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Model theory: Living with monos
Basic problem

Over the course of two talks, we aim to provide an introduction to
stable independence in the context of an abstract category,
building toward applications in algebra.

◮ Today: We consider basic definitions and motivation,
canonicity, and connections with model theory. In case the
underlying category is locally presentable, we also indicate a
deep connection with homotopy theory.

◮ Next week: We discuss ways in which stable independence can
be pushed upward from a subcategory, ensuring existence in a
host of categories of groups and modules. Time permitting,
we discuss excellence in the category-theoretic context.

All of the results considered here are joint with Jǐŕı Rosický and
Sebastien Vasey, spanning several papers: [LRV1], [LRV2], and
[LRV3].
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Model theory: Living with monos
Basic problem

One of the central features of model theory—classical or
abstract—is that it only entertains injective maps, or
monomorphisms.

Example

Consider Tab, the theory of abelian groups. The category of
models of Tab, Mod(Tab), has the same objects as Ab but is
decidedly non-full: however we construe it, its morphisms will
certainly be monos.

Regardless of the level of generality (or specificity) at which we
work, the model-theoretic toolkit works only if we make this
fundamental restriction.
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Model theory: Living with monos
Basic problem

That toolkit is exceedingly powerful, but problems arise when we
restrict to monomorphisms: category theory is much harder.

Recall that a pushout of a span M1 ← M0 → M2 is a commutative
square

M1
!! P

M0

""

!! M2

""

with the property that for any other completion of the span,
M1 → Q ← M2, there is a unique map P → Q so that everything
commutes. The pushout is a minimal amalgam, roughly speaking.

Fact
The category Ab has pushouts; Mod(Tab) does not, as the
induced maps will not be monos!
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Model theory: Living with monos
Basic problem

Basic problem: given a category K and family of K-morphisms
M, how much is lost in passing to KM, the subcategory of K
whose morphisms are precisely those in M?

For the moment, we consider very nice K.

Definition
For λ a regular cardinal, we say that a category K is locally
λ-presentable if

1. K has all colimits.

2. There is a set of λ-presentable objects, and every object of K
is a λ-directed colimit thereof.

This covers, e.g. Set , Ab, R-Mod, and Str(Σ), where
presentability corresponds, roughly, to cardinality/presentation size.
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Model theory: Living with monos
Basic problem

In general, passing to KM expels us from the paradise of locally
presentable categories, leaving us with, if we are lucky, accessibility.

Definition
For λ a regular cardinal, we say a category K is λ-accessible if

1. K has all λ-directed colimits.

2. There is a set of λ-presentable objects, and every object of K
is a λ-directed colimit thereof.

That is, we may lose some colimits, including pushouts.

Fact
Say a category C is accessible with all morphisms mono (...). If C
has pushouts, it is small.

So if we engineer KM to be nice, we lose pushouts. Such is life.
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Background
Independence on a category
A candidate: effective squares

We take the view, perhaps controversially, that stable nonforking is
best understood as a stand-in for the vanished pushouts.

This is extremely ahistorical...

Version 1: Fix a theory T , monster model C. We say the type of a
tuple ā ∈ C over a model B does not fork over C ⊆ B if the type
over C has the same complexity, i.e. Morley rank. Notation:

ā
(C)

⌣
C
B
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Background
Independence on a category
A candidate: effective squares

We take the view, perhaps controversially, that stable nonforking is
best understood as a stand-in for the vanished pushouts.

This is extremely ahistorical...

Version 2: Again, given a theory T and monster model C, we say

A
(C)

⌣
C
B

if the type of any ā ∈ A over B does not fork over C . One can
think of this as a kind of independence relation: A is independent
from B over C .

One can think of ⌣ as an abstract ternary relation, and axiomatize
stable (or simple) independence directly.
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Background
Independence on a category
A candidate: effective squares

We take the view, perhaps controversially, that stable nonforking is
best understood as a stand-in for the vanished pushouts.

This is extremely ahistorical...

Version 3: In AECs, we can only work over models, and may not
have a monster model. We end up with ⌣ as a quaternary relation

M1

M3

⌣
M0

M2

axiomatized as before, [BGKV]. In particular, we are picking out a
family of diagrams of strong embeddings of the form

M1
!!

⌣

M3

M0

""

!! M2

""
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Background
Independence on a category
A candidate: effective squares

Idea: Do this in an arbitrary category K.

Definition
An independence notion ⌣ on K is a family of commutative
squares in K (suitably closed). We say that ⌣ is weakly stable if
it satisfies

1. Existence: Any span M1 ← M0 → M2 can be completed to an
independent square.

2. Uniqueness: there is only one independent square for each
span, up to equivalence.

3. Transitivity: horizontal and vertical compositions of
independent squares are independent.

Fact
If ⌣ is weakly stable, these squares satisfy the usual cancellation
property of pushouts.
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Background
Independence on a category
A candidate: effective squares

We must impose a locality condition—accessibility now appears.

Consider the category K↓:

◮ Objects: Morphisms f : M → N in K.

◮ Morphisms: A morphism from f : M → N to f ′ : M ′ → N ′ is
a ⌣-independent square

M ′ !!

⌣

N ′

M

""

!! N

""

Definition

1. We say that ⌣ is λ-continuous if K↓ is closed under
λ-directed colimits.

2. We say that ⌣ is λ-accessible if K↓ is λ-accessible.

3. We say ⌣ is λ-stable if it is weakly stable and λ-accessible.
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Background
Independence on a category
A candidate: effective squares

Returning to the basic framework, i.e. K a category, M a class of
morphisms, there is a natural candidate for stable independence:

Definition
We say a square

M1
!! M3

M0

""

!! M2

""

in K is M-effective if

1. all morphisms are in M,

2. the pushout of M1 ← M0 → M2 exists, and

3. the induced map from the pushout to M3 is in M.

If M = {regular monos}, these are the effective unions of Barr.
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Background
Independence on a category
A candidate: effective squares

To force these squares to form a nice independence relation, we
need a few additional properties:

Definition
Let K be a category.

1. We say that M is coherent if whenever gf ∈ M and g ∈ M,
f ∈ M.

2. We say that M is a coclan if pushouts of morphisms in M
exist, and M is closed under pushouts.

3. We say M is almost nice if it is a coherent coclan, and nice
if, in addition, it is closed under retracts.

Proposition

If M is almost nice, the M-effective squares give a weakly stable
independence notion on KM.
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Model-theoretic connections
The order property
Canonicity

For the next few slides, unless otherwise indicated, we consider the
ways in which stable independence notions manifest themselves in
µ-abstract elementary classes (or µ-AECs).

Note
A µ-AEC is just like an AEC, but with a µ-ary signature and closed
under µ-directed unions, rather than unions of chains.

Fact (BGLRV)

µ-AECs and accessible categories with all morphisms
monomorphisms are, morally speaking, exactly the same thing.

This makes them an ideal test case for evaluating the
model-theoretic content of our stable independence notions.
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Model-theoretic connections
The order property
Canonicity

Some care is required when translating back to an element- and
type-oriented description: we must take a kind of closure (⌣).

The essential bridge is provided by the witness property:

Definition
Let θ be an infinite cardinal. We say ⌣ has the right

(< θ)-witness property if M1

M3

⌣
M0

M2 holds whenever

M0≺KMi≺KM3, i = 1, 2, and M1

M3

⌣
M0

A for all A ⊆ UM2 with

|A| < θ. Similarly, left (< θ)-witness property, (< θ)-witness
property.

Theorem
A reasonable independence notion on a µ-AEC is accessible iff it
has the witness property and local character (in the usual sense).
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The order property
Canonicity

Fact (BG, essentially)

The witness property holds in any fully tame and short µ-AEC.

With this rephrasing, model-theoretic consequences become much
clearer. For example:

Theorem
Let K be a µ-AEC with a stable independence relation. Then:

1. (Galois-stability) For any α, there is a proper class of cardinals
Sα such that for any λ ∈ Sα and M ∈ Kλ, |ga-S<α(M)| = λ.

2. (Tameness) For any α, there is a cardinal λ such that
< α-types are λ-tame.

What of the order property? Symmetry? Canonicity?
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The order property
Canonicity

We consider the version of the order property introduced by Shelah
in the context of AECs:

Definition
A µ-AEC K has the α-order property of length θ if there exists
M ∈ K and a sequence 〈āi | i < θ〉 with
1. āi ∈ αUM for all i < θ, and

2. for all i0 < j0 < θ, ga-tp(āi0 āj0/∅,M) ∕= ga-tp(āj0 āi0/∅,M)

We say K has the order property if there exists α such that for all
θ, K has the α-order property of length θ.

One would expect the existence of a stable independence relation
to imply failure of the order property...

Lieberman Induced stable independence, Part I



Stable independence
Properties

Cofibrant generation

Model-theoretic connections
The order property
Canonicity

Theorem
If K is a µ-AEC with a stable independence notion, K does not
have the order property.

In fact, the same is true even if we drop the assumption that the
independence notion has the witness property, provided that K has
chain bounds:

Definition
We say a category K has chain bounds if every chain has an
upper bound (but not necessarily a union/colimit).

[An important lesson here, and in the canonicity theorem below, is
that this weakening of unions of chains is almost always sufficient.]
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There is a partial converse, but it is very partial:

Theorem
Assume Vopěnka’s Principle (VP). Let K be a µ-AEC with chain
bounds, and let κ be strongly compact. If K does not have the
order property, then the κ-AEC of locally κ-model-homogeneous
models of K has a stable independence relation.

Note
If we assume K has amalgamation, VP is not necessary.

Corollary

Assume VP. Let K be a µ-AEC with chain bounds. Then K does
not have the order property iff there is a stable independence
notion on a cofinal sub-λ-AEC.
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Canonicity

An argument very similar to that in [BGKV] gives canonicity of
stable independence in µ-AECs.

More remarkably, it holds in far greater generality:

Theorem (LRV2)

Let K be a category with chain bounds, and let
1

⌣ and
2

⌣ be

independence notions with existence and uniqueness such that:

1.
1

⌣ is (right) monotonic.

2.
2

⌣ is transitive and (right) accessible.

Then
1

⌣ =
2

⌣. So, in particular, K has at most one stable

independence notion.
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Granted: the existence of an accessible independence notion
2

⌣

implies K is accessible. But we are not back in the realm of
µ-AECs: here the morphisms need not be monomorphisms!

This argument, in [LRV2], resembles that of [BGKV] but is, of
necessity, element-free.

Though confined to an appendix, it deserves a lecture all its own:
it shows, among other things, that independent sequences can be
developed and put to use in an arbitrary (accessible) category.

One expects this to have interesting consequences in algebra...
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Motivation
The main theorem
Weak factorization systems

We return to the special case considered at the start: K is a locally
presentable category, and M a family of morphisms.

Note
Recall that if M is almost nice, KM has a weakly stable
independence notion (given by M-effective squares).

When is this notion ℵ0-continuous (KM,↓ closed under directed
colimits)? When is it ℵ0-accessible (KM,↓ finitely accessible) and
therefore very stable?

While existence and uniqueness seem to be the thornier issues in
model theory, it is these properties that are most problematic here.

In this special case, though, there is an easy (and altogether
surprising!) answer.
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The main theorem
Weak factorization systems

We veer sharply in the direction of algebraic topology. Recall:

Note
In Top, CW-complexes are built inductively by gluing on new cells
along their boundaries, Sn−1 → Dn. The corresponding morphisms
are constructed in similar fashion...

Gluing corresponds to pushing out along some Sn−1 → Dn.

The inductive construction corresponds to transfinite composition.

So we are concerned with the maps cellularly generated by the set
{Sn−1 → Dn : n ∈ ω}.

Being generated in this way from a set of morphisms is an
important smallness condition...
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The main theorem
Weak factorization systems

Definition
Let X be a family of morphisms in a category K. Recall:

1. Po(X ) is the closure of X under pushouts.

2. Tc(X ) is the closure under transfinite composition.

3. Rt(X ) is the closure under retracts.

4. cell(X ) = Tc(Po(X ))

5. cof(X ) = Rt(cell(X ))

Under certain circumstances, we can dispense with retracts.

Definition
We say that a set of morphisms M in K is cofibrantly generated
if M = cof(X ), X a set of morphisms.
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Weak factorization systems

Theorem
Let K be locally presentable, M nice and ℵ0-continuous. The
following are equivalent:

1. KM has a stable independence notion.

2. M-effective squares form a stable independence notion on
KM.

3. M is cofibrantly generated (and accessible).

Proof.
(1) ⇒ (2): By canonicity.
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Motivation
The main theorem
Weak factorization systems

Theorem
Let K be locally presentable, M nice and ℵ0-continuous. The
following are equivalent:

1. KM has a stable independence notion.

2. M-effective squares form a stable independence notion on
KM.

3. M is cofibrantly generated (and accessible).

Proof.
(2) ⇒ (3): Take λ such that KM,↓ and K are λ-accessible,
consider

Mλ = M ∩ Presλ(K)→.

One can show that M = cof(Mλ).
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Motivation
The main theorem
Weak factorization systems

Theorem
Let K be locally presentable, M nice and ℵ0-continuous. The
following are equivalent:

1. KM has a stable independence notion.

2. M-effective squares form a stable independence notion on
KM.

3. M is cofibrantly generated (and accessible).

Proof.
(3) ⇒ (1): Say M = cof(X ), and λ such that everyone involved is
λ-accessible, domains and codomains of morphisms in X are
λ-presentable. Show class M∗ of λ-directed colimits of maps in
Mλ (in KM,↓) is exactly M. Need elimination of retracts,
[MRV].
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Weak factorization systems

Definition
A weak factorization system (or WFS) in a category K consists
of a pair of classes of morphisms (M,N ) such that:

1. Any morphism h of K can be written as h = gf , where
f ∈ M and g ∈ N .

2. Morphisms in M and L satisfy certain (nonunique) lifting
properties: M = □N and N = M□.

Examples

In Set, (monos, epis), as would expect. Also: (epis, monos).

By Quillen’s small object argument, if K is locally presentable, and
M cofibrantly generated, then (M,M□) is a WFS on K!
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Weak factorization systems

Model Categories

To carry out homotopy theory in a category K, we need a model
structure, consisting of:

1. Cof⊆Mor(K), the cofibrations—nice inclusions, roughly.

2. Fib⊆Mor(K), the fibrations—nice surjections, roughly.

3. W ⊆Mor(K), the weak equivalences—standing in for
homotopy equivalences.

subject to the condition (among others) that:

◮ (Cof ∩W,Fib) and (Cof,Fib ∩W) are WFSs.

Combinatorial model structures, in particular, are those where the
class of acyclic cofibrations, Cof ∩W, is cofibrantly generated.
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Fact
If (M,N ) is a coherent WFS—that is, M is coherent—then M is
nice and ℵ0-continuous.

Corollary

If (M,N ) is a coherent WFS on locally presentable K, TFAE:

1. KM has stable independence.

2. M is cofibrantly generated (and accessible).

So, modulo a few important technicalities, subcategories KM with
stable independence are in bijective correspondence with
cofibrantly generated WFSs!
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