1(q − e)

)
=
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= 1√
(2π)t(2π)s det(Σ + BΨB>) det(E)

exp
[
−1

2
(
(r − Bp − j)>(Σ + BΨB>)−1·

·(r − Bp − j) + (q − e)>E−1(q − e)
)]

Comparing rewritten left and right side of Equation (3.5) it is clear that is enough to
prove following two equations:

(r − Bq − j)>Σ−1 · (r − Bq − j) + (q − p)>Ψ−1(q − p) =
= (r − Bp − j)>(Σ + BΨB>)−1 · (r − Bp − j) + (q − e)>E−1(q − e) (3.6)

and
det(Σ) det(Ψ) = det(Σ + BΨB>) det(E). (3.7)

Firstly prove Equation (3.6). It is proved using matrix completion of the square

(r − Bq − j)>Σ−1(r − Bq − j) + (q − p)>Ψ−1(q − p) =
= r>Σ−1r − r>Σ−1Bq − q>B>Σ−1r + q>B>Σ−1Bq + j>Σ−1j − r>Σ−1j − j>Σ−1r+

+ q>B>Σ−1j + j>Σ−1Bq + q>Ψ−1q − q>Ψ−1p − p>Ψ−1q + p>Ψ−1p =
= (r − j)>Σ−1(r − j) + q>(B>Σ−1B + Ψ−1)q − q>(B>Σ−1r − B>Σ−1j + Ψ−1p)−

− (r>Σ−1B − j>Σ−1B + p>Σ−1)q + p>Ψ−1p =
= (r − j)>Σ−1(r − j) + q>E−1q−

− q>(B>Σ−1(r − j) − B>Σ−1Bp + B>Σ−1Bp + Ψ−1p)−
− ((r − j)>Σ−1B − p>B>Σ−1B + p>B>Σ−1B + p>Σ−1)q + p>Ψ−1p =

= (r − j)>Σ−1(r − j) + q>E−1q − q>[B>Σ−1(r − Bp − j) + (B>Σ−1B + Ψ−1)p]−
− [(r − Bp − j)>Σ−1B + p>(B>Σ−1B + Ψ−1)]q + p>Ψ−1p =

= (r − j)>Σ−1(r − j) + q>E−1q − q>[B>Σ−1(r − Bp − j) + E−1p]−
− [(r − Bp − j)>Σ−1B + p>E−1]q + p>Ψ−1p =

= (r − j)>Σ−1(r − j) + q>E−1q − q>E−1E[B>Σ−1(r − Bp − j) + E−1p]−
− [(r − Bp − j)>Σ−1B + p>E−1]EE−1q + p>Ψ−1p =

= (r − j)>Σ−1(r − j) + q>E−1q − q>E−1[EB>Σ−1(r − Bp − j) + p]−
− [(r − Bp − j)>Σ−1BE + p>]E−1q + p>Ψ−1p =

= (r − j)>Σ−1(r − j) + q>E−1q − q>E−1e − e>E−1q + p>Ψ−1p =
= p>Ψ−1p + (r − j)>Σ−1(r − j) + q>E−1q−

− q>E−1e − e>E−1q + e>E−1e − e>E−1e =
= p>Ψ−1p + (r − j)>Σ−1(r − j) − e>E−1e + (q − e)>E−1(q − e)

In order to prove (3.6) it remains to show that

p>Ψ−1p+(r−j)>Σ−1(r−j)−e>E−1e = (r−Bp−j)>(Σ+BΨB>)−1(r−Bp−j). (3.8)
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Substitute into left hand side of Equation (3.8) and then use properties of matrix opera-
tions:

p>Ψ−1p + (r − j)>Σ−1(r − j) − e>E−1e =
= p>Ψ−1p + (r − j)>Σ−1(r − j)−

− (p + EB>Σ−1(r − Bp − j))>E−1(p + EB>Σ−1(r − Bp − j)) =
= p>Ψ−1p + (r − j)>Σ−1(r − j) − p>E−1p−

− (EB>Σ−1(r − Bp − j))>E−1(EB>Σ−1(r − Bp − j))−
− p>E−1EB>Σ−1(r − Bp − j) − (r − Bp − j)>Σ−1BEE−1p =

= p>Ψ−1p + (r − j)>Σ−1(r − j) − p>B>Σ−1Bp − p>Ψ−1p−
− (EB>Σ−1(r − Bp − j))>E−1(EB>Σ−1(r − Bp − j))−
− p>B>Σ−1(r − j) + p>B>Σ−1Bp − (r − j)>Σ−1Bp + p>B>Σ−1Bp =

= (r − j)>Σ−1(r − j) − (r − Bp − j)>Σ−1BEE−1EB>Σ−1(r − Bp − j)−
− p>B>Σ−1(r − j) − (r − j)>Σ−1Bp + p>B>Σ−1Bp =

= (r − Bp − j)>Σ−1(r − Bp − j) − (r − Bp − j)>Σ−1BEB>Σ−1(r − Bp − j) =
= (r − Bp − j)>

[
Σ−1 + Σ−1BEB>Σ−1

]
(r − Bp − j)

= (r − Bp − j)>
[
Σ−1 + Σ−1B(B>Σ−1B + Ψ−1)B>Σ−1

]
(r − Bp − j) =

= |Use Lemma 3.9| = (r − Bp − j)>(Σ + BΨB>)−1 · (r − Bp − j).

By that we have proved Equation (3.6). Now, we prove (3.7). At first, we rearrange
the equation. It can be rewritten into form

det(Σ) det(Ψ) = det(Σ + BΨB>) det(E)
det(Σ) det(Ψ) = det(Σ + BΨB>) det(Ψ−1 + B>Σ−1B)−1

det(Ψ) · det(Ψ−1 + B>Σ−1B) = det(Σ + BΨB>) · det(Σ)−1

det(Is + ΨB>Σ−1B) = det(It + BΨB>Σ−1).

Let us denote
J := ΨB>Σ.

Thus
det(Is + JB) = det(It + BJ),

which is clear from Weinstein-Aronszajn Lemma 3.10. By that, we have all done and
proved the lemma.

3.4 | Kalman Filter in Probabilistic View

Definition 3.12 (Transitive density to time epoch k). We call probability density function
f(xk|xk−1) as transitive density to time epoch k.

Proposition 3.13. In state space system, transitive density to time epoch k is equal to

f(xk|xk−1) = N(xk; Fkxk−1 + Gkuk,ΓkQkΓ>
k ).
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Proof. First of all, we have to check whether f(xk|xk−1) is normal probability density
function. Similarly as in Proposition 3.5. By equation (3.1): Xk−1 = xk−1 is known
realization of Xk−1. V k ∼ N(o,Qk). uk is not a random variable (it is known constant).
Then Xk|Xk−1 = xk−1 have normal distribution, because it is linear transformation
of normal random variable and constants. Consider properties of expected value and
variance matrix:

E[Xk|Xk−1 = xk−1] = E[Fkxk−1] + E[Gkuk] + E[ΓkV k] =
= FkE[xk−1] + GkE[uk] + ΓkE[V k] =
= Fkxk−1 + Gkuk + Γkoq = Fkxk−1 + Gkuk

var[Xk|Xk−1 = xk−1] = var[Fkxk−1] + var[Gkuk] + var[ΓkV kΓ>
k ] =

= Fkvar[xk−1]F>
k + Gkvar[uk]G>

k + Γkvar[V k]Γ>
k =

= FkonF>
k + GkonG>

k + Qk = ΓkQkΓ>
k

Parameters of multivariate normal distribution are equal to expected value and variance
matrix of random vector, so the proof of the proposition is done.

Definition 3.14 (Likelihood of the measurement at time epoch k). Probability density
function f(zk|xk) we call likelihood of the measurement at time epoch k.

Proposition 3.15. In state space system, likelihood of the measurement at time epoch k
is equal to

f(zk|xk) = N(zk; Hkxk,Rk).

Proof. We have to check, if Zk|Xk = xk has normal distribution. By Equation (3.2) it
is linear transformation of constant, i.e. xk as a realization of Xk and normal random
vector W k. So Zk|Xk = xk has normal distribution. Consider properties of expected
value and covariance matrix:

E[Zk|Xk = xk] = E[Hkxk] + E[W k] =
= HkE[xk] + E[W k] =
= Hkxk + om = Hkxk

var[Zk|Xk = xk] = var[Hkxk] + var[W k] =
= Hkvar[xk]H>

k + var[W k] =
= HkomH>

k + Rk = Rk

Parameters of multivariate normal distribution are equal to expected value and variance
matrix of random vector, so the proof of the proposition is done.

We recall useful proposition [32] (Page 531) in Hidden Markov Chains.

Proposition 3.16 (Chapman4-Kolmogorov5 equation). Let state vectors X0 . . .Xk . . .
be Markov sequence and n > r > s be an arbitrary non-negative integers. Then

f(xn|xs) =
∫ ∞

−∞
f(xn|xr)f(xr|xs) dxr.

4Sydney Chapman (1888 - 1970), British mathematician.
5Andrey Nikolaevich Kolmogorov (1903 - 1987), Soviet mathematician.
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Remark. We denote set of realized measurements z1, . . . , zk up to kth time epoch as Zk :

Zk := {z1, . . . , zk}.

In Kalman filter at time epoch k, our purpose is to find density function of xk con-
ditioned on all measurements up to k: f(xk|Zk). In according to Bayesian estimation
terminology we call it a posterior density function. Use Bayes formula:

f(xk|Zk) = f(xk|zk,Zk−1) = f(zk|xk,Zk−1)f(xk|Zk−1)
f(zk|Zk−1)

= f(zk|xk)f(xk|Zk−1)
f(zk|Zk−1)

(3.9)

Quantities in (3.9) have following meaning:

• f(xk|Zk−1) - a prior density function: We use Chapman-Kolmogorov equation in
Proposition 3.16:

f(xk|Zk−1) =
∫ ∞

−∞
f(xk|xk−1)f(xk−1|Zk−1) dxk−1. (3.10)

where f(xk−1|Zk−1) is a posterior density function at previous state k − 1, which
is recursively known. In case k = 1 is f(x0|Z0) = f(x0) given, because we have no
measurement at time epoch 0 (i.e. Z0 = ∅) and f(x0) is given by Definition 3.4.
f(xk|xk−1) is known transitive density to time epoch k defined by the state-space
system (see Proposition 3.13).

• f(zk|xk) - likelihood of the measurement at time epoch k defined by the state-space
system (see Proposition 3.15).

• f(zk|Zk−1) - normalization constant. Use Chapman-Kolmogorov equation:

f(zk|Zk−1) =
∫ ∞

−∞
f(zk|xk)f(xk|Zk−1) dxk. (3.11)

It is clear that due to integral it is not function of xk and it is integral over probability
space of xk. Recall that both densities in integral are at time step k known.

Lemma 3.17. Prior density function at time epoch 1 f(x1|Z0) is probability density
function of normal distribution such that

f(x1|Z0) = N(x1; F1x̄0 + G1u1,F1P0F>
1 + Γ1Q1Γ>

1 ).

Proof. Recall that by Definition 3.4 f(x0|Z0) = f(x0) = N(x0; x̄0,P0) is given, respec-
tively known. Using Proposition 3.13 substitute into Equation (3.10) and

f(x1|Z0) =
∫ ∞

−∞
f(x1|x0)f(x0|Z0) dx0 =

∫ ∞

−∞
f(x1|x0)f(x0) dx0 =

=
∫ ∞

−∞
N(x1; F1x0 + G1u1,Γ1Q1Γ>

1 ) · N(x0; x̄0,P0) dx0 =

Use fundamental Gaussian identity (Lemma 3.11).

. . . =
∫ ∞

−∞
N(x1; F1x̄0 + G1u1,F1P0F>

1 + Γ1Q1Γ>
1 ) · N(x0, ê, Ê) dx0 =

= N(x1; F1x̄0 + G1u1,F1P0F>
1 + Γ1Q1Γ>

1 ) ·
∫ ∞

−∞
N(x0, ê, Ê) dx0 =

= N(x1; F1x̄0 + G1u1,F1P0F>
1 + Γ1Q1Γ>

1 );
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where

Ê = (F>
1 (Γ1Q1Γ>

1 )−1F1 + P−1
0 )−1,

ê = x̄0 + ÊF>
1 (Γ1Q1Γ>

1 )−1(x1 − F1x̄0).

Introduce notation of parameters of the prior probability density function f(x1|Z0):

x̄1|0 := F1x̄0 + G1u1;
P1|0 := F1P0F>

1 + Γ1Q1Γ>
1 .

Lemma 3.18. The posterior probability density function at time epoch 1 f(x1|Z1) is
probability density of normal distribution such that

f(x1|Z1) = N(x1; x̄1|1,P1|1),

where

x̄1|1 = x̄1|0 + K1(z1 − H1x̄1|0),
P1|1 = (I − K1H1)P1|0

K1 = P1|0H>
1 (R1 + H1P1|0H>

1 )−1

Proof. By equations (3.9) and (3.11):

f(x1|Z1) = f(z1|x1)f(x1|Z0)∫∞
−∞ f(z1|x1)f(x1|Z0) dx1

(3.12)

First compute the nominator of the fraction above using Proposition 3.15 and Lemma 3.17:

f(z1|x1)f(x1|Z0) = N(z1; H1x1,R1) · N(x1; x̄1|0,P1|0).

Now, use fundamental Gaussian identity (Lemma 3.11)

N(z1; H1x1,R1) · N(x1; x̄1|0,P1|0) = N(z1; H1x̄1|0,R1 + H1P1|0H>
1 ) · N(x1; ẽ, Ẽ),

where

Ẽ−1 = H>
1 R−1

1 H1 + P−1
1|0,

ẽ = x̄1|0 + ẼH>
1 Σ−1(z1 − H1x̄1|0).

Similarly compute the denominator of the Equation 3.12 using Proposition 3.15 and
Lemma 3.17 and then fundamental Gaussian identity (Lemma 3.11):∫ ∞

−∞
f(z1|x1)f(x1|Z0) dx1 =

=
∫ ∞

−∞
N(z1; H1x1,R1) · N(x1; x̄1|0,P1|0) dx1 =

=
∫ ∞

−∞
N(z1; H1x̄1|0,R1 + H1P1|0H>

1 ) · N(x1; ẽ, Ẽ) dx1 =

= N(z1; H1x̄1|0,R1 + H1P1|0H>
1 ) ·

∫ ∞

−∞
N(x1; ẽ, Ẽ) dx1 =

= N(z1; H1x̄1|0,R1 + H1P1|0H>
1 ).



23

Put partial results into the original fraction:

f(x1|Z1) = f(z1|x1)f(x1|Z0)∫∞
−∞ f(z1|x1)f(x1|Z0) dx1

= N(z1; H1x̄1|0,R1 + H1P1|0H>
1 ) · N(x1; ẽ, Ẽ)

N(z1; H1x̄1|0,R1 + H1P1|0H>
1 ) =

= N(x1; ẽ, Ẽ).

Introduce notation for posterior variance matrix such that

P1|1 := Ẽ = (P−1
1|0 + H>

1 R−1
1 H1)−1.

Use Woodbury matrix identity:

P1|1 = (P−1
1|0 + H>

1 R−1
1 H1)−1 =

= P1|0 − P1|0H>
1 (R1 + H1P1|0H>

1 )−1H1P1|0 =
=
(
I − P1|0H>

1 (R1 + H1P1|0H>
1 )−1H1

)
P1|0 =

= (I − K1H1) P1|0,

where
K1 := P1|0H>

1 (R1 + H1P1|0H>
1 )−1

is called Kalman gain at time epoch 1. Let us denote mean of posterior distribution as
x̄1|1. Use previously derived P1|1.

x̄1|1 := ẽ = x̄1|0 + ẼH>
1 R−1

1 (z1 − H1x̄1|0)
= x̄1|0 + P1|1H>

1 R−1
1 (z1 − H1x̄1|0)

= x̄1|0 + (I − K1H1) P1|0H>
1 R−1

1 (z1 − H1x̄1|0)
= x̄1|0 + P1|0H>

1 R−1
1 (z1 − H1x̄1|0) − K1H1P1|0H>

1 R−1
1 (z1 − H1x̄1|0)

= x̄1|0 + P1|0H>
1 (H1P1|0H>

1 + R1)−1(H1P1|0H>
1 + R1)Σ−1(z1 − H1x̄1|0)−

− K1H1P1|0H>
1 R−1

1 (z1 − H1x̄1|0)
= x̄1|0 + K1(H1P1|0H>

1 + R1)R−1
1 (z1 − H1x̄1|0)−

− K1H1P1|0H>
1 R−1

1 (z1 − H1x̄1|0)
= x̄1|0 + (K1H1P1|0H>

1 R−1
1 + K1)(z1 − H1x̄1|0)−

− K1H1P1|0H>
1 R−1

1 (z1 − H1x̄1|0)
= x̄1|0 + (K1H1P1|0H>

1 R−1
1 + K1 − K1H1P1|0H>

1 R−1
1 )(z1 − H1x̄1|0)

= x̄1|0 + K1(z1 − H1x̄1|0)

Remark. By Lemmas 3.18 and 3.17 we have in fact derived Kalman filter at time step 1.
To derive Kalman filter at general time step k we miss information if previous probability
density function f(xk−1|Zk−1) is normal. But in case f(x0) is normal, which is by Defi-
nition 3.4, then we showed by Lemma 3.18 that f(x1|Z1) is normal and then we fulfilled
assumption at time step 2 and then all densities f(xk|Zk−1) and f(xk|Zk) have normal
distribution for all k > 0.
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This conditional estimate we use to estimate hidden state xk. The idea is that target
provides the movement with an unknown position (i.e., unknown realization of Xk at time
steps k). We have measurements with additional measurement noise W k (e.g., TDOA
measurements, Chapter 2). We aim to estimate the true target position xk from the
measurements. I.e., find the distribution of the Xk|Zk.

Kalman filter provides the way to compute parameters of Xk|Zk. Moreover, if we
take estimate of the hidden state x̂k = E[Xk|Zk] we provide best unbiased estimate of
the hidden state xk. Called Solution of the Wiener problem.

Theorem 3.19 (Kalman6 filter). Following equations are the solution of the Wiener
problem:
Prediction:

x̄k|k−1 = Fkx̄k−1|k−1 + Gkuk,

Pk|k−1 = FkPk−1|k−1F>
k + ΓkQkΓ>

k .

Innovation:

ỹk = zk − Hkx̄k|k−1,

Sk = HkPk|k−1H>
k + Rk.

Optimal Kalman gain:
Kk = Pk|k−1H>

k S−1
k .

Update:

x̄k|k = x̄k|k−1 + Kkỹk,

Pk|k = (In − KkHk)Pk|k−1.

Proof. Firstly, discuss the derivation of the equations. Equations of the prediction can
be given by Lemma 3.17 substituting period 0 and 1 with k and k − 1. As we discussed
before the Kalman filter theorem, we know that posterior density has normal distribution
by Lemma 3.18.

Equations of innovation, optimal Kalman gain, and finally update comes from Lemma 3.18,
but for general k. Similarly, now we can replace indexes 0 and 1 with k and k − 1.

It remains to discuss that the Kalman filter is the best linear unbiased estimator
(solution of the Wiener problem). Introduce notation of an error of the prediction (prior)
estimate of the state

Ek|k−1 := Xk − Xk|Zk−1,

and update (posterior) estimate of the

Ek|k := Xk − Xk|Zk.

In order to prove that the Kalman filter is unbiased, we have to show that E[Ek|k] = on.
Assume that given distribution of X0 ∼ N(x̄0,P0) accurately reflect the real dis-

tribution (is precisely true). Also assume that all parameters in Definition 3.4 like
Fk,Gkuk,Qk,Hk,Rk precisely fit the reality. We show E[Ek|k] = on inductively.

6Rudolf Emil Kálmán (1930 – 2016), Hungarian-American electrical engineer, mathematician, and
inventor.
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• Consider k = 1:
Z0 = ∅ ⇒ X1|Z0 = X1 ⇒ E[E1|0] = on

Innovation vector ỹ1 is a realization of the random vector Ỹ 1.

E[Ỹ 1] = E[Z1] − E[H1X1|Z0] = H1E[X1] − H1E[X1|Z0] = H1E[E1|0] = om.

In fact Ỹ 1 ∼ N(om,S1). Then consider posterior update

X1|Z1 = X1|Z0 + K1Ỹ 1.

E[E1|1] = E[X1] − E[X1|Z1] = E[X1] − E[X1|Z0] − E[K1Ỹ 1] =
= E[E1|0] − E[K1Ỹ 1] = −K1E[Ỹ 1] = on

• Consider k = 2:

E[X2] = F2E[X1] + G2u2 (by Definition 3.4)
E[X2|Z1] = x̄2|1 = F2E[X1|Z1] + G2u2 (by this Theorem 3.19)

⇒ E[E2|1] = E[X2] − E[X2|Z1] =
= F2E[X1] + G2u2 − F2E[X1|Z1] − G2u2 =
= F2 (E[X1] − E[X1|Z1]]) =
= F2E[E1|1]
= on

Other quantities can be computed in the same way, like in the time epoch k = 1
and then in all other time epochs k > 1.

So we have shown that the Kalman filter does the unbiased estimation of the hidden
state Xk. Now we show that it provides the best-unbiased estimation (i.e., unbiased
estimation, which minimizes the variance of the error).

Pk|k = var[Ek|k] =
= var[Xk − (Xk|Zk)] =
= var[Xk − ((Xk|Zk−1) + KkỸ k)] =
= var[Xk − {(Xk|Zk−1) + Kk[Zk − Hk(Xk|Zk−1)]}]
= var[Xk − {(Xk|Zk−1) + Kk[HkXk + W k − Hk(Xk|Zk−1)]}]
= var[Xk − (Xk|Zk−1) − KkHkXk − KkW k + KkHk(Xk|Zk−1)]
= var[(In − KkHk)[Xk − (Xk|Zk−1)] − KkW k]
= (In − KkHk)var[Xk − (Xk|Zk−1)](In − KkHk)> + var[KkW k]
= (In − KkHk)Pk|k−1(In − KkHk)> + KkRkK>

k

= Pk|k−1 − KkHkPk|k−1 − Pk|k−1H>
k K>

k − KkHkPk|k−1H>
k K>

k + KkRkK>
k

= Pk|k−1 − KkHkPk|k−1 − Pk|k−1H>
k K>

k − Kk(HkPk|k−1H>
k + Rk)K>

k

⇒ Pk|k = Pk|k−1 − KkHkPk|k−1 − Pk|k−1H>
k K>

k − KkSkK>
k (3.13)
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We aim to minimize Pk|k−1 (i.e. E[E>
k|kEk|k]). In order to do it, we have to minimize

its trace. The trace is minimized when its matrix derivative with respect to gain Kk is
equal to zero (because all other quantities in (3.13) are given from Definition 3.4 and from
the previous state). Use gradient matrix rules and the fact that Pk|k−1 is the symmetric
matrix:

∂ tr(Pk|k−1)
∂Kk

= −2Pk|k−1H>
k + 2KkSk = 0.

Solve the equation for the Kk:

KkSk = Pk|k−1H>
k ⇒ Kk = Pk|k−1H>

k S−1
k (3.14)

Use Equation (3.14) to simplify Equation 3.13. At first, multiply (3.14) by SkK>
k from

the right side:
KkSkK>

k = Pk|k−1H>
k K>

k ,

then substitute it into Equation (3.13):

Pk|k = Pk|k−1 − KkHkPk|k−1 − Pk|k−1H>
k K>

k − KkSkK>
k =

= Pk|k−1 − KkHkPk|k−1 =
= (In − KkHk)Pk|k−1.

We have obtained the update formula for posterior covariance in the Kalman filter, min-
imizing the variance of the error. This is the reason why Kk is called optimal Kalman
gain.

Remark. In practice, we often work with a system that is not described by the linear state-
space system (Definition 3.4). In this thesis, we will face this problem with transition term
and control input: instead of FkXk−1 +Gkuk, we will work with some nonlinear mapping
Fk(Xk−1,uk). In that case, it is not possible to use the Kalman filter. But there other
algorithms that can be used. In the text, we will work with the simplest one concept:
Extended Kalman filter [19]. This algorithm has changed the prediction part:

x̄k|k−1 = Fk(x̄k−1|k−1,uk),
Pk|k−1 = F̂kPk−1|k−1F̂>

k + Qk,

where
F̂k = ∂Fk(x̄k−1|k−1)

∂x̄k−1|k−1
.

This can be obviously considered in a more general concept (e.g., nonlinear measurement
model), but this is out of the scope of the thesis. Also, the problem of non-linearity
can be treat with other algorithms, e.g. Unscented Kalman filter [11] or Particle filters
[2]. Practical application of particle filters on target tracking can be seen in [3]. None
of these algorithms are optimal in the sense of minimizing error variance. We call them
suboptimal.
Example 3.20. Consider measured plots (Definition 2.15). In this example case, we omit
z coordinate, respectively vertical height and only consider xy-plane. State vector consist
from position and velocity in x and y axis: xk = [xk, ẋk, yk, ẏk]>. Define quantities which
must be given (known) by Definition 3.4:

Fk =


1 ∆tk 0 0
0 1 0 0
0 0 1 ∆tk
0 0 0 1

 , Γk =


∆t2

k/2
∆tk
∆t2

k/2
∆tk

Qk = σ2
a, Hk =


1 0
0 0
0 1
0 0

 ,
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where σ2
a = 0, 1 m2/s4 and ∆tk := tk − tk−1 is time difference between actual and last

time step. There is no control input (Gkuk = o4) into the state space. Variance of
measurements Rk is known from plots:

Rk =
[
100 000 0

0 100 000

]
; ∀k ∈ {−1, . . . 682}.

It remains to define initial estimate. In order to improve this initial estimate (because in
reality in contrast with theoretical definition it is not precisely known) we do it from 2
measurements instead of 1. We denote them by indices −1 and 0. Let us denote

z0 =
[
zx

0
zy

0

]
, R0 =

[
rxx

0 rxy
0

ryz
0 ryy

0

]
, z−1 =

[
zx

−1
zy

−1

]
, R−1 =

[
rxx

−1 rxy
−1

ryz
−1 ryy

−1

]
.

Define initial distribution such that

x̄0 :=


zx

0
(zx

0 − zx
−1)/∆t0

zy
0

(zy
0 − zy

−1)/∆t0

 ,

P0 :=


rxx

0
rxx

0 /∆t0 0 0
rxx

0 /∆t0 (rxx
0 + rxx

−1)/∆t2
0 + ∆t2

0σ2
a/4 0 0

0 0 ryy
0 ryy

0 /∆t0

0 0 ryy
0 /∆t0 (ryy

0 + ryy
−1)/∆t2

0 + ∆t2
0σ2

a/4

 .
See the results (for positions xk, yk) in Figure 3.2. On Figure 3.2 can be seen that despite

Figure 3.2: Results of estimating of the states xk, yk using Kalman filter predicting line
movement and low process noise.

noisy measurements we have obtained good results and shown that if we properly set
up the parameters of the Kalman filter (Fk,Gkuk,Qk,Hk, x̄0,P0), then we obtain good
results. Especially defined Fk describe line movement and in Figure 3.2 is shown that
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airplane makes a linear movement. In the following examples, we will show what can
happen if we do not provide a proper setup (especially transitive matrix Fk not properly
describe a true movement).

Remark. The Kalman filter setup in the last example corresponds to the discrete white
noise model listed in Appendix A used on two coordinates xy.

Example 3.21. Consider measured plots (Definition 2.15) of another airplane with a
different trajectory (part of a spiral). Also, in this example case, we omit z coordinate, re-
spectively vertical height, and only consider xy-plane. Take the same setup of the param-
eters of the Kalman filter set up the parameters of Kalman filter Fk,Gkuk,Qk,Hk, x̄0,P0
like in Example 3.20. See the results in Figure 3.3.

Figure 3.3: Results of estimating of the states xk, yk using Kalman filter predicting line
movement and low process noise.

From Figure 3.3 can be seen that Kalman set up does not suit the reality, Kalman
filter cannot provide unbiased estimation (in proof of the Kalman filter Theorem 3.19 we
assumed that Kalman filter parameters are set up properly). Fk describe line movement,
and it is clear that airplane does not provide line movement, and Qk is too low. This
causes the filter is too confident with prediction. This result is unfeasible. It is necessary
to improve that. There are two options for how to do it: change geometry set up -
Fk,Gk,uk or increase process noise - Qk. In the following example, we do the second
option.

Example 3.22. In this example, we try to improve results in previous Example 3.21
by increasing the process noise. Consider set up of parameters of the Kalman filter
(Fk,Gkuk,Qk,Hk, x̄0,P0) like in Example 3.20 except process noise. The process noise
in this example is defined as σa = 4. See results on Figure 3.4.

In Figure 3.4 is shown that by increasing process noise, we have obtained much better
results. In following example we provide a first option - change geometry: Fk,Gk,uk.
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Figure 3.4: Results of estimating of the states xk, yk using Kalman filter predicting line
movement and higher process noise.

Example 3.23. Consider the same measured data as in Examples 3.21 and Figure
3.4. We add to state vector angular velocity about center of target such that xk =
[xk, ẋk, yk, ẏk, ωk]>. Take Kalman filter with following set up parameters (Definition 3.4),
but with nonlinear state model.

Fk(Xk,uk) = Fk(Xk) =



Xk−1 + sin(Ωk−1∆tk)
Ωk−1

Ẋk−1 − 1−cos(Ωk−1∆tk)
Ωk−1

Ẏk−1
1−cos(Ωk−1∆tk)

Ωk−1
Ẋk−1 + Yk−1 + sin(Ωk−1∆tk)

Ωk−1
Ẏk−1

cos(Ωk∆tk)Xk−1 − sin(Ωk∆tk)Yk−1
sin(Ωk∆tk)Xk−1 + cos(Ωk∆tk)Yk−1

Ωk−1

 .

The complete setup of the Kalman filter can be found in Appendix A: Nearly Constant
Turn Rate model. This is evidently more sophisticated geometry. See results on Figure
3.5.

By Example 3.23 it is clear that we are able to improve the results of the Kalman
filter by change of process noise (expressing uncertainty of model geometry) or change of
the model geometry itself. But there still remains a problem, how to know which process
noise or geometry choose. This will be the topic of the following chapters. In the next
chapter, we discuss the multiple model approach and then the interactive multiple model
algorithm (IMM), which can estimate model geometry with known/given process noise.
Then, later we discuss the estimation of the process noise.
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Figure 3.5: Results of estimating of the states xk, yk using Kalman filter predicting spiral
movement and low process noise.
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4 | Multiple Model Approach

In this chapter, we treat the problem with the inadmissible estimation of the state by the
improperly given linear stochastic model (Examples 3.20-3.23) by changing the geometry
of the model. We exclude Bayesian estimation of the state (Kalman filter) to Bayesian
estimation of the state and motion model. We handle with set up of the Kalman filter in
mentioned Examples as with random variable. The outcome of this chapter is a derivation
of IMM (Interacting Multiple Model algorithm). The most commonly used algorithm for
such a purpose.

4.1 | Jump Linear State-Space System

In this section, we describe the jump linear state-space system. It can be view as a
generalization of the state space system (Definition 3.4). Before that, we introduce the
term of motion model. Motion model (or only model) represents the set up of the Kalman
filter discussed in Chapter 3 in Examples 3.20 – 3.23.

Definition 4.1 (Motion model, model). We call the motion model or model Mk at time
epoch k - in effect during the sampling period ending at k - following random variable
defined by ordered eight-tuple:

Mk = 〈Fk,Gk,uk,Γk,Qk,Hk; x̄0,P0〉

Quantities in eight-tuple have the same meaning as in Definition 3.4. Examples of such
motion models can be found in Appendix A. In principle, they are the set up of the
Kalman filter to estimate hidden state.

Proposition 4.2. Sample space ΩMk
of motion model is uncountable.

Proof. All elements of defined eight-tuple are member of the finite dimensional vector
space over real numbers or set of regular matrices over real numbers. By that is uncount-
ability clear.

Remark. It is clear that Mk fully define the Kalman filter set up in order to provide
Bayesian estimation of the state. But it is not possible to work with infinity (not even
uncountable) number of Kalman filter setups, so it is more comfortable to work with some
predefined discrete subset of ΩMk

. By that, we make an assumption that realization of
Mk belongs to M ⊂ ΩMk

, where M = {mj}r
j=1 is predefined discrete subset of ΩMk

and
work with Mk as with discrete random variable.

Now, it is opened the question of the coverage of ΩM by M . We assume in this chapter
that the coverage is time-invariant and good enough without any deeper cogitation. In
the other way, it is shown by the linear algebra approach in [20] that theoretical optimal
selection of Mk (model set M at time step k) always leads to a better result than a wider
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or smaller selection of Mk. This may happen when the target changes the motion model
in time, and we consider time-invariant M . The way to select Mk is discussed in the
series of articles [21], [22], [23], [24], [25]. But these considerations are unfortunately out
of the scope of the text.

Definition 4.3 (Jump linear state-space system). Let X0,X1, . . . ,Xk, . . . ∈ Rn be se-
quence of state vectors, Z1,Z2, . . . ,Zk, . . . ∈ Rm sequence of measurement vectors. We
call jump linear state-space system a following system of stochastic difference equations:

Xk = F k(Mk)Xk−1 + Gk(Mk)U k(Mk) + Γ k(Mk)V k(Mk), (4.1)
Zk = Hk(Mk)Xk + W k; (4.2)

where Fk(Mk) ∈ Mn(R) is state transition model of Mk, Hk(Mk) ∈ Mm,n(R) is obser-
vation model of Mk, Gk(Mk) ∈ Mn,p(R) is the control-input model and Uk(Mk) ∈ Rp

is the control-input of Mk. V k(Mk) ∼ N(o,Qk(Mk)) is the process noise of Mk and
W k ∼ N(o,Rk) is the measurement noise. Initial state X0 ∼ N(x̄0,P0) is given for all
Mk. For Mk we define model jump process – Markov chain – with known model transition
probabilities

Π = {πij}r
i,j=1; πij = P{Mk = mj,Mk−1 = mi},

where Π ∈ Mr(R) is called model transition probability matrix. The initial probability
function p(M0) is given.

Remark. It is worth emphasizing that in Definition 4.3, we have written matrices F k, . . . ,
Hk in eight-tuple with italics to express that we view these matrices as a random variable
in this context. Their realization is given by model.

For sake of clarity, let us provide deeper view into the model jump process. Assume
that the set of possible models M (sample space) is time-invariant; M = {mj}r

j=1. For
further considerations, denote as M`

k the `th model history at time epoch k. ` ∈ {1, . . . rk}
denote an index of the combination of all possible realizations of models at all time steps
up to k. For example, let r = 2 and consider time step k = 2. Then there are l = 4
possible model histories:

M1
2 = {m1,m1},

M2
2 = {m1,m2},

M3
2 = {m2,m1},

M4
2 = {m2,m2}; m1,m2 ∈ M .

In case we are in time step k, consider model mj which obeys a target and let be this
model the last of the sequence M`

k. Introduce notation for index s such that M`
k =

{Ms
k−1,m

j}. And let be mi the last model of the sequence Ms
k−1. See this in Figure 4.1.

This notation will be adhered in further sections. Recall that p(M0) is given so P{M0 =
m1}, . . . ,P{M0 = mr} are known and also Π = {πij}r

i,j=1 is known by Definition 4.3.
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m1

mr

m1

mr

m1

mr

m1

mr

m1

mr

m1

mr

m1

mr

P{M0 = m1}

P{M0 = mr}

m1; M1
k−1

mr; Mrk−1

k−1

mi; Ms
k−1

m1; M1
k

mr; Mrk

k

mj; M`
k

π11

π1r

πr1

πrr

Figure 4.1: Scheme of discussed model jump Markov process

4.2 | Optimal Solution of the Jump Linear State-Space Sys-
tem

We describe and derive the way how to provide an optimal estimation of the hidden state
xk. It is optimal under the estimation that the system (Definition 4.3) precisely fits the
reality. Unfortunately, this optimal approach is impractical because, as we will show, it
has exponential computational complexity.

Proposition 4.4. The posterior probability density can be written as

f(xk|Zk) =
rk∑

l=1
f(xk|M`

k,Zk) · p(M`
k|Zk).

Proof. Directly by total probability theorem .

Remark. Density f(xk|M`
k,Zk) can be straightforwardly computed by Kalman filter. So

the problem is how to compute probability function p(M`
k|Zk). Using the Bayes formula,

we see that we are able to derive by applying the Bayes formula recursive relation for this
probability function. Let us denote ν`

k = p(M`
k|Zk).

Proposition 4.5. ν`
k can be expressed in following recursive way

ν`
k = 1

c
· p(zk|M`

k) · πi,j · νs
k−1,

where

c =
rk∑

l=1
·p(zk|M`

k) · πi,j · νs
k−1

is normalizing constant and s is the index of parent sequence such that

M`
k = {Ms

k−1,m
j}

and i is the index of last model mi of the parent sequence Ms
k−1 (Figure 4.1). p(zk|M`

k)
is the likelihood of the model sequence M`

k.
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Proof. Applying Bayes’ formula:

ν`
k = p(M`

k|Zk) =
= p(M`

k|zk,Zk−1) = |Bayes’ formula| =

= p(zk|M`
k,Zk−1) · p(M`

k|Zk−1)
p(zk|Zk−1)

= |c := p(zk|Zk−1)| =

= 1
c

· p(zk|M`
k,Zk−1) · p(M`

k|Zk−1) =

= 1
c

· p(zk|M`
k,Zk−1) · p(Ms

k−1,m
j|Zk−1) = |Proposition 3.7| =

= 1
c

· p(zk|M`
k,Zk−1) · p(mj|Ms

k−1,Zk−1) · p(Ms
k−1|Zk−1) =

= |µs
k−1 := p(Ms

k−1|Zk−1)| =

= 1
c

· p(zk|M`
k,Zk−1) · p(mj|Ms

k−1,Zk−1) · µs
k−1 = |Markov chain property| =

= 1
c

· p(zk|M`
k,Zk−1) · p(mj|Ms

k−1) · µs
k−1 = |Markov chain property| =

= 1
c

· p(zk|M`
k,Zk−1) · p(mj|mi) · µs

k−1

= 1
c

· p(zk|M`
k,Zk−1) · πi,j · µs

k−1

Consider normalizing factor c = p(zk|Zk−1) and use discrete version of Chapman-Kolmogorov
equation (Proposition 3.16):

c =
rk∑

l=1
f(zk|M`

k,Zk−1) · p(M`
k|Zk−1).

By using the same rearrangements as above we obtain

c =
rk∑

l=1
f(zk|M`

k,Zk−1) · πi,j · µs
k−1.

There remains to derive how to compute f(zk|M`
k,Zk−1). But for the sake of brevity, we

will not do it because we will show by the formula above that this solution is impractical.
It is worth mentioning that even we assumed the Markov process, we have not managed
to omit M`

k from the equation, which provides the infeasible exponential computational
complexity discussed below.

In Propositions 4.4 ans 4.5 we derived recursive estimation of the state xk based on
measurements Zk with respect to jump linear state-space system (Definition 4.3). It
is worth to mention that this solution is optimal (in sense it proved the best unbiased
estimation) with respect to given system because we have shown that Kalman filter (used
to compute f(xk|M`

k,Zk)) is optimal and other quantities used to compute p(M`
k|Zk)

are given by jump linear state-space system.
To judge the computational complexity of the algorithm, introduce the following pair

(Ne, Nf ),

where Ne is number of estimates at start of the time step k. For example in optimal
solution it is number of values µs

k−1 throw index s. Nf is number of filters meaning how
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many times we have to use filter (e.g. Kalman filter, Extended Kalman filter) in order
to compute posterior update, or equivalently how many quantities we sum in order to
compute f(xk|Zk). For example the sum in optimal solution (Proposition 4.4). Thus,
computational complexity of the optimal solution of the jump linear state-space system
at time step k is

(Ne, Nf ) = (rk−1, rk).
Unfortunately, it cannot be used in practice because it has exponential computational
complexity. Then the optimal solution is impractical (or even uncomputable) because we
aim to use that in the long run (e.g., k = 1, . . . , 104).

We have to derive approximate algorithms that provide a suboptimal estimation of the
state xk. A generalized pseudo-Bayesian estimator of first-order (GPB1) [43] provides the
only estimation based on each possible current model (i.e., only single models m1, . . . ,mr).
It has a computational complexity

(Ne, Nf ) = (1, r).

Similarly, a Generalized pseudo-Bayesian estimator of second-order (GPB2) [18] computes
estimation under each possible current and previous model (a set of cardinality 2 replaces
M`

k). It has a computational complexity.

(Ne, Nf ) = (r, r2).

In the next section, we describe the interacting multiple model algorithm (IMM) [29].
It provides estimation under each possible current model, but each filter uses a different
combination of the previous model – conditioned estimates – called mixed initial condition.
It has a computational complexity

(Ne, Nf ) = (r, r)

Furthermore, in [36] has been shown that IMM provides similar performance as GPB2,
but has the same number of filters as GPB1. This means it has a golden ratio between
computational complexity and performance.

4.3 | The Interacting Multiple Model Estimator

In section 4.2 we have described the optimal solution for the jump linear state-space
system. However, we stated that it has computational complexity, which is unsuitable
for our employment. Then we mentioned the most known suboptimal solution [5] such
as Generalized pseudo-Bayesian estimators of first and second orders and the Interacting
multiple model estimator. The scope of this section is to introduce and derive the IMM
algorithm, which is the most used algorithm for such a purpose in practice in recent years.

Before describing the algorithm itself, it is worth mentioning valuable proposition [4].

Proposition 4.6. Consider random vector X with Gaussian mixture distribution such
that

f(x) =
s∑

i=1
αi · N(x; µi,Σi);

s∑
i=1

αi = 1,

then its normal approximation using moment matching method is

f(x) ≈ N(x; µ,Σ)
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where

µ =
s∑

i=1
αiµ

i, (4.3)

Σ =
s∑

i=1
αi

[
Σi + (µi − µ) · (µi − µ)>

]
. (4.4)

Proof. Equation (4.3) is clearly seen by expected value properties. Consider proof of (4.4).
Denote event Ai such that

Ai := X ∼ N(µi,Σi).
Then

E[(x − µ) · (x − µ)>] =
s∑

i=1
E[(x − µ) · (x − µ)>|Ai]αi =

=
s∑

i=1
E[(x − µi + µi − µ) · (x − µi + µi − µ)>|Ai]αi =

=
s∑

i=1
E[(x − µi) · (x − µi)>|Ai] · αi +

s∑
i=1

(µi − µ) · (µi − µ)> · αi =

=
s∑

i=1
αi

[
Σi + (µi − µ) · (µi − µ)>

]
.

Proposition 4.6 shows in [6] that approximation is also valid in maximum likelihood
sense and is minimizing Kullback1–Leibler2 divergence [16] between normal approximation
and Gaussian mixture.
Remark. We are able to consider Kullback-Leibner divergence DKL(p‖q) as a measure of
information loss if we approximate density p by q. So in our case, we measure information
loss if we use the normal distribution to approximate the Gaussian mixture.

Now, continue with derivating the Interacting Multiple Model estimator. The key
idea of the algorithm is in an expression of the posterior density function. We assume the
following approximation.

f(xk|Zk) ≈
r∑

j=1
f(xk|mj

k,Zk) · p(mj
k|Zk), (4.5)

where

µj
k := p(mj

k|Zk),
N(xk, x̄j

k|k,P
j
k|k) := f(xk|mj

k,Zk).
(4.6)

so it can be also written in form

f(xk|Zk) ≈
r∑

j=1
N(xk; x̄j

k|k,P
j
k|k) · µj

k.

x̄j
k|k and Pj

k|k are output of the Kalman filter based on model mj and prior parameters
x̄j

k−1|k−1 and Pj
k−1|k−1. We describe how to obtain µj

k, x̄
j
k|k,P

j
k|k in the more concrete way

1Solomon Kullback (1907 – 1994), American cryptanalyst and mathematician.
2Richard Arthur Leibler (1914 – 2003), American mathematician and cryptanalyst.
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using recursion approach. Consider posterior density based on model mj f(xk|mj
k,Zk)

and use Bayes’ formula, then Chapman-Kolmogorov equation (Proposition 3.16):

f(xk|mj
k,Zk) = f(xk|mj

k, zk,Zk−1) =

= f(zk|mj
k,xk,Zk−1) · f(xk|mj

k,Zk−1)
f(zk|mj

k,Zk−1)
=

= f(zk|mj
k,xk) · f(xk|mj

k,Zk−1)
f(zk|mj

k,Zk−1)
=

= f(zk|mj
k,xk)

f(zk|mj
k,Zk−1)

·
∫ ∞

−∞
f(xk|xk−1,m

j
k) · f(xk−1|mj

k,Zk−1) dxk.

(4.7)

Use total probability theorem on f(xk−1|mj
k,Zk−1) :

f(xk−1|mj
k,Zk−1) =

r∑
i=1

f(xk−1|mi
k−1,Zk−1) · p(mi

k−1|m
j
k,Zk−1)

and define
µij

k−1|k−1 := p(mi
k−1|m

j
k,Zk−1). (4.8)

Then
f(xk−1|mj

k,Zk−1) =
r∑

i=1
f(xk−1|mi

k−1,Zk−1) · µij
k−1|k−1. (4.9)

We know from Equation (4.6) that

f(xk−1|mi
k−1,Zk−1) = N(xk−1; x̄i

k−1|k−1,Pi
k−1|k−1).

Then (4.9) yields to Gaussian mixture distribution. We consider approximation of it by
single Normal distribution N(x̄0j

k−1|k−1,P
0j
k−1|k−1) (see Proposition 4.6):

f(xk−1|mj
k,Zk−1) ≈ N(xk−1; x̄0j

k−1|k−1,P
0j
k−1|k−1)

such that

x̄0j
k−1|k−1 =

r∑
i=1

µij
k−1|k−1 x̄i

k−1|k−1,

P0j
k−1|k−1 =

r∑
i=1

µij
k−1|k−1[P

i
k−1|k−1 + (x̄i

k−1|k−1 − x̄0j
k−1|k−1) · (x̄i

k−1|k−1 − x̄0j
k−1|k−1)

>].
(4.10)

To provide this approximation we have to also derive µij
k−1|k−1:

µij
k−1|k−1 = p(mi

k−1|m
j
k,Zk−1) = |Bayes’ equation| =

= p(mj
k|mi

k−1,Zk−1) · p(mi
k−1|Zk−1)

p(mj
k|Zk−1)

∝

∝ p(mj
k|mi

k−1,Zk−1) · p(mi
k−1|Zk−1)︸ ︷︷ ︸
µi

k−1

= |Markov chain property| =

= p(mj
k|mi

k−1)︸ ︷︷ ︸
πi,j

·µi
k−1 =

= πi,j · µi
k−1
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⇒ µij
k−1|k−1 = πi,j · µi

k−1∑r
h=1 πh,j · µh

k−1
.

It is worth mentioning that we recursively know µi
k−1 from the previous time step. The

way to obtain it in the current time step we will derive at the end of the IMM estimation
when we are computing an estimate of overall posterior distribution f(xk|Zk). Now
substitute these computations back into (4.7):

f(xk|mj
k,Zk) ≈ f(zk|mj

k,xk)
f(zk|mj

k,Zk−1)
·
∫ ∞

−∞
f(xk|xk−1,m

j
k) · N(xk−1; x̄0j

k−1|k−1,P
0j
k−1|k−1) dxk

See the integral in the equation above. The transition density f(xk|xk−1,m
j
k) is by Propo-

sition 3.13 equal to

f(xk|xk−1,m
j
k) = N(xk; Fj

kxk−1 + Gj
kuj

k,Γ
j
kQj

kΓj>
k ),

where quantities with upper index j are assigned to model mj. Use Lemma 3.11 and
similar steps as in Lemma 3.17 to derive following equality
∫ ∞

−∞
f(xk|xk−1,m

j
k) · N(xk−1; x̄0j

k−1|k−1,P
0j
k−1|k−1) dxk =

= N(xk; Fj
kx̄0j

k−1|k−1 + Gj
kuj

k,F
j
kP0j

k−1|k−1F
j>
k + Γj

kQj
kΓj>

k ) ≈
≈ f(xk|mj

k,Zk−1)

Realize that we have derived approximation of the prior distribution based on jth model.
Introduce following notation

x̄j
k|k−1 := Fj

kx̄0j
k−1|k−1 + Gj

kuj
k

Pj
k|k−1 := Fj

kP0j
k−1|k−1F

j>
k + Γj

kQj
kΓj>

k

and recall that
f(xk|mj

k,Zk) ≈ N(xk; x̄j
k|k−1,P

j
k|k−1).

By Proposition 3.15 is
f(zk|mj

k,xk) = N(zk; Hj
kxk,Rk),

where, again, Hj
k is observation model assigned to jth model. Now, using similar steps as

in Lemma 3.18 we can show that we are able to compute f(xk|mj
k,Zk) = N(xk; x̄j

k|k,P
j
k|k)

using Kalman filter (Theorem 3.19) such that:

x̄j
k|k−1 = Fj

kx̄0j
k−1|k−1 + Gj

kuk,

Pj
k|k−1 = FkP0j

k−1|k−1F
>
k + Γj

kQj
kΓj>

k .

Innovation:

ỹj
k = zk − Hj

kx̄j
k|k−1,

Sj
k = Hj

kPj
k|k−1H

j>
k + Rk.

Optimal Kalman gain:
Kj

k = Pj
k|k−1H

j>
k Sj−1

k .
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Update:

x̄j
k|k = x̄j

k|k−1 + Kj
kỹj

k,

Pj
k|k = (In − Kj

kHj
k)Pj

k|k−1.

Now, go back into (4.5). The last quantity which we do not have computed is µj
k =

p(mj
k|Zk) - the posterior probability function of a model (see (4.5) and (4.6)).

µj
k = p(mj

k|Zk) =
= p(mj

k|zk,Zk−1) = |Bayes’ formula| =

= p(zk|mj
k,Zk−1) · p(mj

k|Zk−1)
p(zk|Zk−1)

∝

∝ p(zk|mj
k,Zk−1) · p(mj

k|Zk−1),

where we denote
Λj

k := p(zk|mj
k,Zk−1)

the likelihood computed using mixed initial conditions (4.10). The approximate approach
using mixed initial conditions is why we have to assume that zk is not independent of
Zk−1. Thus we set

Λj
k = N(zk; Hj

kx̄j
k|k−1,S

j
k) = N(ỹj

k; om,Sj
k).

Continue with the derivation of the µj
k:

µj
k ∝ Λj

k · p(mj
k|Zk−1) = |Total probability theorem| =

= Λj
k

r∑
i=1

p(mj
k|mi

k−1)︸ ︷︷ ︸
πi,j

· p(mi
k−1|Zk−1)︸ ︷︷ ︸
µi

k−1

= Λj
k

r∑
i=1

πi,j · µi
k−1

⇒ µj
k = Λj

k

∑r
i=1 πi,j · µi

k−1∑r
h=1 Λh

k

∑r
i=1 πi,h · µi

k−1

By this, we have derived all quantities to compute posterior density f(xk|Zk) (4.5). It is
worth mentioning that it is clear that it has Gaussian mixture distribution. However, it
is more convenient than using normal approximation using Proposition 4.6. It is only for
user output and does not affect algorithm performance.

f(xk|Zk) ≈ N(xk; ˆ̄xk|k, P̂k|k)

such that

ˆ̄xk|k :=
r∑

j=1
µj

kx̄j
k|k,

P̂k|k :=
r∑

j=1
µj

k · [Pj
k|k + (x̄j

k|k − ˆ̄xk|k) · (x̄j
k|k − ˆ̄xk|k)>].

Summarize derived Algorithm IMM:

Algorithm 4.1: The Interacting multiple model estimator (IMM) at time step k

Input from previous time step k−1: previous statistics: {x̄i
k−1|k−1,Pi

k−1|k−1, µ
i
k−1}r

i=1
and model parameters by Definition 4.3
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• Mixing:

– calculate mixing probabilities µij
k−1|k−1 for i, j = 1, . . . , r:

µij
k−1|k−1 = πi,j · µi

k−1∑r
h=1 πh,j · µh

k−1

– calculated mixed estimates x̄0j
k−1|k−1,P

0j
k−1|k−1 for j = 1, . . . , r:

x̄0j
k−1|k−1 =

r∑
i=1

µij
k−1|k−1 x̄i

k−1|k−1,

P0j
k−1|k−1 =

r∑
i=1

µij
k−1|k−1[P

i
k−1|k−1 + (x̄i

k−1|k−1 − x̄0j
k−1|k−1)·

· (x̄i
k−1|k−1 − x̄0j

k−1|k−1)
>].

• Model Matched Kalman Filtering for j = 1, . . . , r:

– Prediction:

x̄j
k|k−1 = Fj

kx̄0j
k−1|k−1 + Gj

kuk,

Pj
k|k−1 = FkP0j

k−1|k−1F
>
k + Γj

kQj
kΓj>

k .

– Innovation:

ỹj
k = zk − Hj

kx̄j
k|k−1,

Sj
k = Hj

kPj
k|k−1H

j>
k + Rk.

– Optimal Kalman gain:
Kj

k = Pj
k|k−1H

j>
k Sj−1

k .

– Update:

x̄j
k|k = x̄j

k|k−1 + Kj
kỹj

k,

Pj
k|k = (In − Kj

kHj
k)Pj

k|k−1.

• Update Model Probability µj
k for j = 1, . . . , r

Λj
k = N(ỹj

k; om,Sj
k),

µj
k = Λj

k

∑r
i=1 πi,j · µi

k−1∑r
h=1 Λh

k

∑r
i=1 πi,h · µi

k−1

• Output Estimate Calculation:

ˆ̄xk|k :=
r∑

j=1
µj

kx̄j
k|k,

P̂k|k :=
r∑

j=1
µj

k · [Pj
k|k + (x̄j

k|k − ˆ̄xk|k) · (x̄j
k|k − ˆ̄xk|k)>].

Output for next time step k + 1: {x̄j
k|k,P

j
k|k, µ

j
k}r

j=1

Output for user at this step k: ˆ̄xk|k, P̂k|k

For the sake of clarity, see the scheme of derived IMM algorithm on Figure 4.2.
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Mixing

x̄1
k−1|k−1

P1
k−1|k−1

x̄i
k−1|k−1
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k−1|k−1

x̄r
k−1|k−1

Pr
k−1|k−1

x̄01
k−1|k−1

x̄0j
k−1|k−1

x̄0r
k−1|k−1

P01
k−1|k−1

P0j
k−1|k−1

P0r
k−1|k−1

{µi
k−1}ri=1

KF 1

z k

KF j

KF r

Update Model

Probability

Mixing Probability

Calculation

{µi
k−1}ri=1 {µk−1|k−1}ri,j=1 x̄1

k|k

x̄j
k|k

x̄r
k|k

P1
k|k

Pj
k|k

Pr
k|k

{µj
k}rj=1

Output

Estimate

Calculation

ˆ̄xk|k

P̂k|k

Figure 4.2: Block scheme of the IMM algorithm

Example 4.7. Consider the same data as in Examples 3.21, 3.22, 3.23. Now, we aim to
estimate hidden state xk using derived IMM algorithm.

Consider 4 models listed in Appendix A with parameters:

• DWNA, σ2
a = 10−10 m2/s4,

• DWPA, σ2
a = 10−10 m2/s4,

• DWPJ, σ2
j = 10−10 m2/s4,

• NCTR, σ2
a = 0, 05 m2/s4, σ2

α = 0, 1 m2/s4

and Markov transition matrix

Π =


0, 55 0, 15 0, 15 0, 15
0, 15 0, 55 0, 15 0, 15
0, 15 0, 15 0, 55 0, 15
0, 15 0, 15 0, 15 0, 55

 .
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Remark. We can see that each chosen model has a different state vector dimension, then
we are unable to sum them to provide mixing or output estimate calculation. We must
estimate missing vector elements in each state vector. In order to do it, we choose a
strategy based on the physical properties of elements. [10] describes more details on this
topic.
Remark. In Appendix A we can see that DWNA, DWPA, DWPJ are models only including
one coordinate. So we provide estimation for each coordinate (x and y) independently.

See the result on Figure 4.3. Compare with Figures 3.4 and 3.5. Figure 4.4 shows plot-

Figure 4.3: Results of estimating states xk, yk using IMM estimator.

ted differences between measurements and true (unknown) states compared with plotted
differences between estimated states and true states. We can see that with IMM, we can
reduce the measurement noise. Recall that time on the x-axis corresponds to real-time
such that tk is the time at time step k. On Figure 4.5 are shown model probabilities

Figure 4.4: Differences between measurements and true (unknown) states compared with
plotted differences between estimated states and true states.
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Figure 4.5: Model probabilities µj
k = p(mj

k|Zk) with respect to time.

µj
k = p(mj

k|Zk) with respect to time. Probabilities of model DWPJ hides probabilities
of models DWNA and DWPJ on Figure 4.5, because they are almost the same. The
fact that they are almost the same comes from the very low process noise of these three
models.

This shows the critical problem of IMM algorithm usage. We have to correctly choose
the process noise of models, which is sometimes not easy to do, primarily if we use many
filters. That is why we continue with our considerations in the next chapter and try to
estimate process noise together with the hidden state.
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5 | Estimation of the process noise Q

In this chapter, we start by discussing the process noise Q estimation. In Chapter 2
we described the multiple model approach. In Example 4.7 we seen that if we provide
a proper definition of M (discrete sample space of motion models), we can estimate
hidden state xk with good results (i.e., we solved the problem of unknown geometry).
Nevertheless, the reader would notice that we had to set a constant value of process noise
Q for each model. We stated this is a critical step, and if we do not adequately do it, the
performance of IMM will degrade. It is worth mentioning that we based the setup of Q
in all models mj ∈ M on the author’s previous experience.

So, let us take a deeper (and more mathematician) view into the topic of Q setup.
We do it in a way that we estimate Q together with a hidden state xk called adaptive
Kalman filtering. For the sake of clarity for only one model. At the beginning of the
chapter, reformulate Definition 3.4 to define the same linear state-space system but with
unknown process noise.

Thus, we temporarily leave the concept of the multiple model approach, but later we
see that we can use it to estimate process noise Qk in a single motion model.
Remark. In general, we would discuss the same ideas with measurement noise Rk. It does
not have to be known. However, in multilateration (see Chapter 2), we assume that we
know it precisely and can omit these considerations.
Remark. If we write Q in italics, we want to underline it to view it as a random variable.
If we write it only in boldface Q, we want to emphasize to view it as a parameter or
realization of Q.
Remark. To be precise, we do not estimate process noise but variance matrix Q of the
process noise V k. But for the sake of brevity, it is also in literature named as process
noise estimation.

Definition 5.1 (Linear state-space model with unknown process noise). Let X0,X1,
. . . ,Xk, . . . ∈ Rn be sequence of state vectors, Z1,Z2, . . . ,Zk, . . . ∈ Rm sequence of
measurement vectors, u0,u1, . . . ,uk, . . . ∈ Rp be sequence of control-input vectors. We
call linear state-space model with unknown process noise a following system of stochastic
difference equations:

Xk = FkXk−1 + Gkuk + V k, (5.1)
Zk = HkXk + W k; (5.2)

where Fk ∈ Mn(R) is state transition model, Hk ∈ Mm,n(R) is observation model and
Gk−1 ∈ Mn,p(R) is the control-input model. V k ∼ N(o,Q) is the process noise and
W k ∼ N(o,Rk) is the measurement noise. Initial state X0 ∼ N(x̄0,P0) is given.

Remark. We omit time index k in process noise Q since, except the last chapter, we will
assume that process noise is constant. We will show in this chapter that we need more
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than one measurement to estimate process noise. In the last section, we will consider
time-invariant process noise but still assume it is constant over some subset of the set of
all measurements.

This chapter aims to estimate the hidden state xk with unknown process noise Q. This
is called adaptive estimation. We describe four basic concepts of adaptive estimation/
First two only very bravely since they are not suitable for our purpose. We have tested
them, and the results were horrible. Then describe other types of algorithm based on
maximum likelihood and Bayesian estimation principles. Compare them in simulation
examples to determine which concepts are suitable for our purpose (target tracking using
multilateration). In multilateration, we work with known measurement noise Rk and
assumed unknown Q such that vol Q � vol Rk. This property, unfortunately, disqualifies
correlation and covariance-matching methods. However, we will show that maximum
likelihood and Bayesian concepts work well.

5.1 | Correlation Methods

The main idea of correlation methods comes from the time-series analysis. It is based
on the computation of the autocorrelation function of Zk – output correlation method or
innovation Ỹ k – innovation correlation method. See Kalman filter Theorem 3.19. The
second option is stated to be more efficient because innovations Ỹ k are less correlated
than measurements Zk [30]. Moreover, [12] shows that these two options are equivalent
since innovation sequence can be given from observation sequence by Gram1-Schmidt2

orthogonalization process. Thus, we focus on the innovation correlation method. Assume
that measurement model Hk is time-invariant and then omit time index.

We know from Theorem 3.19 that

Ỹ k = Zk − H(Xk|Zk−1) = HXk + W k − H(Xk|Zk−1) = HEk|k−1 + W k ∼ N(om,Sk);
(5.3)

Because V k,W k are supposed to be white (by Definition 4.3), Ỹ k is also white, i.e.

E[Ỹ kỸ
>
k−i] = 0; i ∈ N \ {0}. (5.4)

This is in case Kalman filter is optimal (i.e. process noise in set up fits the true). But
in case filter is suboptimal (process noise is untrue) the value can be non-zero. Denote
Φk,i = E[Ỹ kỸ

>
k−i] and substitute (5.3) into (5.4) and consider i > 0:

Φk,i = E[Ỹ kỸ
>
k−i] = E[(HEk|k−1 + W k)(HEk−i|k−i−1 + W k−i)>] =

= HE[Ek|k−1E
>
k−i|k−i−1]H> + HE[Ek|k−1W

>
k−i]+

+ E[W kE>
k−i|k−i−1]H> + E[W kW >

k−i] =
= HE[Ek|k−1E

>
k−i|k−i−1]H> + HE[Ek|k−1W

>
k−i].

(5.5)

because W k is assumed to be white then E[W kW >
k−i] = Om and prediction/prior error at

time k− i is independent from measurement error at time k, then E[W kE>
k−i|k−i−1]H> =

Om. For i = 0 it is clear from (5.3) that

Φk,0 = S = HPk|k−1H> + R.
1Jørgen Pedersen Gram (1850 – 1916), Danish actuary, and mathematician.
2Erhard Schmidt (1876 – 1959) was a Baltic German mathematician
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To evaluate expectation terms in (5.5) it can be derived using Kalman filter equations
(Theorem 3.19) following recursive relation for prediction error assuming that filter uses
some a priori suboptimal gain K0:

Ek|k−1 = F(In − K0H)Ek−1|k−2 − FK0W k−1 + Γk−1V k−1 (5.6)

and carrying (5.6) i steps back:

Ek|k−1 = [F(In − K0H)]iEk−1|k−2 −
N∑

j=1
[F(In − K0H)]−1FK0W k−j+

+
N∑

j=1
[F(In − K0H)]j−1Γk−1V k−j (5.7)

and then can be derived from 5.7 following relation

E[Ek|k−1Ek−i|k−1−i] = [F(In − K0H)]iPk|k−1

and similarly
E[Ek|k−1W

>
k−i] = −[F(In − K0H)]i−1FK0R

substituting into 5.5 we obtain

Φk,i = H[F(In − K0H)]i−1F[Pk|k−1H> − K0Φk,0], i = 1, . . . , N. (5.8)

Consider estimation Φ̂k,i of Φk,i such that

Φ̂k,i =
M∑
j=i

ỹjỹj−i.

To obtain Q (hidden in Pk|k−1) and optimal Kalman gains K (necessary to compute
optimal Bayesian estimation of the state), compute N estimates Φ̂k,i, substitute into the
system of N equations (5.8) and from that after some matrix rearrangements and use
of Moore3-Penrose4 matrix pseudo-inversion [33] we obtain estimates of process noise Q̂.
Optimal Kalman gain K̂. It can be shown that estimate of the optimal Kalman gain is
asymptotically unbiased and consistent.

Unfortunately, this method does not have good results with multilateration measure-
ments. It is caused, as we stated above, by vol Q � vol Rk. The system becomes unstable,
and usually, we obtain a result with makes no sense (too large or even a negative estimate
of variance).

5.2 | Covariance-Matching Methods

The basic idea is to make residual consistent with their theoretical values.

Ŝ =
M∑

j=1
ỹjỹ

>
j

3Eliakim Hastings Moore (1862 – 1932), American mathematician.
4Sir Roger Penrose(*1931) British mathematical physicist, mathematician, philosopher of science and

Nobel Laureate in Physics.
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where we choose M to give some statistical smoothing. Use equations in Kalman filter
(Theorem 3.19) to obtain the following relations:

S = HPk|k−1H> + R
S = H(FPk−1|k−1F> + ΓQΓ>)H> + R
S = H(FPk−1|k−1F>)H> + H(ΓQΓ>)H> + R

⇒ H(ΓQΓ>)H> = S − H(FPk−1|k−1F>)H> − R
HΓQ(HΓ)> = S − H(FPk−1|k−1F>)H> − R

Assume that HΓ has linearly independent columns, then we can use Moore-Penrose pseu-
doinverse.

⇒ Q = (HΓ)+[S − H(FPk−1|k−1F>)H> − R](HΓ)>+

Now, if we replace S with an estimate Ŝ we obtain an estimate of process noise Q̂ using
covariance-matching methods

Q̂ = (HΓ)+

 M∑
j=1

ỹjỹ
>
j − H(FPk−1|k−1F>)H> − R

 (HΓ)>+

As correlation methods, this approach is also not suitable for multilateration measure-
ments. A high volume of measurement variance Rk consumes information about process
noise, and we usually obtain a too large or negative estimate of process noise. Which
obviously makes no sense.

5.3 | Maximum Likelihood Estimation Methods

Maximum likelihood estimation of the process noise Q is based on finding extreme of the
likelihood function of the parameter (in this case Q). By [30] it can be divided into two
basic types of maximum likelihood estimation:

1. Joint maximum likelihood estimation: Q and hidden state xk are estimated jointly,
i.e. joint likelihood f(Zk|xk,Q) is maximized with respect to xk,Q.

2. Marginal maximum likelihood estimation: Marginal likelihood density f(Zk|Q) is
maximized with respect to Q.

We work with the second one because we use then Kalman filter for hidden state xk

estimation. Consider marginal likelihood function

f(Zk|Q) = f(zk,Zk−1|Q) =
= f(zk|Zk−1,Qk) · f(Zk−1|Q) =

= f(zk|Zk−1,Q) · f(zk−1|Zk−2,Q) · . . . · f(z1|Q) =
k∏

i=1
f(zi|Zi−1,Q).

(5.9)

Lemma 5.2. For function at time step k

f(zk|Zk−1,Q) = N(zk,Hkx̄k|k−1(Q),Sk(Q)),

where x̄k|k−1(Q) and Sk(Q) means that their value depends on Q.
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Proof. Use Chapman-Kolmogorov equation (Proposition 3.16):

f(zk|Zk−1,Q) =
∫ ∞

−∞
f(zk|xk,Q)f(xk|Zk−1,Q) dxk (5.10)

The first term in the integral is independent of Q (because the single measurement is
dependent on the state vector xk and not the way target comes here and motion model
it obeys): f(zk|xk,Q) = f(zk|xk). By Proposition 3.15

f(zk|xk) = N(zk,Hkxk,Rk).

By Theorem 3.19

f(xk|Zk−1,Q) = N(xk; x̄k|k−1(Q),Pk|k−1(Q)).

Then rewrite (5.10)

f(zk|xk,Q) =
∫ ∞

−∞
N(zk,Hkxk,Rk)N(xk; x̄k|k−1(Q),Pk|k−1(Q)) dxk

and use fundamental Gaussian identity (Lemma 3.11)

f(zk|xk,Q) =
∫ ∞

−∞
N(zk; Hkx̄k|k−1(Q),Rk + HkPk|k−1(Q)H>

k ) · N(xk; ẽ, Ẽ) dxk =

= N(zk; Hkx̄k|k−1(Q),Rk + HkPk|k−1(Q)H>
k ) ·

∫ ∞

−∞
N(xk; ẽ, Ẽ) dxk =

= N(zk; Hkx̄k|k−1(Q),Rk + HkPk|k−1(Q)H>
k ).

Using notation for innovation variance introduced in Kalman filter (Theorem 3.19):

Sk(Q) = Rk + HkPk|k−1(Q)H>
k .

Substitute result in Lemma 5.2 into (5.9) we obtain the marginal likelihood function

f(Zk|Q) =
k∏

i=1
N(zi; Hix̄i|i−1(Q),Si(Q)). (5.11)

Then we find Q which is maximizing (5.11).
Remark. It is worth to mention that for practical reasons of finding maximizer Qk and
avoiding decimal overflow it can be maximized logarithm of likelihood (because logarithm
is monotonous function)

ln f(Zk|Q) =
k∑

i=1
ln N(zi; Hix̄i|i−1(Q),Si(Q)).

Before we do some examples, we should comment on how to compute described maxi-
mum likelihood estimation. Respectively, propose the scheme how we suggest computing
it. The way we propose in this text is to discretize the sample space of Q. Thus, we
assume Q ∈ Q = {Qj}#pn

j=1 . #pn is a large number (e.g., 104) to underline the prop-
erty of the continuous random variable. The lower bound should come from a positive
semidefinitness of variance matrix, and the upper bound should be defined by physical
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meaning (some very high values of process noise are not physically feasible). See this
summarized in Algorithm 5.1 at general time step k:

Algorithm 5.1: ML estimation of the process noise Q

Parameter: discretization of Q’s sample space Q = {Qj}#pn
j=1

Input from previous time step k − 1:
prior density:

• f(xk−1|Q,Zk−1) → {x̄k−1|k−1(Qj),Pk−1|k−1(Qj)}#pn
i=1

• f(Zk−1|Q) → P{Zk−1|Qj}; j = 1, . . . ,#pn

Computation:

• run #pn Kalman filters for Qj, j = 1, . . . ,#pn with output x̄k|k(Qj),Pk|k(Qj)

• compute approximation of f(Zk|Q):

P{Zk|Qj} = P{zk|Qj,Zk} · P{Zk−1|Qj} =
= N(zk; Hkx̄k|k(Qj),Sk(Qj)) · P{Qj|Zk−1}; j = 1, . . . ,#pn

• maximum likelihood estimation:

Q̂ = max
Qj

P{Zk−1|Qj}

Output for next time step k + 1:

• x̄k|k(Qj),Pk|k(Qj); j = 1, . . . ,#pn

• P{Zk|Qj}; j = 1, . . . ,#pn

Output for current state and process noise estimation at time step k:

• Q̂, x̄k|k(Q̂),Pk|k(Q̂)

Figure 5.1 shows a proposed maximum likelihood process noise estimation (Algorithm
5.3.1). It is based on the discretization, computing Bayesian estimate of hidden state
xk with Kalman filter at each time step k and then compute a maximum-likelihood
estimation of the process noise at time step k. At the end of the time step as output,
compute Kalman’s estimation of the hidden state with estimated process noise.

For sake of clarity, consider following example for the test application of the proposed
scheme.

Example 5.3 (Test example). Consider example to test proposed methods in this chap-
ter. Data (measurements) are generated in following recursive way[

x0
ẋ0

]
=
[
1000
50

]
[
xk+1
ẋk+1

]
=
[
1 ∆t
0 1

]
·
[
xk

ẋk

]
+
[

∆t2/2
∆t

]
· V ; V ∼ N(0, σ2

a),

zk =
[
1 0

]
·
[
xk

ẋk

]
+W ;W ∼ N(0, σ2

w); k = 0, . . . , 1000.
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KF 1

KF j

KF #pn

Q1

Qj

Q#pn

1

x̄0

P0(Q
1)

P0(Q
j)

P0(Q
#pn)

x̄0

x̄0

x̄1|1(Q
1)

x̄1|1(Q
j)

x̄1|1(Q
#pn)

P1|1(Q
1)

P1|1(Q
j)

P1|1(Q
#pn)

KF 1

KF j

KF #pn

k

x̄k|k(Q1)

x̄k|k(Qj)

x̄k|k(Q#pn)

Pk|k(Q1)

Pk|k(Qj)

Pk|k(Q#pn)

f(z 1|Q) f(z k|Zk−1,Q)z 1 z k

Figure 5.1: Scheme of the proposed way to compute maximum likelihood estimation of Q.

Time step ∆t = 1 s. Where it is worth to mention that measurements noise σ2
w = 104 is an

order of magnitude larger than process noise σ2
a = 10. The case which we always obtain

in multilateration and causes problems to correlation and covariance-matching methods.
The motivation of generating data in such a way is to have states xk satisfying given

process noise σ2
a, geometry and measurements satisfying measurement noise σ2

w. Then,
it will be possible to assess the performance of adaptive algorithms to estimate process
noise, which is unknown for them but known for evaluation.

Firstly, see Figures 5.2 and 5.3 of such a generated trajectory by the proposed way.
Resulting estimated states x̄k|k(σ̂2

a)(≡ Bayesian estimation of the state xk by Kalman
filter using process noise σ2

a) in this figures are given such that σ̂2
a maximizes f(Zk|σ2

a)
- the key principle of the maximum likelihood estimation. It can be seen the detail of

Figure 5.2: Picture of generated trajectory satisfying given value of the process noise Q
with results of filtration.

generated trajectory on Figure 5.3.
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Figure 5.3: Detail of generated trajectory with results of filtration.

Since now, let us discuss the performance of σ2
a estimation. In this example, we use

following discretization of process noise sample space:

Q = {0, 05; 0, 1; . . . ; 50}

for #pn = 1000. On Figure 5.4 can bee result of maximum likelihood estimation throw all
time steps. To obtain a better view into properties of this maximum likelihood estimation,

Figure 5.4: Result of estimating process noise Q using maximum likelihood estimation
throw all time steps.

run #MC = 100 Monte Carlo generation of the trajectory and then, for each, provide an
estimation of Q. See the result for all Monte Carlo runs on Figure 5.5.

For a set of Monte Carlo runs, we can compute empirical characteristics of the estima-
tion such as sample mean and sample variance for each time step k. Consider sample mean
on Figure 5.6. There is also plotted 95% confidence interval for mean at each time step
under the assumption that estimates follow the normal distribution. To asses variance
consider Fisher information matrix of the process noise at time step k by [28]

Jk(σ2
a) = k

2(σ2
s)2 .

Its inverse is Cramér-Rao bound for unbiased estimate. Consider sample variance on
Figure 5.7 and detail on Figure 5.8. It is worth mentioning that on Figures 5.7 and
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Figure 5.5: Result of maximum likelihood process noise estimation throw all time steps
for all Monte Carlo runs.

E

Figure 5.6: Sample mean throw all Monte Carlo runs.

va
r

Figure 5.7: Sample variance throw all Monte Carlo runs.

5.8 we have drawn Cramér-Rao lower bound in order to show the minimal theoretical
variance of unbiased estimation. Nevertheless, we have not shown that our proposed
maximum likelihood estimation is unbiased, so we keep only this as an informal quantity.
Although it can be seen from Figure 5.6 that since k ≈ 400 is the sample mean of our
estimation close to the true one. See these results in Table 5.1 at selected time steps
k = 10, 50, 100, 200, 400, 1 000. Also on Figure 5.6 we have drawn confidence interval and
±3S(σ2

a) are corresponding to normal distribution. It is worth to mention that for higher
indexes the hypothesis of normal distribution is not rejected by Anderson-Darling test.
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va
r

Figure 5.8: Detail of the sample variance throw all Monte Carlo runs.

Table 5.1: Results of the process noise maximum likelihood estimation in the selected time
steps.

k = s. mean 95 % conf. int. s. var. AD p-value

10 16,39 〈11, 75; 21, 02〉 545,89 < 0, 005
50 10,82 〈8, 35; 13, 29〉 155,07 < 0, 005
100 10,34 〈8, 98; 11, 71〉 47,26 < 0, 005
200 10,55 〈9, 63; 11, 47〉 21,62 < 0, 005
400 10,14 〈9, 51; 10, 78〉 10,26 0, 009
1 000 10,16 〈9, 78; 10, 55〉 3,81 0, 106

See Figures 5.9 - 5.14 to obtain a imagination of the shape of the likelihood function
f(Zk|Q) or its natural logarithm ln f(Zk|Q) at time steps k = 1, 5, 20, 50, 100, 1 000.

Figure 5.9: Likelihood function of σ2
a and its natural logarithm at time step k = 1.

We can see on the figures above that it is necessary to have some significant set of
measurements (at time steps k = 1 and k = 5, it was impossible to compute the likelihood
function). It is why we have to assume likelihood concerning all measurements up to k
instead of only actual measurement f(zk|Q,Zk−1). This likelihood does not contain
enough information to compute maximizer, as shown in Figures 5.15 and 5.16.
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Figure 5.10: Likelihood function of σ2
a and its natural logarithm at time step k = 5.

Figure 5.11: Likelihood function of σ2
a and its natural logarithm at time step k = 20.

Figure 5.12: Likelihood function of σ2
a and its natural logarithm at time step k = 50.

Figure 5.13: Likelihood function of σ2
a and its natural logarithm at time step k = 100.
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Figure 5.14: Likelihood function of σ2
a and its natural logarithm at time step k = 1 000.

Figure 5.15: Likelihood function f(zk|σ2
a,Zk−1) and its natural logarithm at time step k =

70.

Figure 5.16: Likelihood function f(zk|σ2
a,Zk−1) and its natural logarithm at time step k =

100.
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Figure 5.17: Result of maximum likelihood estimation using likelihood function
f(zk|σ2

a,Zk−1) throw all time steps k.

5.4 | Bayesian Estimation Method

In this section, we describe the Bayesian estimation of the process noise Q at time step
k. We aim to compute following posterior density function f(xk,Q|Zk). By Proposition
3.7 we can split this density into a product of two following densities

f(xk,Q|Zk) = f(xk|Q,Zk)︸ ︷︷ ︸
Kalman filter

·f(Q|Zk)

Where f(xk|Q,Zk) is computed by Kalman filter with given Q. So, we focus our con-
sideration on the derivation of the posterior density of the process noise f(Q|Zk). Use
Bayes equation

f(Q|Zk) = f(Q|zk,Zk−1) =

= f(zk|Q,Zk−1) · f(Q|Zk−1)
f(zk|Zk) =

∝ f(zk|Q,Zk−1) · f(Q|Zk−1)

Likelihood
f(zk|Q,Zk−1) = N(zk,Hkx̄k|k(Q),Pk|k(Q))

by Lemma 5.2 and prior density f(Q|Zk−1) is known from previous time step and the
initial prior f(Q) must be given. Bayesian estimation of the hidden state and process
noise such that

[x̂k, Q̂] = E[Xk,Q|Zk]

leads to intractable integral. Thus, we use marginal estimation. Firstly provide Bayesian
estimation of the process noise

Q̂ = E[Q|Zk]

And then use Kalman filter to compute

f(xk|Q̂,Zk) = N(xk, x̄k|k(Q),Pk|k(Q)).

Unfortunately computation of E[Q|Zk] leads to intractable integral too. To compute it,
we could use approximation techniques such as variational Bayes approximation [42]. In
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this text, we use discretization of the process noise sample space, such as maximum likeli-
hood estimation. Consider the way compute the Bayesian estimation in the summarized
Algorithm 5.4.2:

Algorithm 5.2: Bayesian estimation of the process noise Q

Parameters:

• discretization of Q’s sample space Q = {Qj}#pn
j=1

• initial prior density f(Q) → P{Qj}; j = 1, . . . ,#pn

Input from previous time step k − 1:
prior density:

• f(xk−1|Q,Zk−1) → {x̄k−1|k−1(Qj),Pk−1|k−1(Qj)}#pn
i=1

• f(Q|Zk−1) → P{Qj|Zk−1}; j = 1, . . . ,#pn

Computation:

• run #pn Kalman filters for Qj, j = 1, . . . ,#pn with output x̄k|k(Qj),Pk|k(Qj)

• compute approximation of f(Q|Zk):

P{Qj|Zk} := P{zk|Qj,Zk} · P{Qj|Zk} =
= N(zk; Hkx̄k|k(Qj),Sk(Qj)) · P{Qj|Zk−1}; j = 1, . . . ,#pn

• normalize computed P{Qj|Zk} :

P{Qj|Zk} := P{Qj|Zk}∑#pn
j=1 P{Qj|Zk}

(5.12)

• Bayesian estimation of the process noise :

Q̂ =
#pn∑
j=1

QjP{Qj|Zk} (5.13)

• State estimation x̂k

x̄k|k(Q̂),Pk|k(Q̂)

Output for next time step k + 1:

• x̄k|k(Qj),Pk|k(Qj); j = 1, . . . ,#pn

• P{Qj|Zk}; j = 1, . . . ,#pn

Output for current state and process noise estimation at time step k:

• Q̂, x̄k|k(Q̂),Pk|k(Q̂)

For more sake of clarity consider scheme of this algorithm on Figure 5.18.
Now consider the same test example as Example 5.3 and provide proposed Bayesian

estimation of the process noise.
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f(z 1|Q) f(z k|Zk−1,Q)

z 1 z kf(Q|Z1)

f(Q)

f(Q|Zk)

Figure 5.18: Scheme of the proposed way to compute Bayesian estimation of Q.

Example 5.4 (Test example). Consider the same generated data as in Example 5.3.
To compute estimation of the process noise σ2

a we use Bayesian estimation method. We
discretize process noise sample space Ωσ2

a
≈ Q such that

Q = {0, 05; 0, 1; . . . ; 50} ⇒ #pn = 1 000.

Then consider two initial prior distributions. First one consider uniform distribution on
interval 〈0; 50〉:

f(σ2
a) = U(σ2

a; 0, 50).
This has meaning that we have no information about the process noise. Second initial
prior distribution is following normal distribution

f(σ2
a) = N(σ2

a; 10, 9).

This distribution can be considered, for instance, from previous experiences or from the
fact that it is less probable that the target has high process noise (i.e., > 30). See these
initial distributions on Figure 5.19

On Figure 5.20 can be seen the result of Bayesian estimation throw all time steps. The
first thing we notice from Figure 5.20 is that we have obtained significantly better results
at the beginning in comparison with maximum-likelihood estimation. Also, as expected,
normal initial prior distribution has even better performance at the beginning because it
contains more information about the noise.

Run #MC = 100 Monte Carlo runs to get a more consistent view of properties of
proposed Bayesian estimation. See on Figure 5.21 sample mean throw all Monte Carlo
runs of the process noise estimation by Bayesian method throw all time steps. Then on
Figure 5.22 can be seen sample variance. From the Figures 5.21 and 5.22 it is clear that
we have obtained better performance from the one with normal initial prior distribution.
It is intuitive since the system have more information about the noise at the beginning,
but as time index increases, the difference gradually disappear. But From the Figure 5.22
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(a) f(σ2
a) = U(σ2

a; 0, 50) (b) f(σ2
a) = N(σ2

a; 10, 9)

Figure 5.19: Considered initial prior probability densities of the process noise σ2
a

(a) f(σ2
a) = U(σ2

a; 0, 50) (b) f(σ2
a) = N(σ2

a; 10, 9)

Figure 5.20: Result of process noise Q estimation throw the all time steps.

E

(a) f(σ2
a) = U(σ2

a; 0, 50)

E

(b) f(σ2
a) = N(σ2

a; 10, 9)

Figure 5.21: Sample mean of process noise Q estimation throw all Monte Carlo runs.

it can be see that (b) has smaller variance for all time indices. Compare Figures 5.20,
5.21 and 5.22 with the maximum likelihood corresponding Figures 5.2, 5.6, 5.7 and5.8.

Now see the following result together with maximum likelihood estimation at Table
5.2. Summarizing results of estimation at time index k = 10, 50, 100, 200, 400, 1 000.

Comparing Tables 5.1 and 5.2 we can conclude that Bayesian estimation has better
performance at the beginning and maximum likelihood estimation has better performance
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(a) f(σ2
a) = U(σ2

a; 0, 50)

va
r

(b) f(σ2
a) = N(σ2

a; 10, 9)

Figure 5.22: Sample variance of process noise Q estimation throw all Monte Carlo runs.

Table 5.2: Results of the process noise Bayesian estimation in the selected time steps.

U(σ2
a; 0, 50) N(σ2

a; 10, 9)
k = s. mean 95 % conf. int. s. var. s. mean 95 % conf. int. s. var.

10 24,99 〈24, 82; 25, 16〉 0,74 12,23 〈12, 19; 12, 27〉 0,04
50 20,38 〈19, 14; 21, 63〉 39,32 12,28 〈11, 67; 12, 89〉 9,42
100 17,93 〈16, 50; 19, 35〉 51,35 11,80 〈11, 15; 12, 44〉 10,50
200 14,03 〈12, 89; 15, 17〉 33,11 11,50 〈10, 77; 12, 23〉 13,52
400 12,12 〈11, 33; 12, 90〉 15,72 11,14 〈10, 58; 11, 69〉 7,76
1 000 10,57 〈10, 11; 11, 03〉 5,33 10,74 〈10, 39; 11, 10〉 3,24

in higher time indices. It comes from that our proposed maximum likelihood method
strictly assume that process noise is time-invariant. In Bayesian estimation, we use likeli-
hood f(zk|σ2

a,Zk−1) reflecting only current measurement and information about previous
states and measurements is contained in prior density. It is worth to mention that for
higher time index (k > 100) for all time steps the hypothesis of normal distribution of
the estimation was not rejected by the Anderson-Darling test.

At the end of this section about Bayesian estimation of the process noise see Figures
5.23, 5.24, 5.25 and 5.26 to have imagination about shape of the likelihood, prior and
posterior densities.

(a) f(σ2
a) = U(σ2

a; 0, 50) (b) f(σ2
a) = N(σ2

a; 10, 9)

Figure 5.23: Prior, likelihood and posterior density at time step k = 20.
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(a) f(σ2
a) = U(σ2

a; 0, 50) (b) f(σ2
a) = N(σ2

a; 10, 9)

Figure 5.24: Prior, likelihood and posterior density at time step k = 50.

(a) f(σ2
a) = U(σ2

a; 0, 50) (b) f(σ2
a) = N(σ2

a; 10, 9)

Figure 5.25: Prior, likelihood and posterior density at time step k = 100.

Figure 5.26: Prior, likelihood and posterior density at time step k = 50 with initial prior
density f(σ2

a) = N(σ2
a; 10, 9).
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5.5 | Relation Between Maximum Likelihood and Bayesian
Estimation Methods

In this section, we briefly discuss the relation between proposed maximum likelihood
method and Bayesian method to estimate process noise Q. Consider the following propo-
sition.

Proposition 5.5. Posterior density function f(Q|Zk) is equal to

f(Q|Zk) ∝ f(Zk|Q) · f(Q) =
(

k∏
i=1

f(zi|Zi−1,Q)
)

· f(Q)

where f(Zk|Q) is likelihood function which is maximized in maximum likelihood estimation
and f(Q) is initial prior probability density function of the process noise (i.e. f(Q) =
f(Q|Z0)).

Proof. The proposition is clearly valid by applying Bayes’s formula:

f(Q|Zk) = f(Zk|Q) · f(Q)
f(Zk) .

Then relation

f(Zk|Q) =
k∏

i=1
f(zi|Zi−1,Q)

is derived at the beginning of Section 5.3.

Recall that we consider discretized sample space of the process noise Q in our proposed
maximum likelihood and Bayesian estimation algorithms (see Sections 5.3 and 5.3). This
approach provides some interesting property, which we mention in the following proposi-
tion.

Proposition 5.6. Consider discretized sample space of the process noise Q. Then, in
case initial prior distribution is non-informal f(Q) = U(Q; Q)

p(Q|Zk) = p(Zk|Q).

Proof. By Proposition 5.5 (or by Bayes’s formula in general) we can write

p(Q|Zk) ∝ p(Zk|Q) · p(Q).

Since p(Q) gives the same values ∀Q ∈ Q, then term p(Q) does not influence the product
of the probability functions.

We just have shown, that if we set non-informal initial prior f(Q) in our proposed
discretized Bayesian and maximum likelihood methods, the only difference between them
is representative value. In case of Bayesian estimation it is expected value and in case of
maximum likelihood method it is modus.

We try to use this property to improve performance of the maximum likelihood method
at the beginning of simulation. So introduce improved maximum likelihood estimation of
the process noise described in following Algorithm 5.3.
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Algorithm 5.3: Improved ML estimation of the process noise Q

Parameter:

• discretization of Q’s sample space Q = {Qj}#pn
j=1

• initial prior density f(Q) → P{Qj}; j = 1, . . . ,#pn

Input from previous time step k − 1:
prior density:

• f(xk−1|Q,Zk−1) → {x̄k−1|k−1(Qj),Pk−1|k−1(Qj)}#pn
i=1

• f(Zk−1|Q) → P{Zk−1|Qj}; j = 1, . . . ,#pn

Computation:

• run #pn Kalman filters for Qj, j = 1, . . . ,#pn with output x̄k|k(Qj),Pk|k(Qj)

• compute approximation of f(Q|Zk):

P{Qj|Zk} = P{zk|Qj,Zk} · P{Zk−1|Qj} · P{Qj} =
= N(zk; Hkx̄k|k(Qj),Sk(Qj)) · P{Qj|Zk−1} · P{Qj}; j = 1, . . . ,#pn

• improved maximum likelihood estimation:

Q̂ = max
Qj

P{Qj|Zk}

Output for next time step k + 1:

• x̄k|k(Qj),Pk|k(Qj); j = 1, . . . ,#pn

• P{Zk|Qj}; j = 1, . . . ,#pn

Output for current state and process noise estimation at time step k:

• Q̂, x̄k|k(Q̂),Pk|k(Q̂)

Try the algorithm of the improved maximum likelihood estimation on the test example.

Example 5.7 (Test example). Consider the same data as in Example 5.3. Also consider
the same parameters of the maximum likelihood estimation as in this example and add
initial prior distribution f(σ2

a) = N(σ2
a; 25, 100). See this initial distribution and compare

with non-informal discrete distribution in Figure 5.27. Consider mentioned distributions
as discretization of the continuous one. For simplicity write the continuous one.

Figure 5.27 shows that non-informal and proposed initial distributions are almost
same, but the proposed one has maximizer. See the result of the improved maximum
likelihood estimator on the Figure 5.28. Compare with Figure 5.4. See that we have
improved performance at the beginning. This is obviously caused by the initial prior with
maximizer. To obtain more consistent view of proposed improved maximum likelihood
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(a) f(σ2
a) = U(σ2

a; 0, 50) (b) f(σ2
a) = N(σ2

a; 25, 100)

Figure 5.27: Non-informal and proposed initial distributions.

Figure 5.28: Estimation of the process noise by the improved maximum likelihood estima-
tion.

E

Figure 5.29: Sample mean throw all Monte Carlo runs.

estimation, run #MC = 100 Monte Carlo simulations. See the results – sample mean
and variance on Figures 5.29 and 5.30. Compare with Figures 5.6, 5.7 and 5.8. Notice
that at the beginning we have significantly decreased the variance. To underline these
conclusion from the results on the figures, see Table 5.3 and compare with Table 5.1.

In Table 5.3 comparing with Table 5.1 we can see that at time steps k = 10, 50, 100
we have significantly decreased sample variance. However, latter the variance has slightly
increased. This is the situation, which can be followed also in comparison with Bayesian
estimation. If we set initial prior, which can be wrong, or better say not precise, at
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Figure 5.30: Sample variance throw all Monte Carlo runs.

Table 5.3: Results of the process noise improved maximum likelihood estimation in the
selected time steps.

k = s. mean 95 % conf. int. s. var. AD p-value

10 17,06 〈13, 46; 20, 67〉 326,22 < 0, 005
50 9,74 〈7, 75; 11, 74〉 100,16 < 0, 005
100 9,83 〈8, 57; 11, 10〉 40,25 < 0, 005
200 10,38 〈9, 39; 11, 37〉 24,55 < 0, 005
400 9,96 〈9, 24; 10, 68〉 12,95 0, 246
1 000 9,97 〈9, 53; 10, 40〉 4,70 0, 738

beginning algorithm has at least some information and can reduce uncertainty of the esti-
mation, but in the long run imprecise prior information can slightly increase the variance.
Nevertheless, in that case, the variance increase is almost negligible. We state this as suc-
cess, with omissible modification of the non-informal prior we obtain significant variance
reduction at the beginning of simulation.

What about we have more information at the beginning? Consider initial prior f(σ2
a) =

N(σ2
a; 10, 6). See the result on Figure 5.31. Compare with Figure 5.4. By that, no doubts

Figure 5.31: Estimation of the process noise by the improved maximum likelihood estima-
tion with initial prior distribution f(σ2

a) = N(σ2
a; 10, 6).

we have obtained better result.
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5.6 | Use IMM to Estimate Process Noise

We can use IMM algorithm described in Chapter 4 to estimate process noise. We can
define set of motion models with same parameters beside process noise Q and initial
covariance P0, which is directly affected by the process noise value. Write down this idea.
Set #m = #pn – number of models is same as number of discrete values of possible
process noise Q and define M = {mj}#pn

j=1 such that

mj = 〈Fk,Gk,uk,Γk,Qj,Hk, x̄0,Pj
0〉; j = 1, . . . ,#pn. (5.14)

Try this idea on the data from the test example (Example 5.3).

Example 5.8. Consider the same generated data as in Example 5.3 (Test example).
Define set of possible models such that it is set of DWNA models (see Appendix A) with
different parameters σ2

a from the set

σ2
a ∈ {0, 05; 0, 1; . . . ; 50}. (5.15)

One could notice that this completely underline the definition in Equation (5.14). Because
different process noise (by DWNA definition Qk = σ2

a) only influence initial variance P0.
Last, it remains to define Markov transition matrix. Consider

Π = {πij}#pn
i,j=1; pij =

{
0, 703 i = j,
0, 003 i 6= j.

(5.16)

See the result on Figure 5.32.

Figure 5.32: Estimating process noise using IMM with M defined in (5.15) and Π in
(5.16).

Then try to change definition of the Markov transition matrix Π such that

Π = {πij}#pn
i,j=1; pij =

{
0, 9901 i = j,
10−4 i 6= j.

(5.17)

See the result on Figure 5.33. On Figures 5.32 and 5.33 we can see that we have obtained
bad result in sense of process noise estimation. They can be more reasons of this weak
performance, but we conclude that the main one is mixing stage (see Algorithm 4.1)
because models (i.e. values of the process noise Qj) with low probability are included
into prediction (prior distribution).
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Figure 5.33: Estimating process noise using IMM with M defined in (5.15) and Π in
(5.17).

Now, try to play with the definition of the M . Take #pn = #m = 3 and

σ2
a ∈ {5, 10, 15}. (5.18)

and define Markov transition matrix

Π =

0, 8 0, 1 0, 1
0, 1 0, 8 0, 1
0, 1 0, 1 0, 8

 (5.19)

See the result on Figure 5.34. We see that we have obtained such an excellent result. We

Figure 5.34: Estimating process noise using IMM with M defined in (5.18) and Π in
(5.19).

can state that increasing the #m does not necessarily mean improving performance in
using the IMM algorithm. Now, try to make a slight change in the definition of the M

and Π. Define M such that

σ2
a = {5, 10, 15, 20, 25, 30} (5.20)

and

Π =



0, 75 0, 05 0, 05 0, 05 0, 05 0, 05
0, 05 0, 75 0, 05 0, 05 0, 05 0, 05
0, 05 0, 05 0, 75 0, 05 0, 05 0, 05
0, 05 0, 05 0, 05 0, 75 0, 05 0, 05
0, 05 0, 05 0, 05 0, 05 0, 75 0, 05
0, 05 0, 05 0, 05 0, 05 0, 05 0, 75


(5.21)
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Figure 5.35: Estimating process noise using IMM with M defined in (5.20) and Π in
(5.21).

See the result on Figure 5.35. Figure 5.35 shows that we have obtained poor results. We
just have shown the critical problem of the IMM algorithm. It critically depends on the
definition of the M , and adding new models into it does not mean improving performance.
In general, IMM is more suitable to estimate models with different geometry than process
noise estimation. Nevertheless, it is derived to do it.

At the end of this section, we make a conclusion about using the IMM algorithm to
estimate process noise. In general, we have not obtained good results. The estimated
value of the process noise is often significantly higher than the true one. If we have
chosen the ”proper” model set M , we have obtained good results. The author would
like to notice that during the work with IMM, he observed that IMM estimates process
noise correctly if possible values of σ2

a ≡ M , in this case, are symmetric about the true
(reference) value. But this is though since we do not know a priori the true value to
construct the symmetric set of possible values of the process noise about that. By that,
we consider the IMM algorithm to be not well suited to estimate process noise.
Remark. The author would like to mention that by setting

Π = I#pn

and enough dense set of the possible process noise values, e.g., (5.15) we obtain the same
algorithm as the proposed Bayesian estimation algorithm described in Section 5.4 with
the discretization of the process noise sample space defined by (5.15). However, setting
identity as Markov transition matrix leads to division by zero in the mixing stage after
some time steps. But the idea is we can see the proposed Bayesian estimation as some limit
case of the IMM algorithm. Identity as Markov transition matrix provides that algorithm
omit mixing stage and each state of the filter remains the same in prediction. Considering
this fact and comparing Figures 5.32 and 5.20, we conclude that the mixing stage is the
main cause of the poor performance of the IMM algorithm. As mentioned above, the
models (process noise values) are taken into account, while in Bayesian estimation are
ignored.

Discuss the opportunity to set a Markov probability transition matrix (Π). Nev-
ertheless, we never know that. We must guess it (use some experience from previous
applications). This fact implies the idea of the application of these two algorithms. IMM
algorithm at the beginning assumes a discrete set of motion models (usually not large
since we do not know hundreds of different types of geometry trajectories and we have
shown that increasing number of models does not necessarily mean better performance).
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Then we consider the Markov transition probability matrix. We also take this assumption
into account in state estimation. We assume that the actual state can be ”between” of
two model condition state estimation x̄i

k|k and x̄j
k|k. Then we have to provide a weighted

average to compute state estimation x̂k.
On the other side, to provide the Bayesian estimation described in this chapter, we

assume continuous sample space of process noise Q. Then the Markov transition matrix is
not considered since we cannot define it in continuous space. We provide the discretization
only as one of the possible ways to compute intractable integral, and then we assume that
the discretization is dense enough. Thus we believe we can find the true value of parameter
Q and then provide state estimation based on this value.

5.7 | Non-constant Process Noise Problem

We have considered constant process noise during the test examples in this chapter. In this
section, we test algorithms and then propose modifications to estimate the non-constant
process noise of the target. So, reformulate the used test example. For the sake of brevity,
consider only Bayesian estimation in this section. We can apply the used idea to the same
principle on other algorithms.

Example 5.9. Consider the same data as in Example 5.3 with one exception.

Qk = σ2
a =

{
15 m2/s4 k < 500
1 m2/s4 k ≥ 500 (5.22)

Run #MC = 100 Monte Carlo runs to obtain more consistent view about the perfor-
mance. Consider initial prior distribution

f(σ2
a) = N(σ2

a; 15, 6).

See the result on Figure 5.36. Figure 5.36 shows that the Bayesian estimation moves to

E

Figure 5.36: Estimation of the process noise by the Bayesian estimation with initial prior
distribution f(σ2

a) = N(σ2
a; 15, 6) throw #MC = 100 Monte Carlo runs.

the true value after a dramatic change of the process noise very slow.
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We propose the improvement to obtain better results. Introduce following notation:

Zh
k = {zk−h+1, . . . , zk}.

Other words, h means history – number of last considered measurements. The idea is re-
place the estimation base on all measurements up to k: Zk with only last h measurements.
Such that provide following Bayesian estimation

f(Q|Zh
k ) ∝ f(Zh

k |Q) · f(Q) =
 k∏

i=k−h+1
f(zi|Q,Zh−i

i−1 )
 · f(Q). (5.23)

For practical reason, we consider following approximation k∏
i=k−h+1

f(zi|Q,Zh−i
i−1 )

 · f(Q) ≈

 k∏
i=k−h+1

f(zi|Q,Zh
i−1)

 · f(Q). (5.24)

Equation (5.23) above is analogue to Proposition 5.5. We use approximation (5.24) to be
able to store information and significantly reduce computational complexity. See proposed
Algorithm 5.4: Bayesian estimation with abbreviated history.

Algorithm 5.2: Bayesian estimation of the process noise Q with abbreviated history

Parameters:

• history h: number of last considered measurements

• discretization of Q’s sample space Q = {Qj}#pn
j=1

• initial prior density f(Q) → P{Qj}; j = 1, . . . ,#pn

Input from previous time step k − 1:
prior density:

• f(xk−1|Q,Zh
k−1) → {x̄k−1|k−1(Qj),Pk−1|k−1(Qj)}#pn

j=1

• f(Zh
k−1|Q) → N(zi; Hix̄i|i(Qj),Si(Qj)); i = k − h+ 1, . . . , k − 1, j = 1, . . . ,#pn

Computation:

• run #pn Kalman filters for Qj, j = 1, . . . ,#pn with output x̄k|k(Qj),Pk|k(Qj)

• compute approximation of f(Q|Zk):

P{Qj|Zh
k } := P{Zh

k |Q} · P{Qj} =

≈

 k∏
i=k−h+1

P{zi|Qj,Zh
i−1}

 · P{Qj}

=
k∏

i=k−h+1

(
N(zi; Hix̄i|i(Qj),Si(Qj))

)
· P{Qj}; j = 1, . . . ,#pn

• normalize computed P{Qj|Zh
k } :

P{Qj|Zh
k } := P{Qj|Zh

k }∑#pn
j=1 P{Qj|Zh

k }
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• Bayesian estimation of the process noise :

Q̂ =
#pn∑
j=1

QjP{Qj|Zh
k }

• State estimation x̂k

x̄k|k(Q̂),Pk|k(Q̂)

Output for next time step k + 1:

• N(zi; Hix̄i|i(Qj),Si(Qj)); i = k − h+ 2, . . . , k, j = 1, . . . ,#pn

Output for current state and process noise estimation at time step k:

• Q̂, x̄k|k(Q̂),Pk|k(Q̂)

Remark. It is worth mentioning that this algorithm consumes much more memory and
has higher computational complexity than other algorithm described above. We have to
store in memory in each time step h − 1 likelihoods for #pn discretized values of the
process noise Q, and during the computation, we have to compute the pointwise product
of them. We can derive the same principle in maximum likelihood estimation algorithm
with abbreviated history and improved maximum likelihood estimation with abbreviated
history.

Now, try the algorithm on the example.

Example 5.10. Consider the same data as in Example 5.9. Use Bayesian estimation
method with abbreviated history. Run #MC = 100 Monte Carlo runs to obtain more
consistent view about the performance. Consider initial prior distribution

f(σ2
a) = N(σ2

a; 5, 10).

To compare history parameter h influence on the result, consider tree values: h =
50, 100, 250. See the result on Figures 5.37, 5.38, 5.39 and compare also with Figure
5.36.
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E

Figure 5.37: Estimation of the process noise by the Bayesian estimation with abbrevi-
ated history, h = 50 and initial prior distribution f(σ2

a) = N(σ2
a; 5, 10) throw

#MC = 100 Monte Carlo runs.

E

Figure 5.38: Estimation of the process noise by the Bayesian estimation with abbreviated
history, h = 100 and initial prior distribution f(σ2

a) = N(σ2
a; 5, 10) throw

#MC = 100 Monte Carlo runs.
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E

Figure 5.39: Estimation of the process noise by the Bayesian estimation with abbreviated
history, h = 250 and initial prior distribution f(σ2

a) = N(σ2
a; 5, 10) throw

#MC = 100 Monte Carlo runs.

On the figures above, we can see that higher history is estimation more precise but has
slower adaptation on the changes. It makes sense since, with higher history, the estimation
is more accurate because the algorithm has ,more time’ to ,eliminate’ potentially imprecise
initial prior f(Q). On the other side, more time intervals are included in the estimation;
then, the algorithm slowly reacts to changes.
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6 | Combinationof theMultipleModel Ap-
proachand theProcessNoiseEstima-
tion

In Chapter 4 we have considered improving Kalman filter estimation with the estimation
of the model geometry. In Chapter 5 we have considered improving the Kalman filter with
known motion model geometry but improving the hidden state estimation with unknown
process noise estimation. In this chapter, we try to combine this problem. The idea is
to have an estimator which estimates hidden state together with model geometry and
process noise. We start with the exclusion of the described and derived IMM algorithm.

6.1 | Combination of IMM and Bayesian Estimation

The idea of this section is to take the IMM algorithm (Section 4.3). And exclude each
considered motion model with adaptive estimation of the process noise Q. The adaptive
estimation of each model runs independently, and only process noise estimation at each
time step is used to provide Kalman filter estimation of the model. Thus, the only
difference between this proposed scheme and the original IMM algorithm is that we do
not have a given process noise to models but provide its estimation at each time step for
each model and use it in IMM instead of the given one. See the result in the following
example.

Example 6.1. Consider the same data as in Example 4.7. Define IMM with two models.
For each model we provide Bayesian estimation of the process noise, so define, instead of
the constant process noise, the initial prior distribution.

• DWNA, f(σ2
a) = N(σ2

a, 1, 9);

• DWPA, f(σ2
a) = N(σ2

a, 1, 9),

set initial model probabilities

µ1
1 = 0, 9; µ2

1 = 0, 1

and Markov transition matrix
Π =

[
0, 99 0, 01
0, 01 0, 99

]
.

See the results on Figures 6.1 and 6.2.
Unfortunately, we did not obtain a good result in the sense of model estimation. Now,

try to explain the cause. See the process noise estimation σ2
a on Figure 6.3.
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Figure 6.1: Result of IMM state estimation using IMM with process noise estimation in
the motion models.

Figure 6.2: Model probabilities µj
k = p(mj

k|Zk) with respect to time.
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(a) DWNA model. (b) DWPA model.

Figure 6.3: Process noise σ2
a estimation.

The critical problem is that model estimation by IMM and process noise estimation
are based on the same likelihood function (derived from a considered linear dynamic state-
space system). Then both Bayesian analysis in the DWNA and DWPA model estimate
process noise to provide hidden state estimation. IMM cannot decide which model is more
suitable since they have similar likelihoods after using the estimated process noise.

In other words, Bayesian estimation of the process noise in the DWNA set the noise
high enough to provide hidden state estimation with good results. Bayesian analysis in
the DWPA decreases the process noise since the model suits trajectory well enough. But
in the end, IMM cannot decide which is better.

Thus, unfortunately, we have to conclude that it is unsuitable to use a combination of
the IMM algorithm and process noise estimation.

6.2 | Model Decision Based on the Process Noise Estima-
tion

See again Figure 6.3. It shows that the model DWPA is more suitable than the DWNA
model. Because it has significantly lower estimated process noise σ2

a. The DWPA models’
geometry better suits the target trajectory. So, use the idea that runs models indepen-
dently, estimate process noise, and choose the most suitable one by some decision rule
(e.g., the one with the lowest process noise).

Denote AKF - Adaptive Kalman filter, the Kalman filter with estimating process
noise. Consider, as in IMM, discretized sample set of possible models M = {mj}#m

j=1.
Run all #m models independently with process noise estimation. At each time step,
obtain from each AKF state estimation and variance matrix x̄j

k|k,P
j
k|k and process noise

estimate Q̂j
k; j = 1, . . . ,#m. Then, by some predefined decision rule, from the set of

process noise estimates {Q̂j
k}#m

j=1 choose the most suitable model mi by the decision rule.
Then provide run Kalman filter with the chosen model and estimated process noise Q̂i

k.
We obtain output x̄k|k,Pk|k. See the proposed algorithm in the scheme in Figure 6.4.
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AKF 1

AKF j

AKF #m

m1

mj

m#m

1

x̄1
0

P1
0

Pj
0

P#m
0

x̄j
0

x̄#m

x̄1
1|1

x̄j
1|1

x̄#m
1|1

P1
1|1

Pj
1|1

P#m
1|1

AKF 1

AKF j

AKF #m

k

x̄1
k|k

x̄j
k|k

x̄#m
k|k

P1
k|k

Pj
k|k

P#m
k|k

z 1 z k

f(Q1)

f(Qj)

f(Q#m)

Q̂1

Q̂j

Q̂#m

Q̂1

Q̂j

Q̂#m

choose
model

x̄1|1

P1|1 choose
model

x̄k|k

Pk|k

Figure 6.4: Scheme of the proposed algorithm model decision based on the process noise
estimation

Example 6.2. Consider the same situation as in Example 6.1. Consider these #m = 3
models and define initial prior for the process noise for each model.

• 1st model: DWNA, f(σ2
a) = N(σ2

a, 1, 9);

• 2nd model: DWPA, f(σ2
a) = N(σ2

a, 1, 9);

• 3rd model: DWPJ, f(σ2
a) = N(σ2

a, 0, 01, 9)

and define decision rule such that

• if Q̂1
k < 1 choose DWNA;

• else if Q̂2
k < 1 choose DWPA;

• else Q̂3
k < 1 choose DWPJ.

See the result on Figure 6.5. Estimation of the process noise for DWNA and DWPA
models (Q1,Q2) can be seen on Figure 6.3. The estimation of the process noise of the
DWPJ model (Q3) can be seen on Figure 6.6.
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Figure 6.5: Scheme of the proposed algorithm model decision based on the process noise
estimation

Figure 6.6: Scheme of the proposed algorithm model decision based on the process noise
estimation

Example 6.3 (Broken line). We consider this simulation called the ’broken line’ to test
how adaptive estimators reflect a dramatic change of target trajectory. It is evident that
the trajectory is unrealistic, but we aim to test the marginal case of dramatic trajectory
change. The measurements correspond to multilateration plots (see Chapter 2) with
variance matrix

Rk =

106 0 0
0 106 0
0 0 106


Consider these #m = 3 models and define initial prior for the process noise for each
model.
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• 1st model: DWNA, f(σ2
a) = N(σ2

a, 0, 001, 5);

• 2nd model: DWPA, f(σ2
a) = N(σ2

a, 0, 001, 5);

• 3rd model: DWPJ, f(σ2
a) = N(σ2

a, 0, 001, 5)

and define decision rule such that

• if Q̂1
k < 2 choose DWNA;

• else if Q̂2
k < 1 choose DWPA;

• else Q̂3
k < 1 choose DWPJ.

To estimate process noise of the particular models, use Bayesian estimation of the process
noise with abbreviated history. Figures 6.8, 6.9, 6.10 show the process noise estimation
in the particular models for x and y coordinates.

Figure 6.7: Estimating simulated ,broken line’ trajectory with given measurements by mul-
tilateration using model decision based on the process noise estimation.
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Figure 6.8: Bayesian estimation with abbreviated history h = 100 of the process noise in
DWNA model.

Figure 6.9: Bayesian estimation with abbreviated history h = 100 of the process noise in
DWPA model.

Figure 6.10: Bayesian estimation with abbreviated history h = 100 of the process noise in
DWPJ model.

Despite the unrealistic trajectory, we can see that we managed to remove measurement
uncertainty and provided good hidden state adaptive estimation results.



82



83

7 | Application of Adaptive Estimation to
Multilateration Measurements

At the end of the thesis, try to use developed algorithm in Section 6.2 on multilateration
measurements of aircraft trajectory. Consider simulated data but corresponding to real
measurements data. The trajectory is simulated. It is corresponding to highly maneu-
vering acrobatic airplane. It is maneuvering on the edge of the real possibilities of the
airplane. The measurements corresponds to multilateration plots (see Chapter 2) with
variance matrix

Rk =

106 0 0
0 106 0
0 0 106


Consider these #m = 3 models and define initial prior for the process noise for each
model.

• 1st model: DWNA, f(σ2
a) = N(σ2

a, 0, 001, 5);

• 2nd model: DWPA, f(σ2
a) = N(σ2

a, 0, 001, 5);

• 3rd model: DWPJ, f(σ2
a) = N(σ2

a, 0, 001, 5)

and define decision rule such that

• if Q̂1
k < 2 choose DWNA;

• else if Q̂2
k < 1 choose DWPA;

• else Q̂3
k < 1 choose DWPJ.

To estimate the process noise of the particular models, use Bayesian estimation of the
process noise with abbreviated history h = 100.
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Figure 7.1: Estimating simulated ,spiral’ trajectory with given measurements by multilat-
eration.

Figure 7.2: Estimating simulated ,spiral’ trajectory with given measurements by multilat-
eration.

Now, see Figures 7.3, 7.4, 7.5 to obtain imagination about process noise estimation in
particular models.
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Figure 7.3: Bayesian estimation with abbreviated history h = 100 of the process noise in
DWNA model.

Figure 7.4: Bayesian estimation with abbreviated history h = 100 of the process noise in
DWPA model.

Figure 7.5: Bayesian estimation with abbreviated history h = 100 of the process noise in
DWPJ model.

We can conclude that we have obtained perfect results. The process noise in the
DWNA model has reacted the most from all models.
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8 | Conclusion

This text deal with target tracking from multilateration measurements. In the beginning,
we have described multilateration and its geometrical interpretation since the author has
considered it as interesting from a mathematical point of view. It has been mentioned
the motivation throw all text. Multilateration measurements are noisy, i.e., they are
inaccurate, and we have aimed to remove the uncertainty from the measurements. We
can do this because we have many measurements since the positioning system often does it
(e.g., every 0,1 second). However, the crucial problem remains that target moves between
the measurements.

In the second chapter, the Kalman filter was derived. It is a very known and used
algorithm for such a purpose. We have shown that the Kalman filter works pretty well,
but its parameters have to be appropriately chosen. We have divided these parameters
into two groups - geometrical parameters defining the geometry of the trajectory and
uncertainty parameter - process noise representing how much the geometry parameter
would be wrong.

Two ways to improve the Kalman filter have been considered. Estimation of the
geometry and estimation of the process noise. We have both described. As estimation of
the geometry, we have considered the IMM algorithm. This algorithm is mostly used in
real target tracking. Its disadvantage is that we have to choose a proper geometry model
(motion model) and uncertainty of each geometry - process noise. This is crucial, and
the author would like to mention that it was strange during the implementation. It has
taken time to find proper values of process noise to some considered set of multilateration
measurements. However, in case we managed to find it we have obtained a good result.

After that it adaptive filtering was studied. We have considered one geometry, but
together with state, we have estimated process noise. In literature, this is studied for
the general case and are known four basic principles in order to do that: correlation,
covariance-matching, maximum-likelihood, and Bayesian methods. We have described
all four but states that only the last two are suitable for multilateration measurements.
During the implementation, we found that high measurement noise makes the first two
unworkable.

Then, we have developed, described, and tested maximum-likelihood and Bayesian
estimation methods. We have also introduced improvements of the Bayesian and max-
imum likelihood method to estimate process noise. We obtained good results also in
non-constant process noise estimation.

At the end of the thesis, we have discussed the combination of geometry and process
noise estimation. Unfortunately, combination with IMM was not possible. We have
introduced another one standing on the principle of comparing estimated process noise of
particular models. We applied this to simulated measurement data corresponding to the
real one.



88



89

A | Used motion models

In this appendix are listed used motion models (other words Kalman filter set up) in the
text. More details and more models can be found in [17]. Consider the time difference
between actual and last time epoch

∆tk = tk − tk−1.

DISCRETE WHITE NOISE ACCELERATION (DWNA)

This model is so-called 1D motion, because it describes motion in one dimension. Thus
we define it for one dimension and in practical application it would be used also other
dimensions in a similar way.

Fk =
[
1 ∆tk
0 1

]
, Γk =

[
∆t2

k/2
∆tk

]
, Qk = σ2

a, Hk =
[
1 0

]
Initial estimate at k = 0 is made from two time epochs which we denote k = 0 and
k = −1.

x̄0 =
[

z0
(z0 − z−1)/∆t0

]
, P0 =

[
R0 R0/∆t0

R0/∆t0 (R0 + R−1)/t2 + σ2
a/4 · t2

]
Dimensions of the model are equal to

n = 2 m = 1 p = 0 q = 1.

Parameter of the model is variance of acceleration σ2
a.

DISCRETE WIENER PROCESS ACCELERATION (DWPA)

This model is so-called 1D motion, because it describes motion in one dimension. Thus
we define it for one dimension and in practical application it would be used also other
dimensions in a similar way.

Fk =

1 ∆tk ∆t2
k/2

0 1 ∆tk
0 0 1

 , Γk =

∆t2
k/2

∆tk
1

 , Qk = σ2
a, Hk =

[
1 0 0

]

Initial estimate at k = 0 is made from two time epochs which we denote k = 0 and
k = −1.

x̄0 =

 z0
(z0 − z−1)/∆t0

0

 , P0 =

 R0 R0/∆t0 0
R0/∆t0 (R0 + R−1)/t2 + σ2

a/4 · t2 ∆t0σ2
a

0 ∆t0σ2
a σ2

a


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Dimensions of the model are equal to

n = 3 m = 1 p = 0 q = 1.

Parameter of the model is variance of acceleration σ2
a.

DISCRETE WIENER PROCESS JERK (DWPJ)

This model is so-called 1D motion, because it describes motion in one dimension. Thus
we define it for one dimension and in practical application it would be used also other
dimensions in a similar way.

Fk =


1 ∆tk ∆t2

k/2 ∆t3
k/6

0 1 ∆tk ∆t2
k/2

0 0 1 ∆tk
0 0 0 1

 , Γk =


∆t3

k/6
∆t2

k/2
∆tk
1

 , Qk = σ2
j , Hk =

[
1 0 0 0

]

Initial estimate at k = 0 is made from two time epochs which we denote k = 0 and
k = −1.

x̄0 =


z0

(z0 − z−1)/∆t0

0
0

 ,

P0 =


R0 R0/∆t0 0 0

R0/∆t0 (R0 + R−1)/∆t2
0 + 3/4 · ∆t20σ2

j (∆t0/2 + ∆t3
0/3 + ∆t5

0/3)σ2
j (∆t4

0/3 + ∆t2
0/3)σ2

j

0 (∆t0/2 + ∆t3
0/3 + ∆t5

0/3)σ2
j (1 + 2∆t20)σ2

j 2∆t0σ2
j

0 (∆t4
0/3 + ∆t2

0/3)σ2
j 2∆t0σ2

j (1 + ∆t20)σ2
j


Dimensions of the model are equal to

n = 4 m = 1 p = 0 q = 1.

Parameter of the model is variance of jerk σ2
j .

NEARLY CONSTANT TURN RATE (NCTR)

This is so-called 2D motion model, because it described motion in plane. Thus we define
it in two dimensions (in xy plane). It can used in other planes (xz and yz), but is
impractical. Consider state vector

Xk =
[
Xk Ẋk Yk Ẏk Ωk

]>
,

where Ω is angular velocity about z axis with center in target.

Fk(Xk,uk) = Fk(Xk) =



Xk−1 + sin(Ωk−1∆tk)
Ωk−1

Ẋk−1 − 1−cos(Ωk−1∆tk)
Ωk−1

Ẏk−1
1−cos(Ωk−1∆tk)

Ωk−1
Ẋk−1 + Yk−1 + sin(Ωk−1∆tk)

Ωk−1
Ẏk−1

cos(Ωk∆tk)Xk−1 − sin(Ωk∆tk)Yk−1
sin(Ωk∆tk)Xk−1 + cos(Ωk∆tk)Yk−1

Ωk−1


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Γk =



∆t2
k/2 0

∆t2
k/2 0

∆tk 0
∆tk 0
0 ∆tk

 , Qk

[
σ2

a 0
0 σ2

α

]
, Hk =

[
1 0 0 0 0
0 1 0 0 0

]

Initial estimate at k = 0 is made from two time epochs which we denote k = 0 and
k = −1. Consider measurement vector and measurement variance Rk such that

zk =
[
zx

k

xy
k

]
, Rk =

[
rxx

k rxy
k

ryx
k ryy

k

]
.

x̄0 =


zx

0
(zx

0 − zx
−1)/∆t0

zy
0

(zy
0 − zy

−1)/∆t0

0

 ,

P0 =


rxx

0
rxx

0 /∆t0 0 0 0
rxx

0 /∆t0 (rxx
0 + rxx

−1)/t2 + σ2
a/4 · t2 0 0 0

0 0 ryy
0 ryy

0 /∆t0 0
0 0 ryy

0 /∆t0 (ryy
0 + ryy

−1)/t2 + σ2
a/4 · t2 0

0 0 0 0 σ2
α

 .

Recall that due to transition model is nonlinear we have use Extended Kalman filter [15]
instead of Kalman filter 3.

Parameter of the model is variance of acceleration σ2
a and angular acceleration σ2

α.
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B | Used probability distributions

In this appendix are listed distribution used in the text. See [39] and [9].

DISCRETE UNIFORM DISTRIBUTION

We say discrete random variable X has uniform distribution, denote X ∼ UD(K), where
K is set considered as parameter, iff it has probability function

p(x) =
{

1/m; x ∈ K
0; otherwise. =: UD(x; K)

where m := card K. Mean and variance are

E[X] = m+ 1
2 ,

D[X] = m2 − 1
12 .

UNIFORM DISTRIBUTION

We say continuous random variable X has uniform distribution, denote X ∼ U(a, b),
where parameters are a, b ∈ R; a < b, iff it has probability density function

f(x) =
{ 1

b−a
; x ∈ 〈a; b〉,

0; otherwise. =: U(x; a, b)

with mean and variance

E[X] = a+ b

2 ,

D[X] = (b− a)2

12 .

NORMAL DISTRIBUTION

We say continuous random vector X has uniform distribution, denote X ∼ N(µ,Σ),
where parameters are µ ∈ Rn,Σ ∈ PDn(R), iff it has probability density function

f(x) = 1√
(2π)k det(Σ)

exp
(

−1
2(x − µ)>Σ−1(x − µ)

)
=: N(x; µ,Σ)

with vector mean and variance matrix
E[X] = µ,

D[X] = Σ
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GAUSSIAN MIXTURE DISTRIBUTION

We say continuous random variable X has Gaussian mixture distribution, denote X ∼
GM({µi}s

i=1, {Σi}s
i=1, {αi}s

i=1), where parameters are µi ∈ Rn,Σi ∈ PDn(R), αi ∈ (0, 1)
such that

s∑
i=1

αi = 1,

iff it has probability density function

f(x) =
s∑

i=1
αi · N(x; µi,Σi),

with vector mean and variance matrix

E[X] =
s∑

i=1
αiµ

i =: µ, (B.1)

D[X] =
s∑

i=1
αi

[
Σi + (µi − µ) · (µi − µ)>

]
. (B.2)

See Proposition 4.6.

STUDENT'S DISTRIBUTION

We say continuous random variable X has student’s distribution, denote X ∼ t(n) with
parameter degree of freedom n ∈ 〈1; ∞), iff it has probability density function

f(x) =
Γ
(

n+1
2

)
Γ
(

n
2

)√
πn

(
1 + x2

n

)− n+1
2

=: t(x;n)

with mean and variance

E[X] = 0;n > 1,

D[X] = n

n− 2;n > 2.
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List of Used Symbols
and Abbreviations

Abbreviations

AD Anderson-Darling

DWNA discrete white noise acceleration

DWPA discrete Wiener process acceleration

DWPJ discrete Wiener process jerk

GPB1 generalized pseudo-Bayesian estimator of the first order

GPB2 generalized pseudo-Bayesian estimator of the first order

IMM Interacting Multiple Model estimator

NCTR nearly constant turn rate

MLAT multilateration

ML maximum-likelihood

TDOA time difference of arrival

TOA time of arrival

Symbols

A,B general points in Euclidian space E3

B width measure of the signal bandwidth

c speed of light

cov covariance between two random vectors

D variance of the random variable

∆tk time difference between time at time epoch k and k−1: ∆tk := tk−tk−1

E3 Euclidian space with dimension 3
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ei ith vector of cartesian basis

e′
i ith vector of local basis

E signal energy

E expected value / mean

Ek|k−1 error of the prediction (prior) estimate of the hidden state

Ek|k error of the posterior estimate of the hidden state

f(·) density probability function

F (·) cumulative distribution function

F state transition model

F (M) state transition model viewed as random variable, the realization is
given by realization m of the model M

F non-linear state transition model

F̂ Jacobi matrix of the non-linear state transition model

g non-linear mapping from TDOA space (positioning system) into E3

G control-input model

G(M) control-input model viewed as random variable, the realization is given
by realization m of the model M

GM Gaussian mixture distribution

Γ process noise transform model

h history parameter, number of last considered measurements

H measurement model

H(M) measurement model viewed as random variable, the realization is given
by realization m of the model M

Is identity matrix of size s× s

k time index

K optimal Kalman gain

m dimension of the measurement vector

mj jth model in M

M motion model / model

Ms(R) s× s square matrix over real numbers

Ms,t(R) s× t matrix over real numbers
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M discretization of the sample space ΩMk
(set of the possible motion

models)

M`
‖ `th history of active models up to time epoch k

µτ̂ mean vector of the inexact TDOA measurements in the positioning
system

µj
k posterior probability of the jth model at time step k

n dimension of the state vector

Ne number of estimations

Nf number of filters

N normal distribution

N set of all natural number (= {0, 1, 2, . . .})

N0 noise spectral power density

ν`
k posterior probability of the `th model history at time step k

p dimension of the control-input vector

p(·) probability function

P variance matrix of the state random vector X

P{·} probability

PDs(R) set of s× s positive definite matrices

q dimension of the process noise vector

O origin of the global cartesian affine frame

Os zero matrix of size s× s

Os,t zero matrix of size s× t

os zero vector of s-dimensional vector space

ΩMk
sample space of the motion model

ΩQ sample space of the process noise

P point in Euclidian space E3

Pk|k Bayesian estimate of Pk

Pj
k|k Bayesian estimate of Pk by the jth model

P0j
k|k mixed Bayesian estimate of Pk for the jth model

Π Markov transition matrix
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πij element of Markov transition matrix

Q process noise variance matrix

Q(M) variance matrix of the process noise viewed as random variable, the
realization is given by realization m of the model M

Q discretization of the ΩQ

Ri ith receiver in the positioning system

R variance matrix of inexact measurements

R(φ, θ, ψ) rotation matrix in SO(3)

R real numbers

R3 vector space with dimension 3

ρ Euclidian metric

S origin of the local affine frame

S innovation variance matrix

SO(3) Group of rotation matrices with rank 3

σ2
τ̂ ,j variance of TDOA measurements on jth receiver

σ2
a variance of the acceleration

Σ̂τ̂ variance matrix of the inexact TDOA measurements in the positioning
system

T target, point in Euclidian space E3

tk time at time epoch k

t vector in R3

t student’s distribution

τ̂i TOA on the ith receiver

τi TDOA on ith receiver (with respect to R0 receiver)

u control-input vector

U uniform distribution

U(M) control-input vector viewed as random vector, the realization is given
by realization m of the model M

UD discrete uniform distribution

V process noise vector
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V (M) process noise vector viewed as random vector, the realization is de-
pended on realization m of the model M

var variance matrix of the random vector

W measurement noise vector

xyz axis with respect to global cartesian affine frame

x′y′z′ axis with respect to local affine frame

x unknown realization of the state vector (unknown/hidden state)

x̄ mean vector of X

x̄k|k Bayesian estimate of x̄k

x̄j
k|k Bayesian estimate of x̄k by the jth model

x̄0j
k|k mixed Bayesian estimate of x̄k for the jth model

X state vector (random vector)

ỹ innovation realization

Υj inexact TDOA measurement on the jth receiver

Υ inexact TDOA measurements in the positioning system

Z inexact measurement in E3, in latter chapter identified with particular
TDOA measurements transformed into E3

z̄ mean of Z

z realization of Z

Zk set of all measurements up to time epoch k, Zk = {z1, z2, . . . , zk}

Zh
k set of last h measurements up to time epoch k, Zh

k = {zk−h+1, . . . , zk}

‖ · ‖ Euclidian norm of a vector in R3

| · | absolute value

(·, ·, ·) vector in Euclidian or vector space

〈A, e1, e2, e3〉 affine frame
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