# UČEBNÍ TEXTY VYSOKÝCH ŠKOL

Vysoké učení technické v Brně

Fakulta strojního inženýrství

Doc. RNDr. Libor Čermák, CSc.

# Algoritmy metody konečných prvků

# Předmluva k revidovanému elektronickému vydání

Tato skripta jsou určena studentům matematického inženýrství FSI VUT v Brně pro studium předmětu *Numerické metody III.* Jedná se o revidovaný text stejně pojmenovaných (již vyprodaných) skript, která vyšla v PC-DIR Real, s.r.o., Brno, v roce 2000.

Brno, září 2005

Libor Čermák

# Předmluva

Metoda konečných prvků (MKP) je univerzálním nástrojem pro efektivní řešení rozmanitých inženýrských problémů, které vyžadují provádět výpočty v oborech "teoretických" inženýrských disciplín jako je pružnost a pevnost, termomechanika, hydromechanika atp. K masivnímu rozšíření MKP došlo začátkem 70-tých let. Od té doby zůstává MKP v popředí zájmu inženýrů, matematiků i fyziků. Problémům spojeným s MKP je věnováno ohromné množství publikací, vznikají rozsáhlé programové systémy, konají se četné konference. Krása MKP spočívá v tom, že její podstatu lze vysvětlit na jednoduchém matematicky formulovaném modelovém problému. To je také hlavním cílem výuky MKP v mezioborovém studiu matematického inženýrství na FSI VUT a MU v Brně. Zatímco učební text [30] Prof. RNDr. Alexandra Ženíška, DrSc. objasňuje matematické základy MKP, tento "doplňující" text se věnuje především "technologii" MKP, tj. poměrně detailnímu popisu "realizačních" algoritmů.

Učební text je rozčleněn do tří kapitol zabývajících se algoritmizací MKP postupně v jedné, dvou a třech prostorových proměnných. Jedna prostorová proměnná zdaleka neumožňuje MKP ukázat svou "plnou sílu". Kapitola první má proto význam především pedagogický: prostřednictvím okrajového diferenciálního problému druhého řádu (tah-tlak osově namáhaného prutu) a čtvrtého řádu (ohyb nosníku podle Kirchhoffovy teorie) jsou na jednoduchém definičním oboru (úsečka) objasněny všechny podstatné kroky MKP-algoritmizace: přechod od formulace klasické (tj. diferenciání rovnice a okrajové podmínky) k formulaci slabé, konečněprvková aproximace, elementární matice a vektory, sestavení soustavy rovnic a zpracování jejího řešení.

Těžištěm skripta je kapitola druhá, tedy úlohy rovinné. Modelový okrajový problém druhého řádu (typu stacionárního vedení tepla) je diskretizován nejdříve užitím lineárního trojúhelníkového prvku. Podrobně jsou vysvětleny datové struktury popisující triangulaci, značná pozornost je věnována sestavovacím algoritmům. Uvedena je také algoritmizace dvou nestacionárních úloh (vedení tepla, kmitání membrány), stručně je zmíněna rovněž úloha vlastních čísel. Diskretizace dvourozměrné úlohy pružnosti MKP demonstruje schopnost této metody vypořádat se s problémem popsaným soustavou dvou parciálních diferenciálních rovnic (Laméovy rovnice). Následuje popis nejpoužívanějších izoparametrických trojúhelníkových a čtyřúhelníkových konečných prvků včetně jejich aplikace na řešení úlohy typu stacionárního vedení tepla. Problémy reálného světa jsou nelineární, což tento text zohledňuje zařazením popisu metod pro řešení nelineárních úloh diskretizovaných MKP (například pro úlohy typu nelineárního vedení tepla, stacionárního i nestacionárního). Efektivní řešení konvekčně-difúzních úloh s dominantní konvekcí (KDUsDK) patří k nejobtížnějším úlohám numerické matematiky a MKP zde teprve v poslední době začíná konkurovat zatím více používané metodě konečných objemů (MKO). V tomto textu je popsána: pro stacionární KDÚsDK upwind technika se současným použitím jak MKO tak MKP a pro nestacionární KDÚsDK metoda charakteristik v kombinaci s MKP.

Poslední kapitola uvádí třírozměrné izoparametrické konečné prvky (čtyřstěny, pětistěny a šestistěny) a jejich použití demonstruje opět na problému typu stacionárního vedení tepla.

Kromě již zmíněného učebního textu [30] lze z česky psaných materiálů doporučit k hlubšímu studiu knihy [10], [27], [22], [4], [28], [11], [23], [21] a skripta [14], [15]. Z programových systémů MKP jmenujme alespoň ANSYS [1] a NEXIS [18] českého původu. Pro výukové účely je velmi vhodný PDE toolbox MATLABu [12].

Za chyby a přepisy, které se bohužel ve skriptu jistě vyskytnou, se dopředu omlouvám. Budu vděčný všem čtenářům, kteří mě na ně upozorní.

Brno, září 2000

Libor Čermák

# Obsah

| 1        | Jedi           | norozměrné úlohy                                    | 6  |  |  |  |  |
|----------|----------------|-----------------------------------------------------|----|--|--|--|--|
|          | Zákl           | adní pojmy a označení                               | 6  |  |  |  |  |
|          | 1.1            | Okrajový problém pro ODR2                           | 6  |  |  |  |  |
|          |                | a) Klasická formulace                               | 6  |  |  |  |  |
|          |                | b) Slabá formulace                                  | 8  |  |  |  |  |
|          |                | c)<br>Metoda konečných prvků<br>                    | 11 |  |  |  |  |
|          | 1.2            | Okrajový problém pro ODR4                           | 17 |  |  |  |  |
|          |                | a) Klasická formulace                               | 17 |  |  |  |  |
|          |                | b) Slabá formulace                                  | 18 |  |  |  |  |
|          |                | c)<br>Metoda konečných prvků<br>                    | 20 |  |  |  |  |
| <b>2</b> | Rov            | inné úlohy                                          | 26 |  |  |  |  |
|          | 2.1            | Základní pojmy a označení                           | 26 |  |  |  |  |
|          | 2.2            | Klasická formulace                                  | 27 |  |  |  |  |
|          | 2.3            | Greenova formule                                    | 28 |  |  |  |  |
|          | 2.4            | Slabá formulace                                     | 29 |  |  |  |  |
|          | 2.5            | Triangulace, po částech lineární funkce             | 30 |  |  |  |  |
|          | 2.6            | Diskrétní slabá formulace                           | 32 |  |  |  |  |
|          | 2.7            | Elementární matice a vektory                        | 34 |  |  |  |  |
|          |                | a) Elementární matice a vektor na elementu <i>e</i> | 34 |  |  |  |  |
|          |                | b) Elementární matice a vektor na straně $S$        | 37 |  |  |  |  |
|          |                | c) Sestavení globální matice a vektoru              | 38 |  |  |  |  |
|          | 2.8            | Několik poznámek                                    | 44 |  |  |  |  |
|          | 2.9            | Minimalizační formulace                             | 47 |  |  |  |  |
|          | 2.10           | Nestacionární úloha vedení tepla                    | 48 |  |  |  |  |
|          | 2.11           | Dynamika                                            | 51 |  |  |  |  |
|          | 2.12           | Rovinná napjatost a rovinná deformace               | 54 |  |  |  |  |
|          |                | a) Klasická formulace                               | 54 |  |  |  |  |
|          |                | b) Slabá formulace                                  | 57 |  |  |  |  |
|          |                | c) Diskrétní slabá formulace                        | 58 |  |  |  |  |
|          |                | d) Elementární matice a vektory                     | 59 |  |  |  |  |
|          |                | e) Sestavení globální matice a vektoru              | 62 |  |  |  |  |
|          |                | f) Závěrečné poznámky                               | 63 |  |  |  |  |
|          | 2.13           | Izoparametrické prvky                               | 63 |  |  |  |  |
|          | 2.14           | Nelineární úlohy                                    | 76 |  |  |  |  |
|          |                | a) Stacionární úloha                                | 76 |  |  |  |  |
|          |                | b) Nestacionární úloha                              | 82 |  |  |  |  |
|          | 2.15           | Konvektivně-difúzní úlohy s dominantní konvekcí     | 83 |  |  |  |  |
|          |                | a) Stacionární úloha, upwind metoda                 | 83 |  |  |  |  |
|          |                | b) Nestacionární úloha, metoda charakteristik       | 90 |  |  |  |  |
| 3        | Pros           | storové úlohy                                       | 95 |  |  |  |  |
| Li       | Literatura 106 |                                                     |    |  |  |  |  |
|          |                |                                                     |    |  |  |  |  |

# 1. Jednorozměrné úlohy

### Základní pojmy a označení

Prostor funkcí spojitých v intervalu  $\langle 0, \ell \rangle$  označíme  $C\langle 0, \ell \rangle$ . Podobně  $C(0, \ell), C\langle 0, \ell \rangle$ a  $C(0, \ell)$  postupně označují prostory spojitých funkcí v intervalech  $(0, \ell), \langle 0, \ell \rangle$  a  $(0, \ell)$ . Dále  $C^k \langle 0, \ell \rangle, C^k(0, \ell), C^k \langle 0, \ell \rangle, C^k(0, \ell)$  označují prostory funkcí, které jsou v uvažovaných intervalech spojité a mají v nich spojité derivace až do řádu k včetně. Prostor funkcí po částech spojitých v intervalu  $(0, \ell)$  označíme  $PC(0, \ell)$ . Přitom  $f \in PC(0, \ell)$  znamená, že existuje dělení  $0 = t_0 < t_1 < \cdots < t_n = \ell$  takové, že  $f \in C(t_{i-1}, t_i)$  a že existují konečné jednostranné limity  $\lim_{x \to t_{i-1}+} f(x)$  a  $\lim_{x \to t_i-} f(x), i = 1, \ldots, n$ . Symbolem  $PC^k(0, \ell)$ značíme prostor funkcí, které jsou v intervalu  $\langle 0, \ell \rangle$  spojité spolu se svými derivacemi až do řádu k-1 včetně, a jejichž k-tá derivace je v intervalu  $(0, \ell)$  po částech spojitá. Lebesgueův prostor funkcí integrovatelných s kvadrátem v intervalu  $(0, \ell)$  označíme  $L_2(0, \ell)$ . Symbolem  $H^k(0, \ell)$  označíme Sobolevův prostor funkcí f takových, že f, f', ..., f^{(k)} \in L\_2(0, \ell). Je přirozené položit  $H^0(0, \ell) = L_2(0, \ell)$ . Zřejmě  $PC^k(0, \ell) \subset H^k(0, \ell)$ . Je známo, že  $H^k(0, \ell) \subset C^{k-1}\langle 0, \ell \rangle$ , a proto se nedopustíme žádné velké nepřesnosti, když si pod funkcí z prostoru  $H^k(0, \ell)$  budeme představovat funkci z prostoru  $PC^k(0, \ell)$ .

# 1.1. Okrajový problém pro ODR2

#### a) Klasická formulace

Naším cílem je nalézt funkci

$$u(x) \in C^2(0, \ell) \tag{1.1}$$

vyhovující diferenciální rovnici

$$-(p u')' + q u = f \qquad v (0, \ell)$$
(1.2)

a splňující v bodě x = 0 buď to okrajovou podmínku

 $u(0) = g_0 \tag{1.3a}$ 

nebo okrajovou podmínku

$$p(0)u'(0) = \alpha_0 u(0) - \beta_0, \tag{1.3b}$$

a v bodě  $x = \ell$  buď to okrajovou podmínku

$$u(\ell) = g_{\ell} \tag{1.4a}$$

nebo okrajovou podmínku

$$-p(\ell)u'(\ell) = \alpha_{\ell}u(\ell) - \beta_{\ell}.$$
(1.4b)

Okrajové podmínky (1.3a) a (1.4a) se nazývají *Dirichletovy*, okrajová podmínka (1.3b) resp. (1.4b) se pro  $\alpha_0 = 0$  resp.  $\alpha_\ell = 0$  nazývá *Neumannova* a pro  $\alpha_0 \neq 0$  resp.  $\alpha_\ell \neq 0$  *Newtonova*.

Uloha (1.1)-(1.4) může popisovat například problém  $tahu-tlaku \ prutu$ , tedy prutu namáhaného pouze tahem popřípadě tlakem. V tom případě je u(x) posunutí střednicové čáry prutu, p(x) = E(x)A(x), kde E(x) je Youngův modul pružnosti a A(x) je plocha průřezu prutu, q(x) je měrný odpor podloží, na němž prut spočívá, f(x) je intenzita zatížení,  $g_0, g_\ell$  jsou předepsaná posunutí konců prutu,  $\alpha_0, \alpha_\ell$  jsou tuhosti pružin v koncových bodech prutu a  $\beta_0, \beta_\ell$  jsou zadané síly působících na koncích prutu. Tatáž úloha popisuje také průhyb tenkého prutu, někdy se také hovoří o průhybu struny.

Jinou aplikací popsanou formálně stejnými rovnicemi a okrajovými podmínkami je například stacionární úloha vedení tepla v tyči. Pak u(x) je teplota, p(x) je koeficient tepelné vodivosti, q(x) je koeficient přestupu tepla "povrchem" tyče do obklopujícího prostředí,  $f(x) = f_z + qu_e$  je součtem tepelného zdroje  $f_z(x)$  a tepelného toku  $qu_e$  ( $u_e(x)$ je teplota obklopující "povrch" tyče),  $g_0$ ,  $g_\ell$  jsou předepsané teploty okrajů tyče,  $\alpha_0$ ,  $\alpha_\ell$ jsou koeficienty přestupu tepla okraji tyče a  $\beta_0$ ,  $\beta_\ell$  jsou zadané tepelné toky na okrajích tyče. Rovnice (1.2) pak má tvar

$$-(p u')' + q(u - u_e) = f_z.$$

Newtonovy okrajové podmínky se v úloze vedení tepla obvykle píší ve tvaru

$$p(0)u'(0) = \alpha_0(u(0) - u_0), \qquad -p(\ell)u'(\ell) = \alpha_\ell(u(\ell) - u_\ell),$$

kde  $u_0, u_\ell$  jsou teploty okolí konců tyče.

Úloha (1.1)-(1.4) může být modelem i pro jiné problémy, například z oblasti potenciálního proudění tekutin, elektrostatického potenciálu atd.

Funkci  $u \in C^2(0, \ell)$ , vyhovující rovnici (1.2) a splňující jednu z okrajových podmínek (1.3) a jednu z okrajových podmínek (1.4), nazveme *klasickým řešením* úlohy (1.1)– (1.4). Pro existenci klasického řešení je třeba předpokládat dostatečnou hladkost dat, tedy splnění *"podmínek hladkosti"* 

$$p \in C^1(0, \ell), \ q, f \in C(0, \ell).$$
 (1.5a)

Dále budeme v souladu s fyzikálním významem dat předpokládat splnění "fyzikálních podmínek"

$$p(x) \ge p_0 > 0, \ q(x) \ge 0 \ v \ \langle 0, \ell \rangle, \ \alpha_0 \ge 0, \ \alpha_\ell \ge 0.$$

$$(1.5b)$$

Pro jednoznačnost řešení je třeba ještě připojit "podmínky uložení", a sice že

je splněna alespoň jedna z následujících tří podmínek :

- a) platí buď to okrajová podmínka (1.3a) nebo (1.4a); (1.5c)
- b)  $q(x) \ge q_0 > 0$  na části intervalu  $\langle 0, \ell \rangle$ ;
- c)  $\alpha_0 > 0$  nebo  $\alpha_\ell > 0$ .

Jsou-li tedy splněny podmínky (1.5), má úloha (1.1) - (1.4) jediné řešení.

**Poznámka 1.** Není-li splněna žádná z podmínek (1.5c), je úloha (1.1)-(1.4) tvaru

$$-(p u')' = f, \qquad p(0)u'(0) = -\beta_0, \quad -p(\ell)u'(\ell) = -\beta_\ell$$
(1.6)

a nazývá se Neumannova úloha. Její řešení je

$$u(x) = C + \int \frac{z(x)}{p(x)} dx, \quad \text{kde } z(x) = p(x)u'(x) = -\beta_0 - \int_0^x f(s) ds$$
(1.7)

a kde C je libovolná konstanta. Jestliže  $-z(\ell) = -p(\ell)u'(\ell) = -\beta_{\ell}$ , tedy je-li splněna podmínka rovnováhy

$$\beta_0 + \beta_\ell + \int_0^\ell f(s) \, \mathrm{d}s = 0 \,, \tag{1.8}$$

má Neumannova úloha (1.7) nekonečně mnoho řešení navzájem se lišících o konstantu C. Pokud však podmínka rovnováhy (1.8) splněna není, Neumannova úloha (1.6) řešení vůbec nemá.

#### b) Slabá formulace

*Funkci*  $v \in C^1(0, \ell)$  nazveme *testovací*, je-li rovna nule v tom krajním bodě intervalu  $\langle 0, \ell \rangle$ , v němž je předepsána Dirichletova okrajová podmínka. Pro konkrétnost se omezíme na okrajové podmínky (1.3a) a (1.4b), takže testovací funkce v splňuje v(0) = 0. Násobme rovnici (1.2) testovací funkcí v a integrujme přes  $\langle 0, \ell \rangle$ . Integrací per-partes členu  $\int_0^\ell [-(pu')'] v \, dx$  a následným užitím okrajové podmínky (1.4b) a vztahu v(0) = 0 obdržíme

$$\int_0^\ell f v \, \mathrm{d}x = \int_0^\ell \left[ -(pu')' + qu \right] v \, \mathrm{d}x = -pu'v \Big|_{x=0}^{x=\ell} + \int_0^\ell \left[ pu'v' + quv \right] \, \mathrm{d}x = \\ = \left[ \alpha_\ell u(\ell) - \beta_\ell \right] v(\ell) + \int_0^\ell \left[ pu'v' + quv \right] \, \mathrm{d}x.$$

Odvodili jsme tedy, že řešení u úlohy (1.2), (1.3a), (1.4b) musí splňovat kromě Dirichletovy okrajové podmínky  $u(0) = g_0$  také rovnost

$$\int_0^\ell \left[ p u' v' + q u v \right] \, \mathrm{d}x + \alpha_\ell u(\ell) v(\ell) = \int_0^\ell f v \, \mathrm{d}x + \beta_\ell v(\ell) \tag{1.9}$$

pro každou funkci  $v \in C^1\langle 0, \ell \rangle$ , v(0) = 0. Okrajová podmínka (1.4b) Newtonova typu, která se stala součástí integrální rovnice (1.9) a je tak automaticky splněna, se nazývá *přirozenou okrajovou podmínkou*. Dirichletovu okrajovou podmínku (1.3a), která součástí rovnice (1.9) není a jejíž explicitní splnění proto musíme vyžadovat, nazýváme *podstatnou* nebo také *hlavní okrajovou podmínkou*. Rovnice (1.9) je dobře definována i v případě, kdy funkce u a v jsou z prostoru  $X \equiv H^1(0, \ell)$ . Testovací funkce pak volíme z *prostoru*  $V = \{v \in X | v(0) = 0\}$  testovacích funkcí a řešení u z množiny  $W = \{v \in X | v(0) = g_0\}$ *přípustných řešení*. Dále označíme

$$a(u,v) = \int_0^\ell \left[ pu'v' + quv \right] dx + \alpha_\ell u(\ell)v(\ell),$$
  

$$L(v) = \int_0^\ell fv \, dx + \beta_\ell v(\ell).$$
(1.10)

Pak úlohu

najít 
$$u \in W$$
 splňující  $a(u, v) = L(v) \quad \forall v \in V$  (1.11)

nazýváme slabou (nebo také variační) formulací problému (1.2), (1.3a), (1.4b). Řešení úlohy (1.11) nazveme slabým řešením. Zeslabené podmínky hladkosti

$$p, q, f \in PC(0, \ell) \tag{1.5a'}$$

spolu s předpoklady (1.5b) a (1.5c) zaručují jednoznačnou existenci slabého řešení. Slabá formulace má v úloze tahu–tlaku prutu význam *principu virtuálních posunutí* a samotné testovací funkce  $v \in V$  mají význam virtuálních posunutí  $\delta u$  přípustných řešení  $u \in W$ . Formulace problému založená na principu virtuálních posunutí je obecnější než formulace popsaná diferenciální rovnicí. Je tomu tak proto, že "diferenciální formulaci" (1.2), (1.3a), (1.4b) lze při platnosti podmínek (1.5a) a pro  $u \in C^2 \langle 0, \ell \rangle$  odvodit z formulace slabé postupem opačným k tomu, jímž jsme získali rovnost (1.11).

**Poznámka 2.** Uveď me si tvar V, W, a(u, v) a L(v) pro všechny možné kombinace okrajových podmínek.

(aa) Okrajové podmínky (1.3a), (1.4a)

$$V = \{ v \in X \mid v(0) = v(\ell) = 0 \}, \quad W = \{ v \in X \mid v(0) = g_0, v(\ell) = g_\ell \},$$
  
$$a(u, v) = \int_0^\ell [pu'v' + quv] \, \mathrm{d}x, \quad L(v) = \int_0^\ell fv \, \mathrm{d}x \,.$$
(1.12aa)

(ab) Okrajové podmínky (1.3a), (1.4b)

$$V = \{ v \in X \mid v(0) = 0 \}, \quad W = \{ v \in X \mid v(0) = g_0 \},$$
  
$$a(u, v) = \int_0^\ell [pu'v' + quv] \, dx + \alpha_\ell u(\ell)v(\ell), \quad L(v) = \int_0^\ell fv \, dx + \beta_\ell v(\ell) \,.$$
(1.12ab)

(ba) Okrajové podmínky (1.3b), (1.4a)

$$V = \{ v \in X \mid v(\ell) = 0 \}, \quad W = \{ v \in X \mid v(\ell) = g_{\ell} \},$$
  
$$a(u,v) = \int_{0}^{\ell} [pu'v' + quv] \, dx + \alpha_{0}u(0)v(0), \quad L(v) = \int_{0}^{\ell} fv \, dx + \beta_{0}v(0) \,.$$
(1.12ba)

(bb) Okrajové podmínky (1.3b), (1.4b)

$$V = X, \quad W = X,$$
  

$$a(u, v) = \int_0^\ell [pu'v' + quv] \, dx + \alpha_0 u(0)v(0) + \alpha_\ell u(\ell)v(\ell),$$
  

$$L(v) = \int_0^\ell fv \, dx + \beta_0 v(0) + \beta_\ell v(\ell) \,.$$
  
(1.12bb)

Ve všech těchto čtyřech případech je zaručena jednoznačná existence slabého řešení úlohy (1.11).  $\hfill\square$ 

**Poznámka 3.** Jak jsme již uvedli, v úloze tahu–tlaku prutu má  $\beta_0$  resp.  $\beta_\ell$  význam síly a  $\alpha_0$  resp.  $\alpha_\ell$  má význam tuhosti pružiny působící v levém resp. pravém konci prutu. Ve slabé formulaci je účinek sil reprezentován jejich virtuální prací  $\beta_0 v(0)$  resp.  $\beta_\ell v(\ell)$  jako součást virtuální práce L(v) vnějších sil a vliv pružin je zohledněn započtením virtuálních prací  $\alpha_0 u(0)v(0)$  resp.  $\alpha_\ell u(\ell)v(\ell)$  do virtuální práce a(u, v) vnitřních sil. Je proto přirozené očekávat, že síla  $\beta_c$  působící ve vnitřním bodě c přispěje k virtuální práci vnějších sil prací  $\beta_c v(c)$  a pružina tuhosti  $\alpha_c$  umístěná ve vnitřním bodě c přispěje k virtuální práci vnějších sil prací  $\beta_c v(c)$ . Ukažme si, že tomu tak skutečně je. Bodové zatížení  $\beta_c$  lze považovat za idealizované vyjádření spojitého zatížení intenzity  $f_{\varepsilon}(x) = \beta_c/2\varepsilon$  působícího na úseku  $(c - \varepsilon, c + \varepsilon)$ , kde  $\varepsilon$  je velmi malé číslo. Pak totiž  $\int_0^\ell f_{\varepsilon} dx = \beta_c$  a současně užitím věty o střední hodnotě pro  $v \in C\langle 0, \ell \rangle$  dostaneme  $\lim_{\varepsilon \to 0} \int_0^\ell f_{\varepsilon} v dx = \beta_c v(c)$ . Zcela analogicky lze bodový účinek reprezentovaný pružinou o tuhosti  $\alpha_c$  považovat za idealizované spojité pružné uložení na úseku  $(c - \varepsilon, c + \varepsilon)$ , na kterém intenzita pružného odporu  $q_{\varepsilon}(x) = \alpha_c/2\varepsilon$ . Pak  $\int_0^\ell q_{\varepsilon} dx = \alpha_c$  a současně  $\lim_{\varepsilon \to 0} \int_0^\ell q_{\varepsilon} uv \, dx = \alpha_c u(c)v(c)$ .

Jsou-li  $\beta_i$  síly a  $\alpha_i$  tuhosti pružin působících v bodech  $c_i$ , můžeme a(u, v) a L(v) zapsat ve tvaru

$$a(u,v) = \int_{0}^{\ell} [pu'v' + quv] \, dx + \sum_{i} \alpha_{i}u(c_{i})v(c_{i}),$$

$$L(v) = \int_{0}^{\ell} fv \, dx + \sum_{i} \beta_{i}v(c_{i}),$$
(1.13)

přičemž v závislosti na okrajových podmínkách, v souladu s (1.12), jsou do  $\sum_i \alpha_i u(c_i)v(c_i)$ zahrnuty také členy  $\alpha_0 u(0)v(0)$ ,  $\alpha_\ell u(\ell)v(\ell)$  a do  $\sum_i \beta_i v(c_i)$  také členy  $\beta_0 v(0)$ ,  $\beta_\ell v(\ell)$ . Příslušné slabé řešení úlohy (1.11) existuje a je určeno jednoznačně. Úloha (1.11) pro a(u, v), L(v) podle (1.13) a V, W podle (1.12) má význam i pro jiné aplikace než je úloha tahu–tlaku prutu. Tak například v úloze vedení tepla reprezentuje  $\beta_i - \alpha_i u(c_i)$  intenzitu bodového tepelného zdroje působícího v bodě  $c_i$ . Výše zmíněnou úlohu lze však uvažovat také zcela abstraktně, bez vztahu ke konkrétní technické aplikaci. Přitom z předpokladu  $q \geq 0$ , viz (1.5b), dostáváme pro zaručení existence slabého řešení požadavek  $\alpha_i \geq 0$  ve všech bodech  $c_i$ , pro jednoznačnost slabého řešení stačí v případě okrajových podmínek (1.3b), (1.4b) a pro q = 0 žádat  $\alpha_i > 0$  alespoň v jednom bodě  $c_i$ . Pro úlohu (1.13) tedy dostáváme fyzikální podmínky

$$p(x) \ge p_0 > 0, \ q(x) \ge 0 \ v \ \langle 0, \ell \rangle, \ \alpha_i \ge 0 \text{ pro všechna } i,$$
 (1.5b')

a podmínky uložení vyžadující, že

je splněna alespoň jedna z následujících tří podmínek :

- a) platí buď to okrajová podmínka (1.3a) nebo (1.4a); (1.5c')
- b)  $q(x) \ge q_0 > 0$  na části intervalu  $\langle 0, \ell \rangle$ ;
- c)  $\alpha_i > 0$  pro nějaké *i*.

**Poznámka 4.** Dirichletovu okrajovou podmínku  $u(0) = g_0$  resp.  $u(\ell) = g_\ell$  lze přibližně realizovat pomocí Newtonovy okrajové podmínky

 $p(0)u'(0) = \alpha_0[u(0) - g_0]$  resp.  $-p(\ell)u'(\ell) = \alpha_\ell[u(\ell) - g_\ell]$ 

pro velké  $\alpha_0$  resp.  $\alpha_\ell$ . Tuto skutečnost si ilustrujme na dvou příkladech.

- a) V úloze tahu–tlaku prutu se nejčastěji setkáváme s homogenní Dirichletovou okrajovou podmínkou u(0) = 0 resp.  $u(\ell) = 0$ . Je zřejmé, že nulové posunutí lze zajistit připojením příslušného konce prutu k velmi tuhé pružině, což odpovídá velké hodnotě  $\alpha_0$  resp.  $\alpha_\ell$ .
- b) V úloze vedení tepla má  $\alpha_0$  resp.  $\alpha_\ell$  význam koeficientu přestupu tepla. Čím větší je hodnota tohoto koeficientu, tím více se teplota u(0) resp.  $u(\ell)$  přiblíží k teplotě okolí, kterou reprezentuje právě  $g_0$  resp.  $g_\ell$ .

Ukazuje se tedy, že při řešení praktických úloh plně vystačíme s okrajovými podmínkami (1.3b) a (1.4b), takže se můžeme zabývat úlohou (1.11) pouze pro

$$V = W = X \tag{1.14}$$

a pro a(u, v) a L(v) určené rovnicemi (1.13). Jsou-li splněny podmínky (1.5a'), (1.5b') a (1.5c':b-c), má úloha (1.11), (1.13), (1.14) právě jedno slabé řešení.

#### c) Metoda konečných prvků

Na intervalu  $\langle 0, \ell \rangle$  zvolíme dělení  $0 = x_0 < x_1 \cdots < x_N = \ell$  a na každé úsečce  $\langle x_{i-1}, x_i \rangle$  délky  $h_i = x_i - x_{i-1}$  hledáme přibližné řešení U(x) ve tvaru lineárního polynomu procházejícího body  $(x_{i-1}, U_{i-1})$  a  $(x_i, U_i)$ , takže

$$U(x) = U_{i-1}w_{i-1}(x) + U_iw_i(x), \quad \text{kde } w_{i-1}(x) = \frac{x_i - x}{h_i}, \quad w_i(x) = \frac{x - x_{i-1}}{h_i}.$$

Funkce U(x) je tedy na celém intervalu  $\langle 0, \ell \rangle$  po částech lineární funkcí určenou předpisem

$$U(x) = \sum_{i=0}^{N} U_i w_i(x),$$
(1.15)

kde  $w_i(x)$  se jsou tzv. bázové funkce, lineární na každé úsečce  $\langle x_{k-1}, x_k \rangle$  a takové, že



Obr. 1.1. Lineární Lagrangeovy bázové funkce

Úsečku  $\langle x_{k-1}, x_k \rangle$ , na které je definována lineární funkce určená svými hodnotami v uzlech  $x_{k-1}$  a  $x_k$ , nazýváme lineárním Lagrangeovým konečným prvkem nebo také elementem. Nechť  $h = \max_{1 \le i \le N} h_i$  je délka největšího dílku dělení  $\{x_i\}_{i=0}^N$ . Prostor všech po částech lineárních funkcí (nebo-li lineárních splajnů) označme  $X_h$ . Zřejmě  $X_h \subset X$ je prostor dimenze N + 1 s bází  $\{w_i(x)\}_{i=0}^N$ . Nechť  $V_h = V \cap X_h$  a  $W_h = W \cap X_h$ . Pak přibližné řešení U, tzv. MKP-slabé řešení, obdržíme z diskrétní slabé (variační) formulace

najít 
$$U \in W_h$$
 splňující  $a_h(U, v) = L_h(v) \quad \forall v \in V_h.$  (1.16)

Přitom index h při  $a_h(U, v)$  resp.  $L_h(v)$  značí, že integrál  $\int_0^\ell [pU'v' + qUv] dx v a(U, v)$  resp.  $\int_0^\ell fv dx v L(v)$  počítáme numericky vhodnou kvadraturní formulí. Předpokládejme, že a(u, v) a L(v) je tvaru (1.13) a že uzly  $x_i$  dělení jsou zvoleny tak, aby případné body nespojitostí funkcí p, q, f jakož i působiště  $c_i$  bodových účinků byly umístěny právě v těchto uzlech. Dále předpokládejme  $c_i = x_i$  s tím, že pokud v uzlu  $x_i$  "síla" resp. "pružina" nepůsobí, klademe  $\beta_i = 0$  resp.  $\alpha_i = 0$ . Označíme-li  $I^k(\varphi)$  přibližně spočtenou hodnotu  $\int_{x_{k-1}}^{x_k} \varphi dx$ , je

$$a_{h}(U,v) = \sum_{k=1}^{N} I^{k}(pU'v' + qUv) + \sum_{i=0}^{N} \alpha_{i}U(x_{i})v(x_{i}),$$

$$L_{h}(v) = \sum_{k=1}^{N} I^{k}(fv) + \sum_{i=0}^{N} \beta_{i}v(x_{i}).$$
(1.17)

Zvolíme-li v (1.16)  $v = w_i$ , pak pro i = 1, ..., N - 1 dostaneme

$$I^{i}(pU'w'_{i}) + I^{i}(qUw_{i}) + I^{i+1}(pU'w'_{i}) + I^{i+1}(qUw_{i}) + \alpha_{i}U_{i} = I^{i}(fw_{i}) + I^{i+1}(fw_{i}) + \beta_{i}, \qquad (1.18)$$

neboť pro  $x \notin (x_{i-1}, x_{i+1})$  je  $w_i(x) = 0$  a  $w_i(x_i) = 1$ . Pro přibližné řešení U a bázovou funkci  $w_i$  platí

$$U = U_{i-1} \frac{x_i - x}{h_i} + U_i \frac{x - x_{i-1}}{h_i}, \quad w_i = \frac{x - x_{i-1}}{h_i} \quad \text{na } \langle x_{i-1}, x_i \rangle,$$

$$U = U_i \frac{x_{i+1} - x}{h_{i+1}} + U_{i+1} \frac{x - x_i}{h_{i+1}}, \quad w_i = \frac{x_{i+1} - x}{h_{i+1}} \quad \text{na } \langle x_i, x_{i+1} \rangle.$$
(1.19)

Odtud

$$U' = \frac{U_i - U_{i-1}}{h_i}, \quad w'_i = \frac{1}{h_i} \quad \text{na} \ (x_{i-1}, x_i),$$
  

$$U' = -\frac{U_i - U_{i+1}}{h_{i+1}}, \quad w'_i = -\frac{1}{h_{i+1}} \quad \text{na} \ (x_i, x_{i+1}).$$
(1.20)

 $I^{k}(pU'w'_{i})$  spočteme obdélníkovou formulí,  $I^{k}(qUw_{i})$  a  $I^{k}(fw_{i})$  formulí lichoběžníkovou. Protože funkce q a f mohou být v uzlech  $x_{i}$  nespojité, označme jejich limity v bodě  $x_{i}$  zleva  $q_{i-}$  a  $f_{i-}$  a limity zprava  $q_{i+}$  a  $f_{i+}$ . Užitím (1.19), (1.20) a označení  $p_{i-\frac{1}{2}} = p(x_i - \frac{1}{2}h_i)$ ,  $p_{i+\frac{1}{2}} = p(x_i + \frac{1}{2}h_{i+1})$  vyjádříme

,

$$\begin{split} I^{i}(pU'w'_{i}) &= h_{i}p_{i-\frac{1}{2}}\frac{U_{i}-U_{i-1}}{h_{i}}\frac{1}{h_{i}} = p_{i-\frac{1}{2}}\frac{U_{i}-U_{i-1}}{h_{i}}, \\ I^{i+1}(pU'w'_{i}) &= h_{i+1}p_{i+\frac{1}{2}}\left(-\frac{U_{i}-U_{i+1}}{h_{i+1}}\right)\left(-\frac{1}{h_{i+1}}\right) = p_{i+\frac{1}{2}}\frac{U_{i}-U_{i+1}}{h_{i+1}}, \\ I^{i}(qUw_{i}) &= \frac{1}{2}h_{i}[q_{i-1,+}U_{i-1}\cdot 0 + q_{i-}U_{i}\cdot 1] = \frac{1}{2}h_{i}q_{i-}U_{i}, \\ I^{i+1}(qUw_{i}) &= \frac{1}{2}h_{i+1}[q_{i+}U_{i}\cdot 1 + q_{i+1,-}U_{i+1}\cdot 0] = \frac{1}{2}h_{i+1}q_{i+}U_{i}, \\ I^{i}(fw_{i}) &= \frac{1}{2}h_{i}[f_{i-1,+}\cdot 0 + f_{i-}\cdot 1] = \frac{1}{2}h_{i}f_{i-}, \\ I^{i+1}(fw_{i}) &= \frac{1}{2}h_{i+1}[f_{i+}\cdot 1 + f_{i+1,-}\cdot 0] = \frac{1}{2}h_{i+1}f_{i+}. \end{split}$$

Dosadíme-li odtud do (1.18), obdržíme

$$p_{i-\frac{1}{2}} \frac{U_i - U_{i-1}}{h_i} + p_{i+\frac{1}{2}} \frac{U_i - U_{i+1}}{h_{i+1}} + \frac{1}{2} [h_i q_{i-} + h_{i+1} q_{i+}] U_i + \alpha_i U_i =$$

$$= \frac{1}{2} [h_i f_{i-} + h_{i+1} f_{i+}] + \beta_i$$
(1.21-i)

pro $i=1,\ldots,N-1.$ Podobně odvodíme

$$p_{\frac{1}{2}}\frac{U_0 - U_1}{h_1} + \frac{1}{2}h_1q_{0+}U_0 + \alpha_0 U_0 = \frac{1}{2}h_1f_{0+} + \beta_0$$
(1.21-0)

pro i = 0 a

$$p_{N-\frac{1}{2}}\frac{U_N - U_{N-1}}{h_N} + \frac{1}{2}h_N q_{N-1}U_N + \alpha_N U_N = \frac{1}{2}h_N f_{N-1} + \beta_N$$
(1.21-N)

pro i = N. Soustava rovnic (1.21) má symetrickou pozitivně definitní a tedy regulární matici. Řešení  $U_0, \ldots, U_N$  soustavy rovnic (1.21) určuje MKP-slabé řešení U(x). Pro chybu u - U a její derivaci platí za předpokladu  $u \in C^2(0, \ell)$  odhad

$$\max_{1 \le i \le N} \max_{x_{i-1} \le x \le x_i} \left| \frac{\mathrm{d}^j}{\mathrm{d}x^j} (u - U) \right| = O(h^{2-j}) \quad \text{pro} \quad j = 0, 1.$$
(1.22)

**Poznámka 5.** Nechť v uzlu  $x_i$ ,  $i \in I \subset \{0, ..., N\}$ , je předepsána vazba  $u(x_i) = g_i$ . Pak v souladu s poznámkou 4 můžeme užít "pružinovou techniku" a zvolit  $\alpha_i = \kappa$ ,  $\beta_i = \kappa g_i$  pro  $i \in I$ , kde  $\kappa$  je velké číslo. Jinou možností je následující "eliminační postup":

- a) vypustíme rovnice příslušné proměnným  $U_i, i \in I;$
- b) ve zbývajících rovnicích dosadíme  $U_i = g_i$ a členy obsahující  $g_i$  převedeme na pravou stranu;

c) vzniklou soustavu rovnic pro neznámé  $U_j, j \in \{0, ..., N\} - I$ , vyřešíme.

Eliminační technika je ekvivalentní úloze (1.16) pro  $V_h = \{v \in X_h | v(x_i) = 0 \ \forall i \in I\},$  $W_h = \{v \in X_h | v(x_i) = g_i \ \forall i \in I\}.$ 

**Poznámka 6.** Nechť u je slabé řešení úlohy (1.11), ve které p je funkce po částech konstantní a q = 0. Zvolme dělení  $\{x_i\}_{i=0}^N$  intervalu  $\langle 0, \ell \rangle$  tak, aby mezi jeho uzly patřily body nespojitostí funkce p a působiště  $c_i$  sil a pružin. Pak MKP-slabé řešení úlohy

najít  $U \in W_h$  splňující  $a(U, v) = L(v) \quad \forall v \in V_h$ 

nabývá v uzlech stejných hodnot jako slabé řešení, tj. platí  $U(x_i) = u(x_i)$  pro i = 0, ..., N. Důkaz. Platí  $a(\delta, w_i) = 0$  pro  $\delta = u - U$ . Nechť  $p^i$  označuje konstantní hodnotu funkce pna intervalu  $(x_{i-1}, x_i)$ . Pro i = 1, ..., N - 1 integrací per-partes dostaneme

$$0 = a(\delta, w_i) = \int_{x_{i-1}}^{x_i} p^i \delta' w'_i \, \mathrm{d}x + \int_{x_i}^{x_{i+1}} p^{i+1} \delta' w'_i \, \mathrm{d}x + \alpha_i \delta_i =$$
$$= p^i \delta w'_i \Big|_{x_{i-1}}^{x_i} + p^{i+1} \delta w'_{i+1} \Big|_{x_i}^{x_{i+1}} + \alpha_i \delta_i$$

nebo-li

$$p^i \frac{\delta_i - \delta_{i-1}}{h_i} + p^{i+1} \frac{\delta_i - \delta_{i+1}}{h_{i+1}} + \alpha_i \delta_i = 0.$$

kde  $\delta_i = u(x_i) - U(x_i)$ . Podobně dostaneme

$$p^1\frac{\delta_0-\delta_1}{h_1}+\alpha_0\delta_0=0$$

proi=0 a

$$p^N \frac{\delta_N - \delta_{N-1}}{h_N} + \alpha_N \delta_N = 0$$

pro i = N. Soustava lineárních rovnic pro neznámé  $\delta_i$  má regulární matici a protože pravé strany jsou nulové, je  $\delta_i = u(x_i) - U(x_i) = 0, i = 0, \dots, N$ .  $\Box$ 

Slabé řešení u na intervalu  $(x_{i-1}, x_i)$  lze dopočítat řešením "lokální úlohy"

$$-p^{i}u'' = f^{i}$$
 pro  $x \in (x_{i-1}, x_{i}),$   $u(x_{i-1}) = U_{i-1}, u(x_{i}) = U_{i}$ 

kde  $f^{i}(x)$  je restrikce funkce f(x) na interval  $(x_{i-1}, x_i)$ .

Právě uvedený postup umožňující získat "přesné" řešení, například úlohy tahu–tlaku prutu, je inženýrům dobře znám a standardně se používal při řešení prutových soustav tzv. diferenční metodou ještě v éře před nástupem metody konečných prvků.  $\int_{x_{i-1}}^{x_i} f^i v \, dx$ , které vystupují na pravých stranách soustavy rovnic definujících MKP-slabé řešení U, se spočítají snadno, neboť funkce  $f^i$  bývá jednoduchá, nejčastěji konstantní nebo lineární. Z téhož důvodu lze snadno vyřešit i příslušné lokální úlohy. **Poznámka 7.** Soustavu rovnic (1.21) pro neznámé parametry  $U_0, \ldots, U_N$  jsme sestavili přímo, z rovnic  $a_h(U, w_i) = L_h(w_i), i = 0, \ldots, N$ . Ukážeme si nyní jiný postup, v MKP standardně používaný, založený na použití tzv. elementárních matic a vektorů.

Nechť  $v(x) = \sum_{i=0}^{N} \Theta_i w_i(x) \in V_h$  je libovolná testovací funkce (tj.  $\Theta_i = v(x_i)$  je libovolné číslo) a  $U(x) = \sum_{i=0}^{N} \Delta_i w_i(x), \Delta_i = U_i$ , je MKP-slabé řešení. Pak z (1.16) plyne

$$0 = a_h(U, v) - L_h(v) = a_h\left(\sum_{j=0}^N \Delta_j w_j, \sum_{i=0}^N \Theta_i w_i\right) - L_h\left(\sum_{i=0}^N \Theta_i w_i\right) =$$

$$= \sum_{i=0}^N \Theta_i \left[\sum_{j=0}^N a_h(w_j, w_i)\Delta_j - L_h(w_i)\right] = \Theta^T \left[\mathbf{K} \mathbf{\Delta} - \mathbf{F}\right],$$
(1.23)

kde  $\Theta = (\Theta_0, \dots, \Theta_N)^T$ ,  $\mathbf{K} = \{k_{ij}\}_{i,j=0}^N$  pro  $k_{ij} = a_h(w_j, w_i)$ ,  $\boldsymbol{\Delta} = (\Delta_0, \dots, \Delta_N)^T$  a  $\mathbf{F} = (F_0, \dots, F_N)^T$  pro  $F_i = L_h(w_i)$ . Protože  $\Theta$  je libovolný vektor, musí platit

$$\mathbf{K}\boldsymbol{\Delta} = \mathbf{F}.\tag{1.24}$$

Rovnice této soustavy jsme již odvodili, jsou to postupně rovnice (1.21-0), (1.21-i) pro  $i = 1, \ldots, N - 1$  a (1.21-N). Matice **K** bývá označována jako *matice tuhosti* a vektor **F** jako vektor zatížení. Toto pojmenování pochází z prvních aplikací MKP v pružnosti a stalo se univerzálním označením pro matici soustavy a pro vektor pravé strany v soustavě rovnic vzniklé diskretizací jakékoliv úlohy MKP. Soustavu rovnic (1.24) sestavíme pomocí tzv. elementárních matic tuhosti **K**<sup>i</sup> a elementárních vektorů zatížení **F**<sup>i</sup> příslušných elementům  $\langle x_{i-1}, x_i \rangle$ ,  $i = 1, \ldots, N$ . Označme  $w_1^i(x) = w_{i-1}(x)$ ,  $w_2^i(x) = w_i(x)$ ,  $\Theta_1^i = \Theta_{i-1}$ ,  $\Theta_2^i = \Theta_i$ ,  $\Delta_1^i = \Delta_{i-1}$ ,  $\Delta_2^i = \Delta_i$ . Pak na  $\langle x_{i-1}, x_i \rangle$  je

$$\begin{split} I^{i}(p\,U'v') &= I^{i}([\Theta_{1}^{i}w_{1}^{i} + \Theta_{2}^{i}w_{2}^{i}]'p\,[\Delta_{1}^{i}w_{1}^{i} + \Delta_{2}^{i}w_{2}^{i}]') = \\ &= \left(\Theta_{1}^{i} \quad \Theta_{2}^{i}\right) \begin{pmatrix} I^{i}([w_{1}^{i}]'p\,[w_{1}^{i}]') & I^{i}([w_{1}^{i}]'p\,[w_{2}^{i}]') \\ I^{i}([w_{2}^{i}]'p\,[w_{1}^{i}]') & I^{i}([w_{2}^{i}]'p\,[w_{2}^{i}]') \end{pmatrix} \begin{pmatrix} \Delta_{1}^{i} \\ \Delta_{2}^{i} \end{pmatrix} = [\Theta^{i}]^{T}\mathbf{K}^{i1}\mathbf{\Delta}^{i}, \end{split}$$

kde

$$\boldsymbol{\Theta}^{i} = \begin{pmatrix} \Theta_{1}^{i} \\ \Theta_{2}^{i} \end{pmatrix}, \qquad \mathbf{K}^{i1} = \frac{p_{i-\frac{1}{2}}}{h_{i}} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \quad \mathbf{a} \quad \boldsymbol{\Delta}^{i} = \begin{pmatrix} \Delta_{1}^{i} \\ \Delta_{2}^{i} \end{pmatrix}.$$

Podobně odvodíme

$$I^{i}(qUv) = [\boldsymbol{\Theta}^{i}]^{T} \mathbf{K}^{i2} \boldsymbol{\Delta}^{i}, \quad \text{kde} \quad \mathbf{K}^{i2} = \frac{1}{2} h_{i} \begin{pmatrix} q_{i-1,+} & 0\\ 0 & q_{i-} \end{pmatrix},$$

položíme  $\mathbf{K}^i = \mathbf{K}^{i1} + \mathbf{K}^{i2},$ a dále odvodíme

$$I^{i}(fv) = [\mathbf{\Theta}^{i}]^{T} \mathbf{F}^{i}, \quad \text{kde} \quad \mathbf{F}^{i} = \frac{1}{2} h_{i} \begin{pmatrix} f_{i-1,+} \\ f_{i-} \end{pmatrix}.$$

Z rovnice

$$0 = a_{h}(U, v) - L_{h}(v) = \\ = \left[\sum_{i=1}^{N} I^{i}(pU'v' + qUv) + \sum_{i=0}^{N} \alpha_{i}U(x_{i})v(x_{i})\right] - \left[\sum_{i=1}^{N} I^{i}(fv) + \sum_{i=0}^{N} \beta_{i}v(x_{i})\right] = \\ = \sum_{i=1}^{N} [\Theta^{i}]^{T} [\mathbf{K}^{i} \Delta^{i} - \mathbf{F}^{i}] + \sum_{i=0}^{N} \Theta_{i} [\alpha_{i} \Delta_{i} - \beta_{i}]$$

a rovnice (1.23) dostaneme rovnost

$$\boldsymbol{\Theta}^{T} \left[ \mathbf{K} \boldsymbol{\Delta} - \mathbf{F} \right] = \sum_{i=1}^{N} [\boldsymbol{\Theta}^{i}]^{T} \left[ \mathbf{K}^{i} \boldsymbol{\Delta}^{i} - \mathbf{F}^{i} \right] + \sum_{i=0}^{N} \boldsymbol{\Theta}_{i} [\alpha_{i} \Delta_{i} - \beta_{i}], \qquad (1.25)$$

z níž plyne postup, jak pomocí elementárních matic  $\mathbf{K}^i = \{k_{rs}^i\}_{r,s=1}^2$ , elementárních vektorů  $\mathbf{F}^i = (F_1^i, F_2^i)^T$  a čísel  $\alpha_i, \beta_i$  sestavit globální matici  $\mathbf{K}$  a globální vektor  $\mathbf{F}$ : stačí srovnat členy se stejnými indexy u parametrů  $\Theta$  a  $\Delta$  (pro určení prvků matice  $\mathbf{K}$ ) nebo jen u parametru  $\Theta$  (pro určení prvků vektoru  $\mathbf{F}$ ) na levé a na pravé straně rovnice (1.25). Soustava rovnic (1.24) se symetrickou třídiagonální maticí je tvaru

a pro její nenulové koeficienty odvodíme

$$a_{0} = k_{11}^{1} + \alpha_{0}, \qquad b_{0} = k_{12}^{1}, \quad F_{0} = F_{1}^{1} + \beta_{0}, \\ a_{i} = k_{22}^{i} + k_{11}^{i+1} + \alpha_{i}, \quad b_{i} = k_{12}^{i+1}, \quad F_{i} = F_{2}^{i} + F_{1}^{i+1} + \beta_{i}, \quad i = 1, \dots, N-1, \\ a_{N} = k_{22}^{N} + \alpha_{N}, \qquad F_{N} = F_{2}^{N} + \beta_{N}.$$

Snadno ověříme, že jsme opravdu dostali rovnice (1.21).

Jestliže chceme pro q = 0 získat  $U(x_i) = u(x_i)$  přesné, viz poznámka 6, musíme při výpočtu  $\mathbf{F}^i$  integrovat přesně. Pro  $f^i(x) = f^i$  na elementu konstantní dostaneme

$$\mathbf{F}^{i} = \frac{1}{2}h_{i}f^{i}\begin{pmatrix}1\\1\end{pmatrix}$$

a pro lineární  $f^i(x)=f^i(x_{i-1})w^i_1(x)+f^i(x_i)w^i_2(x)$ obdržíme

$$\mathbf{F}^{i} = \frac{1}{6} h_{i} \begin{pmatrix} 2f^{i}(x_{i-1}) + f^{i}(x_{i}) \\ f^{i}(x_{i-1}) + 2f^{i}(x_{i}) \end{pmatrix}. \quad \Box$$

# 1.2. Okrajový problém pro ODR4

#### a) Klasická formulace

Hledáme funkci

$$u(x) \in C^4 \langle 0, \ell \rangle, \tag{1.26}$$

která vyhovuje diferenciální rovnici

$$(p u'')'' - (r u')' + q u = f \qquad v (0, \ell).$$
(1.27)

Pokud jde o okrajové podmínky, nabízí se nám více možností než pro rovnici druhého řádu. V každém z krajních bodů c = 0 a  $c = \ell$  vybereme dvě z následujících čtyř podmínek

$$u(c) = u_c, \tag{1.28.1}$$

$$u'(c) = \varphi_c, \tag{1.28.2}$$

$$-\nu_{c}p(c)u''(c) = \gamma_{c}u'(c) - \delta_{c}, \qquad (1.28.3)$$

$$\nu_c \{ [p(c)u''(c)]' - r(c)u'(c) \} = \alpha_c u(c) - \beta_c, \qquad (1.28.4)$$

kde  $\nu_0 = -1$ ,  $\nu_\ell = 1$ . V úvahu přicházejí jen následující čtyři dvojice podmínek,

- podmínky (1.28.1) a (1.28.2), (1.29.1)
- podmínky (1.28.1) a (1.28.3), (1.29.2)
- podmínky (1.28.2) a (1.28.4), (1.29.3)

podmínky 
$$(1.28.3)$$
 a  $(1.28.4)$ .  $(1.29.4)$ 

Nejznámější aplikací, kterou úloha (1.26) - (1.29) popisuje, je průhyb nosníku podle Kirchhoffovy teorie. V tom případě je u(x) průhyb střednicové čáry prutu, p(x) = E(x)I(x), kde E(x) je Youngův modul pružnosti a I(x) je moment setrvačnosti, r(x) resp. q(x) je měrný odpor podloží bránící natočení resp. průhybu nosníku. Pravá strana rovnice (1.27) má v úloze ohybu Kirchhoffova nosníku tvar rozdílu f(x) - m'(x), místo rovnice (1.27) tedy máme rovnici

$$(p u'')'' - (r u')' + q u = f - m' \qquad v (0, \ell),$$
(1.27)

přičemž f(x) je intenzita příčného silového zatížení a m(x) je intenzita zatížení ohybovým momentem. Užitím označení  $\varphi(x) = u'(x)$  pro natočení střednicové čáry prutu, M(x) = -E(x)I(x)u''(x) pro ohybový moment a T(x) = M'(x) + r(x)u'(x) - m(x) pro zobecněnou posouvající sílu lze okrajové podmínky (1.28) zapsat ve tvaru

$$u(c) = u_c,$$
 (1.28.1')

$$\varphi(c) = \varphi_c, \tag{1.28.2'}$$

$$\nu_c M(c) = \gamma_c \varphi(c) - \delta_c, \qquad (1.28.3')$$

$$-\nu_c T(c) = \alpha_c u(c) - \beta_c. \tag{1.28.4'}$$

Přitom  $u_c$  resp.  $\varphi_c$  je vnucené posunutí resp. natočení,  $\alpha_c$  resp.  $\gamma_c$  je tuhost pružné vazby proti posunutí resp. natočení a  $\beta_c$  resp.  $\delta_c$  je zatěžující síla resp. moment. Každá dvojice podmínek (1.29.1) – (1.29.4) popisuje způsob podepření nosníku. Vetknutý okraj charakterizují podmínky u(c) = 0,  $\varphi(c) = 0$ , prostě podepřený okraj podmínky u(c) = 0, M(c) = 0, posuvně vetknutý okraj podmínky  $\varphi(c) = 0$ , T(c) = 0 a volný okraj podmínky M(c) = 0, T(c) = 0.

Funkci  $u \in C^4(0, \ell)$ , vyhovující rovnici (1.27) a splňující v každém koncovém bodě jednu z dvojic okrajových podmínek (1.29), nazveme klasickým řešením úlohy (1.26) – (1.29). Pro existenci klasického řešení je třeba předpokládat dostatečnou hladkost dat, tedy splnění "podmínek hladkosti"

$$p \in C^2\langle 0, \ell \rangle, \ r \in C^1\langle 0, \ell \rangle, \ q, f \in C\langle 0, \ell \rangle.$$
 (1.30a)

Dále budeme v souladu s fyzikálním významem dat předpokládat splnění "fyzikálních podmínek"

$$p(x) \ge p_0 > 0, \ r(x) \ge 0, \ q(x) \ge 0 \ v \ \langle 0, \ell \rangle, \ \alpha_0 \ge 0, \ \beta_0 \ge 0, \ \alpha_\ell \ge 0, \ \beta_\ell \ge 0.$$
(1.30b)

Pro jednoznačnost řešení je třeba ještě připojit "podmínky uložení". Existuje celá řada rovnocenných podmínek uložení, uveď me si některé z nich:

- a) v jednom z koncových bodů jsou předepsány buď to podmínky (1.29.1) nebo podmínky (1.29.2) s  $\gamma_c > 0$  nebo podmínky (1.29.3) s  $\alpha_c > 0$  nebo podmínky (1.29.4) s  $\alpha_c > 0$ ,  $\gamma_c > 0$ ;
- b) v obou koncových bodech jsou předepsány buďto podmínky (1.29.2) nebo podmínky (1.29.4) s  $\alpha_c > 0$ ;
- c) v jednom koncovém bodě jsou předepsány buď to podmínky (1.29.2) nebo podmínky (1.29.4) s  $\alpha_c > 0$  a ve druhém koncovém bodě jsou předepsány buď to podmínky (1.29.3) nebo podmínky (1.29.4) s  $\gamma_c > 0$ ; (1.30c)
- d) na části intervalu  $\langle 0, \ell \rangle$  platí současně  $r(x) \ge r_0 > 0, q(x) \ge q_0 > 0.$

Jsou-li tedy splněny podmínky (1.30), má úloha (1.26) - (1.29) jediné řešení.

#### b) Slabá formulace

Funkci  $v \in C^2(0, \ell)$  nazveme testovací, jestliže v(c) = 0 v tom krajním bodě c, v němž je předepsána podmínka (1.28.1), a jestliže v'(d) = 0 v tom krajním bodě d, v němž je předepsána podmínka podmínka (1.28.2). Abychom byli konkrétní, zvolíme si okrajové podmínky

$$u(0) = u_0, \qquad u'(0) = \varphi_0,$$
 (1.31.a)

$$-p(\ell)u''(\ell) = \gamma_{\ell}u'(\ell) - \delta_{\ell}, \qquad [p(\ell)u''(\ell)]' - r(\ell)u'(\ell) = \alpha_{\ell}u(\ell) - \beta_{\ell}, \qquad (1.31.b)$$

pro které testovací funkce splňuje v(0) = v'(0) = 0. Rovnici (1.26) vynásobíme testovací funkcí v a integrujme přes  $\langle 0, \ell \rangle$ . Integrací per-partes obdržíme

$$\int_{0}^{\ell} [f - qu] v \, \mathrm{d}x = \int_{0}^{\ell} [(pu'')'' - (ru')'] v \, \mathrm{d}x =$$

$$= \{ [p(x)u''(x)]' - r(x)u'(x) \} v(x) \Big|_{x=0}^{x=\ell} - p(x)u''(x)v'(x) \Big|_{x=0}^{x=\ell} + \int_{0}^{\ell} [pu''v'' + ru'v'] \, \mathrm{d}x =$$

$$= \int_{0}^{\ell} [pu''v'' + ru'v'] \, \mathrm{d}x + [\alpha_{\ell}u(\ell) - \beta_{\ell}]v(\ell) + [\gamma_{\ell}u'(\ell) - \delta_{\ell}]v'(\ell).$$

Odvodili jsme tedy, že řešení u úlohy (1.26), (1.27), (1.31) musí splňovat kromě okrajových podmínek  $u(0) = u_0, u'(0) = \varphi_0$  také rovnost

$$\int_{0}^{\ell} \left[ pu''v'' + ru'v' + quv \right] dx + \alpha_{\ell}u(\ell)v(\ell) + \gamma_{\ell}u'(\ell)v'(\ell) =$$

$$= \int_{0}^{\ell} fv \, dx + \beta_{\ell}v(\ell) + \delta_{\ell}v'(x)$$
(1.32)

pro každou funkci  $v \in C^2\langle 0, \ell \rangle$ , v(0) = 0, v'(0) = 0. Okrajové podmínky (1.31.b), které se staly součástí integrální rovnice (1.32) a jsou tak splněny automaticky, se nazývají přirozené okrajové podmínky. Okrajové podmínky (1.31.a), které součástí rovnice (1.32) nejsou a jejichž explicitní splnění proto musíme vyžadovat, nazýváme podstatné nebo také hlavní okrajové podmínky. Pro rovnici (1.27) obecně jsou podstatné okrajové podmínky (1.28.1) a (1.28.2) a přirozené jsou okrajové podmínky (1.28.3) a (1.28.4). Rovnice (1.32) je dobře definována i v případě, kdy funkce u a v jsou z prostoru  $X \equiv H^2(0, \ell)$ . Testovací funkce pak volíme z prostoru  $V = \{v \in X | v(0) = v'(0) = 0\}$  testovacích funkcí a řešení u z množiny  $W = \{v \in X | v(0) = u_0, v'(0) = \varphi_0\}$  přípustných řešení. Dále označíme

$$a(u,v) = \int_{0}^{\ell} \left[ pu''v'' + ru'v' + quv \right] dx + \alpha_{\ell}u(\ell)v(\ell) + \gamma_{\ell}u'(\ell)v'(\ell),$$
  

$$L(v) = \int_{0}^{\ell} fv \, dx + \beta_{\ell}v(\ell) + \delta_{\ell}v'(\ell).$$
(1.33)

Pak úlohu

najít 
$$u \in W$$
 splňující  $a(u, v) = L(v) \quad \forall v \in V$  (1.34)

nazýváme slabou (variační) formulací problému (1.26), (1.27), (1.31). Zeslabené podmínky hladkosti

$$p, r, q, f \in PC(0, \ell) \tag{1.30a'}$$

spolu s předpoklady (1.30b) a (1.30c) zaručují jednoznačnou existenci slabého řešení. Slabá formulace má v úloze ohybu nosníku význam principu virtuálních posunutí stejně jako v úloze tahu–tlaku prutu. Slabá formulace je obecnější než formulace popsaná diferenciální

rovnicí. Je tomu tak proto, že "diferenciální formulaci" (1.27), (1.31) lze při platnosti podmínek (1.30a) a pro  $u \in C^4 \langle 0, \ell \rangle$  odvodit z formulace slabé postupem opačným k tomu, jímž jsme získali rovnost (1.34).

**Poznámka 8.** Pro rovnici (1.27') a okrajové podmínky (1.28') obsahuje L(v) navíc člen  $\int_0^\ell mv' dx$ . Působí-li kromě toho v bodě  $c_i$  síla  $\beta_i$ , moment  $\delta_i$ , pružina o tuhosti  $\alpha_i$  proti průhybu a pružina o tuhosti  $\gamma_i$  proti natočení, můžeme a(u, v) a L(v) zapsat ve tvaru

$$a(u,v) = \int_{0}^{\ell} [pu''v'' + ru'v' + quv] \, dx + \sum_{i} [\alpha_{i}u(c_{i})v(c_{i}) + \gamma_{i}u'(c_{i})v'(c_{i})],$$

$$L(v) = \int_{0}^{\ell} [fv + mv'] \, dx + \sum_{i} [\beta_{i}v(c_{i}) + \delta_{i}v'(c_{i})].$$
(1.35)

Protože podstatné okrajové podmínky mohou být přibližně vystiženy pomocí podmínek přirozených,

$$\begin{split} u(c) &= u_c \quad \text{pomoc} i \quad -\nu_c T(c) = \alpha_c [u(c) - u_c] \,, \qquad \alpha_c \text{ velk} \acute{e}, \\ \varphi(c) &= \varphi_c \quad \text{pomoc} i \quad \nu_c M(c) = \gamma_c [\varphi(c) - \varphi_c] \,, \qquad \gamma_c \text{ velk} \acute{e}, \end{split}$$

budeme se v dalším zabývat úlohou (1.34) pro

$$V = W = X \tag{1.36}$$

a pro a(u, v) a L(v) určené rovnicemi (1.35). Pro jednoznačnou existenci slabého řešení stačí například předpokládat, že alespoň jedno z čísel  $\alpha_0$ ,  $\alpha_\ell$  je kladné a současně že alespoň dvě z čísel  $\alpha_0$ ,  $\alpha_\ell$ ,  $\gamma_0$ ,  $\gamma_\ell$  jsou kladná.

#### c) Metoda konečných prvků

Na intervalu  $\langle 0, \ell \rangle$  zvolíme dělení  $0 = x_0 < x_1 \cdots < x_N = \ell$  a na každé úsečce  $\langle x_{i-1}, x_i \rangle$  délky  $h_i = x_i - x_{i-1}$  hledáme přibližné řešení U(x) jako Hermitův interpolační polynom třetího stupně určený hodnotami  $U(x_{i-1}), U(x_i)$  a derivacemi  $U'(x_{i-1}), U'(x_i),$  tj. diskretizaci provádíme užitím tzv. kubického Hermitova konečného prvku (elementu). Zřejmě  $U \in X_h$ , kde  $X_h \subset PC^2(0, \ell)$  je prostor kubických Hermitových splajnů. Každá funkce  $v(x) \in X_h$  je jednoznačně určena svými hodnotami  $v(x_i)$  a derivacemi  $v'(x_i)$  v uzlech  $\{x_i\}_{i=0}^N$ .  $X_h$  je prostor dimenze 2(N+1) a pro funkci  $v \in X_h$  platí

$$v(x) = \sum_{i=0}^{N} [v(x_i)w_{2i}(x) + v'(x_i)w_{2i+1}(x)], \qquad (1.37)$$

kde  $\{w_i(x)\}_{i=0}^{2N+1}$  je báze v  $X_h$ , takže

$$w_{2i}(x_j) = \begin{cases} 1 & \text{pro } i = j \\ 0 & \text{pro } i \neq j \end{cases}, \qquad w'_{2i}(x_j) = 0,$$
  
$$w'_{2i+1}(x_j) = \begin{cases} 1 & \text{pro } i = j \\ 0 & \text{pro } i \neq j \end{cases}, \qquad w_{2i+1}(x_j) = 0.$$
 (1.38)



Obr. 2-3. Kubické Hermitovy bázové funkce

Označíme-li

$$a_{h}(U,v) = \sum_{k=1}^{N} I^{k}(pU''v'' + rU'v' + qUv) + \sum_{i=0}^{N} [\alpha_{i}u(x_{i})v(x_{i}) + \gamma_{i}u'(x_{i})v'(x_{i})],$$
  
$$L_{h}(v) = \sum_{k=1}^{N} I^{k}(fv + mv') + \sum_{i=0}^{N} [\beta_{i}v(x_{i}) + \delta_{i}v'(x_{i})],$$
(1.39)

kde  $I^k(g)$  opět značí numericky spočtený  $\int_{x_{k-1}}^{x_k} g(x) dx$ , a položíme-li  $V_h = W_h = X_h$ , pak diskrétní slabá (variační) formulace zní

najít  $U \in W_h$  splňující  $a_h(u, v) = L_h(v) \quad \forall v \in V_h.$  (1.40)

Je-li  $v(x) = \sum_{i=0}^{2N+1} \Theta_i w_i(x) \in V_h$  libovolná testovací funkce a  $U(x) = \sum_{i=0}^{2N+1} \Delta_i w_i(x)$ MKP-slabé řešení, pak z (1.40) podobně jako v (1.23) dostaneme

$$0 = a_h(U, v) - L_h(v) = \mathbf{\Theta}^T [\mathbf{K} \mathbf{\Delta} - \mathbf{F}], \qquad (1.41)$$

kde  $\Theta = (\Theta_0, \dots, \Theta_{2N+1})^T$ ,  $\mathbf{K} = \{k_{ij}\}_{i,j=0}^{2N+1}$  pro  $k_{ij} = a_h(w_j, w_i)$ ,  $\boldsymbol{\Delta} = (\Delta_0, \dots, \Delta_{2N+1})^T$ a  $\mathbf{F} = (F_0, \dots, F_{2N+1})^T$  pro  $F_i = L_h(w_i)$ . Matice  $\mathbf{K}$  je symetrická, sedmidiagonální  $(a_h(w_j, w_i) = 0 \text{ pro } |j - i| > 3$ , jak plyne z definice  $a_h(U, v)$  a  $\{w_i(x)\}_{i=0}^{2N+1}$ , viz také obrázky 2 a 3), a při dostatečně přesné numerické integraci je rovněž pozitivně definitní a tedy regulární. Vyřešením soustavy rovnic

$$\mathbf{K}\boldsymbol{\Delta} = \mathbf{F} \tag{1.42}$$

získáme hledané parametry  $\Delta_{2i} \equiv U(x_i)$  a  $\Delta_{2i+1} \equiv U'(x_i), i = 0, \dots, N$ .

Matici **K** a vektor **F** sestavíme pomocí elementárních matic **K**<sup>*i*</sup> a elementárních vektorů **F**<sup>*i*</sup> příslušných elementům  $\langle x_{i-1}, x_i \rangle$ . MKP-slabé řešení *U* a testovací funkce *v* je na elementu  $\langle x_{i-1}, x_i \rangle$  tvaru

$$U(x) = \sum_{j=1}^{4} \Delta_{j}^{i} w_{j}^{i}(x), \qquad v(x) = \sum_{j=1}^{4} \Theta_{j}^{i} w_{j}^{i}(x),$$

kde

$$\begin{aligned} \Delta_{1}^{i} &= U(x_{i-1}) \equiv \Delta_{2i-2} , \quad \Theta_{1}^{i} = v(x_{i-1}) \equiv \Theta_{2i-2} ,\\ \Delta_{2}^{i} &= U'(x_{i-1}) \equiv \Delta_{2i-1} , \quad \Theta_{2}^{i} = v'(x_{i-1}) \equiv \Theta_{2i-1} ,\\ \Delta_{3}^{i} &= U(x_{i}) \equiv \Delta_{2i} , \qquad \Theta_{3}^{i} = v(x_{i}) \equiv \Theta_{2i} ,\\ \Delta_{4}^{i} &= U'(x_{i}) \equiv \Delta_{2i+1} , \qquad \Theta_{4}^{i} = v'(x_{i}) \equiv \Theta_{2i+1} \end{aligned}$$

jsou parametry a

$$w_1^i(x) = \hat{N}_1 \left(\frac{x - x_{i-1}}{h_i}\right) \quad \text{pro} \quad \hat{N}_1(\xi) = 1 - 3\xi^2 + 2\xi^3,$$
  

$$w_2^i(x) = h_i \hat{N}_2 \left(\frac{x - x_{i-1}}{h_i}\right) \quad \text{pro} \quad \hat{N}_2(\xi) = \xi - 2\xi^2 + \xi^3,$$
  

$$w_3^i(x) = \hat{N}_3 \left(\frac{x - x_{i-1}}{h_i}\right) \quad \text{pro} \quad \hat{N}_3(\xi) = 3\xi^2 - 2\xi^3,$$
  

$$w_4^i(x) = h_i \hat{N}_4 \left(\frac{x - x_{i-1}}{h_i}\right) \quad \text{pro} \quad \hat{N}_4(\xi) = -\xi^2 + \xi^3$$

jsou "elementární " bázové funkce. Vyjádříme

$$\begin{split} I^{i}(pU''v'') &= I^{i}(\sum_{j=1}^{4}\Theta_{j}[w_{j}^{i}]''p\sum_{l=1}^{4}\Delta_{l}[w_{l}^{i}]'') = [\Theta^{i}]^{T}\mathbf{K}^{i1}\mathbf{\Delta}^{i},\\ \text{kde} \quad \mathbf{K}^{i1} &= \{k_{jl}^{i1}\}_{j,l=1}^{4} \quad \text{pro} \quad k_{jl}^{i1} = I^{i}([w_{j}^{i}]''p[w_{l}^{i}]'')\\ \text{a kde} \quad \Theta^{i} &= (\Theta_{1}^{i},\Theta_{2}^{i},\Theta_{3}^{i},\Theta_{4}^{i})^{T}, \quad \mathbf{\Delta}^{i} = (\Delta_{1}^{i},\Delta_{2}^{i},\Delta_{3}^{i},\Delta_{4}^{i})^{T}, \end{split}$$

Podobně vyjádříme

$$\begin{split} I^{i}(rU'v') &= I^{i}(\sum_{j=1}^{4}\Theta_{j}[w_{j}^{i}]'r\sum_{l=1}^{4}\Delta_{l}[w_{l}^{i}]') = [\Theta^{i}]^{T}\mathbf{K}^{i2}\boldsymbol{\Delta}^{i},\\ \text{kde} \quad \mathbf{K}^{i2} &= \{k_{jl}^{i2}\}_{j,l=1}^{4} \quad \text{pro} \quad k_{jl}^{i2} = I^{i}([w_{j}^{i}]'r[w_{l}^{i}]'),\\ I^{i}(qUv) &= I^{i}(\sum_{j=1}^{4}\Theta_{j}w_{j}^{i}q\sum_{l=1}^{4}\Delta_{l}w_{l}^{i}) = [\Theta^{i}]^{T}\mathbf{K}^{i3}\boldsymbol{\Delta}^{i},\\ \text{kde} \quad \mathbf{K}^{i3} &= \{k_{jl}^{i3}\}_{j,l=1}^{4} \quad \text{pro} \quad k_{jl}^{i3} = I^{i}(w_{j}^{i}qw_{l}^{i}), \end{split}$$

položíme  $\mathbf{K}^i = \mathbf{K}^{i1} + \mathbf{K}^{i2} + \mathbf{K}^{i3},$ a dále vyjádříme

$$\begin{split} I^{i}(fv) &= I^{i}(\sum_{j=1}^{4} \Theta_{j}^{i} w_{j}^{i} f) = [\Theta^{i}]^{T} \mathbf{F}^{i1}, \\ \text{kde} \quad \mathbf{F}^{i1} &= (F_{1}^{i1}, F_{2}^{i1}, F_{3}^{i1}, F_{4}^{i1})^{T} \quad \text{pro} \quad F_{j}^{i1} = I^{i}(w_{j}^{i} f), \\ I^{i}(mv') &= I^{i}(\sum_{j=1}^{4} \Theta_{j}^{i} [w_{j}^{i}]'m) = [\Theta^{i}]^{T} \mathbf{F}^{i2}, \\ \text{kde} \quad \mathbf{F}^{i2} &= (F_{1}^{i2}, F_{2}^{i2}, F_{3}^{i2}, F_{4}^{i2})^{T} \quad \text{pro} \quad F_{j}^{i2} = I^{i}([w_{j}^{i}]'m) \end{split}$$

a položíme  $\mathbf{F}^i = \mathbf{F}^{i1} + \mathbf{F}^{i2}$ . Jsou-li  $p(x) = p^i$ ,  $r(x) = r^i$ ,  $q(x) = q^i$ ,  $f(x) = f^i$ ,  $m(x) = m^i$  na  $\langle x_{i-1}, x_i \rangle$  konstantní, snadným výpočtem obdržíme

$$\begin{split} \mathbf{K}^{i1} &= \frac{p^{i}}{h_{i}^{3}} \begin{pmatrix} 12 & 6h_{i} & -12 & 6h_{i} \\ 6h_{i} & 4h_{i}^{2} & -6h_{i} & 2h_{i}^{2} \\ -12 & -6h_{i} & 12 & -6h_{i} \\ 6h_{i} & 2h_{i}^{2} & -6h_{i} & 4h_{i}^{2} \end{pmatrix}, \\ \mathbf{K}^{i2} &= \frac{r^{i}}{30h_{i}} \begin{pmatrix} 36 & 3h_{i} & 36 & 3h_{i} \\ 3h_{i} & 4h_{i}^{2} & -3h_{i} & -h_{i}^{2} \\ 36 & -3h_{i} & 36 & -3h_{i} \\ 3h_{i} & -h_{i}^{2} & -3h_{i} & 4h_{i}^{2} \end{pmatrix}, \\ \mathbf{K}^{i3} &= \frac{q^{i}h_{i}}{420} \begin{pmatrix} 156 & 22h_{i} & 54 & -13h_{i} \\ 22h_{i} & 4h_{i}^{2} & 13h_{i} & -3h_{i}^{2} \\ 54 & 13h_{i} & 156 & -22h_{i} \\ -13h_{i} & -3h_{i}^{2} & -22h_{i} & 4h_{i}^{2} \end{pmatrix}, \\ \mathbf{F}^{i1} &= \frac{f^{i}h_{i}}{12} \begin{pmatrix} 6 \\ h_{i} \\ 6 \\ -h_{i} \end{pmatrix}, \quad \mathbf{F}^{i2} &= m^{i} \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}. \end{split}$$

Jsou-li na elementu  $\langle x_{i-1}, x_i \rangle$ funkce  $f(x) \equiv f^i(x)$  <br/>a $m(x) \equiv m^i(x)$ lineární, pak

$$\mathbf{F}^{i1} = \frac{h_i}{60} \begin{pmatrix} 21f^i(x_1^i) + 9f^i(x_2^i) \\ h_i[3f^i(x_1^i) + 2f^i(x_2^i)] \\ 9f^i(x_1^i) + 21f^i(x_2^i) \\ -h_i[2f^i(x_1^i) + 3f^i(x_2^i)] \end{pmatrix}, \qquad \mathbf{F}^{i2} = \frac{1}{12} \begin{pmatrix} -6m^i(x_1^i) - 6m^i(x_2^i) \\ m^i(x_1^i) - m^i(x_2^i) \\ 6m^i(x_1^i) + 6m^i(x_2^i) \\ -m^i(x_1^i) + m^i(x_2^i) \end{pmatrix}.$$

Obecně však stačí integrály počítat jen přibližně formulí, která je přesná pro polynomy třetího stupně. Lze proto použít Simpsonovu formuli

$$I^{i}(g) = \frac{1}{6}h_{i}[f(x_{i-1}) + 4f(x_{i-\frac{1}{2}}) + f(x_{i})]$$

nebo Gaussovu formuli

$$I^{i}(g) = \frac{1}{2}h_{i}\left[f(x_{i-\frac{1}{2}} - \frac{\sqrt{3}}{6}h_{i}) + f(x_{i-\frac{1}{2}} + \frac{\sqrt{3}}{6}h_{i})\right],$$

kde  $x_{i-\frac{1}{2}}=x_i-\frac{1}{2}h_i$ . Z rovnic (1.41) a (1.39) užitím výše uvedených vyjádření členů  $I^i(pU''v''+rU'v'+qUv)$  a  $I^i(fv+mv')$  dostaneme rovnost

$$\Theta^{T}[\mathbf{K}\Delta - \mathbf{F}] =$$

$$= \sum_{i=1}^{N} [\Theta^{i}]^{T} [\mathbf{K}^{i} \Delta^{i} - \mathbf{F}^{i}] + \sum_{i=0}^{N} \{\Theta_{2i} [\alpha_{i} \Delta_{2i} - \beta_{i}] + \Theta_{2i+1} [\gamma_{i} \Delta_{2i+1} - \delta_{i}]\}, \qquad (1.43)$$

z níž plyne postup, jak pomocí elementárních matic  $\mathbf{K}^{i} = \{k_{rs}^{i}\}_{r,s=1}^{4}$ , elementárních vektorů  $\mathbf{F}^{i} = \{F_{r}^{i}\}_{r=1}^{4}$  a čísel  $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}$  sestavit globální matici  $\mathbf{K}$  a globální vektor  $\mathbf{F}$ : stačí srovnat členy se stejnými indexy u parametrů  $\Theta$  a  $\Delta$  (pro určení prvků matice  $\mathbf{K}$ ) nebo jen u parametru  $\Theta$  (pro určení prvků vektoru  $\mathbf{F}$ ) na levé a pravé straně rovnice (1.43). Následuje algoritmus sestavení matice  $\mathbf{K}$  a vektoru  $\mathbf{F}$ .

- 1) Matici **K** a vektor **F** vynulujeme.
- 2) Pro každý element  $\langle x_{i-1}, x_i \rangle$ , i = 1, ..., N, definujeme čtyři čísla Q(1) = 2i 2, Q(2) = 2i - 1, Q(3) = 2i, Q(4) = 2i + 1 a provedeme:
  - a)  $k_{rs}^i$  pro r, s = 1, 2, 3, 4 přičteme k prvku matice **K** s indexy [Q(r), Q(s)];
  - b)  $f_r^i$  pro r = 1, 2, 3, 4 přičteme k prvku vektoru **F** s indexem Q(r).
- 3) Pro každý uzel  $x_i$ ,  $i = 0, \ldots, N$ , provedeme:
  - a)  $\alpha_i$  přičteme k prvku matice **K** s indexy [2i, 2i];
  - b)  $\gamma_i$  přičteme k prvku matice **K** s indexy [2i + 1, 2i + 1];
  - c)  $\beta_i$  přičteme k prvku vektoru **F** s indexem 2*i*;
  - d)  $\delta_i$  přičteme k prvku vektoru **F** s indexem 2i + 1.

Protože matice tuhosti **K** je symetrická a má nenulové koeficienty jen v hlavní diagonále a ve třech sousedních horních a dolních subdiagonálách, stačí sestavovat prvky  $k_{ij}$  pro  $j = i, \ldots, \max(i + 3, 2N + 1)$ .

Pro chybu u - U a její derivace platí za předpokladu  $u \in C^4(0, \ell)$  odhad

$$\max_{1 \le i \le N} \max_{x_{i-1} \le x \le x_i} \left| \frac{\mathrm{d}^j}{\mathrm{d}x^j} (u - U) \right| = O(h^{4-j}) \quad \text{pro} \quad j = 0, 1, 2, 3.$$

**Poznámka 9.** Jestliže  $p(x) = p^i$  je na elementech  $\langle x_{i-1}, x_i \rangle$  konstantní, r=q=0, a jestliže při výpočtu prvků matic  $\mathbf{K}^{i1}$  a vektorů  $\mathbf{F}^{i1}$  a  $\mathbf{F}^{i2}$  počítáme integrály přesně, je řešení  $\Delta$ soustavy (1.42) přesné, tedy platí  $U(x_i) = u(x_i), U'(x_i) = u'(x_i), i = 0, \ldots, N$ . Důkaz tohoto tvrzení lze provést podobně jako jsme to udělali v poznámce 6. Slabé řešení u na intervalu  $(x_{i-1}, x_i)$  lze dopočítat řešením lokální úlohy

$$p^{i} u^{(4)} = f^{i} - [m^{i}]' \text{ pro } x \in (x_{i-1}, x_{i}),$$
$$u(x_{i-1}) = \Delta_{1}^{i}, \ u'(x_{i-1}) = \Delta_{2}^{i}, \ u(x_{i}) = \Delta_{3}^{i}, \ u'(x_{i}) = \Delta_{4}^{i},$$

kde  $f^{i}(x)$  resp.  $m^{i}(x)$  je restrikce funkce f(x) resp. m(x) na interval  $(x_{i-1}, x_{i})$ .

**Poznámka 10.** V úloze průhybu nosníku se někdy setkáváme s případem tzv. kloubového spojení: dva nosníky spojené kloubem mají v kloubu stejný průhyb, natočení obou nosníků v kloubu jsou však na sobě navzájem nezávislá a tedy obecně různá. Kloub ve vnitřním bodě c nosníku můžeme v MKP realizovat pomocí dvou geometricky totožných uzlů  $x_{i-1} = x_i \equiv c$  tak, že

a) pro element  $\langle x_{i-1}, x_i \rangle$  klademe  $\mathbf{K}^i = \mathbf{0}$  a  $\mathbf{F}^i = \mathbf{0}$ ;

b) parametry příslušné průhybu v kloubu c ztotožníme, tedy položíme  $\Delta_{2i-2} = \Delta_{2i}$ ,  $\Theta_{2i-2} = \Theta_{2i}$ .

Ztotožnění parametrů ovlivní tvar soustavy rovnic (1.42) způsobem, který odvodíme prozkoumáním rovnosti (1.41):

- 1) řád matice  $\mathbf{K}$  se o jedničku sníží :
  - a) řádek 2i 2 přičteme k řádku 2i a pak řádek 2i 2 vypustíme;
  - b) sloupec 2i 2 přičteme ke sloupci 2i a pak sloupec 2i 2 vypustíme;
- 2) ve vektoru  $\boldsymbol{\Delta}$  vypustíme prvek  $\Delta_{2i-2}$ ;
- 3) ve vektoru **F** přičteme prvek  $F_{2i-2}$  k prvku  $F_{2i}$  a pak prvek  $F_{2i-2}$  vypustíme.  $\Box$

**Poznámka 11.** Vazbu  $u(x_i) = u_i$  resp.  $u'(x_i) = \varphi_i$  lze realizovat buďto "pružinovou technikou" tak, že zvolíme  $\alpha_i = \kappa$ ,  $\beta_i = \kappa u_i$  resp.  $\gamma_i = \kappa$ ,  $\delta_i = \kappa \varphi_i$ , kde  $\kappa$  je velké číslo, nebo "eliminačním postupem" založeným na tom, že položíme  $\Theta_{2i} = 0$ ,  $\Delta_{2i} = u_i$  resp.  $\Theta_{2i+1} = 0$ ,  $\Delta_{2i+1} = \varphi_i$  a odpovídajícím způsobem upravíme sestavovací algoritmus (rovnici 2i resp. 2i + 1 vypustíme a sloupec 2i násobený  $u_i$  resp. sloupec 2i + 1 násobený  $\varphi_i$  odečteme od pravé strany).  $\Box$ 

# 2. Rovinné úlohy

#### 2.1. Základní pojmy a označení

Oblastí budeme rozumět otevřenou ohraničenou a souvislou množinu v euklidovském prostoru  $\mathbb{R}^2$ . Oblast budeme značit  $\Omega$  a její hranici  $\partial \Omega$  nebo také  $\Gamma$ . Je-li hranice oblasti  $\Omega$  tvořena jediným hladkým obloukem řekneme, že oblast  $\Omega$  má *hladkou hranici*. Oblastí s *hranicí po částech hladkou* budeme rozumět oblast, jejíž hranice je sjednocením konečného počtu hladkých oblouků (tj. křivek se spojitě se měnící tečnou). Oblast bez "řezů" a "bodů vratu" nazveme *regulární*. Co míníme řezem a bodem vratu je zřejmé z obrázků 4 a 5. *Polygonem* budeme rozumět regulární oblast, jejíž hranice je sjednocením konečného počtu úseček. Uzávěr množiny M označíme  $\overline{M}$ .



Obr. 4. Bod vratu

Obr. 5. Řez

Prostor funkcí spojitých v  $\Omega$  označíme  $C(\Omega)$ . Symbolem  $C^k(\Omega)$  označíme prostor funkcí spojitých v  $\Omega$  spolu se svými derivacemi až do řádu k včetně. Řekneme, že funkce f je po částech spojitá v  $\Omega$ , jestliže existuje

- a)  $N \ge 1$  celé;
- b) oblasti  $\Omega_1, \ldots, \Omega_N$  takové, že  $\overline{\Omega} = \bigcup_{i=1}^N \overline{\Omega}_i, \ \Omega_i \cap \Omega_j = \emptyset$  pro  $i \neq j;$
- c) funkce  $f_1, \ldots, f_N, f_i \in C(\overline{\Omega}_i), f = f_i \vee \Omega_i, i = 1, \ldots, N.$

Prostor všech po částech spojitých funkcí budeme značit  $PC(\Omega)$ . Symbolem  $PC^{k}(\Omega)$ označíme prostor všech funkcí f takových, že  $f \in C^{k-1}(\overline{\Omega})$  a  $D^{k}f \in PC(\Omega)$ , kde  $D^{k}f$ označuje k-té derivace funkce f.

Lebesgueův prostor funkcí integrovatelných s kvadrátem v  $\Omega$  označíme  $L_2(\Omega)$ . Sobolevův prostor všech funkcí f takových, že  $f, Df, \ldots, D^k f \in L_2(\Omega)$ , označíme  $H^k(\Omega)$ .

Je-li S část hranice, pak prostor funkcí spojitých na S označíme C(S) a prostor funkcí po částech spojitých na S označíme PC(S).

Připomeňme, že  $PC(\Omega) \subset L_2(\Omega)$  a  $PC^k(\Omega) \subset H^k(\Omega)$ . Proto funkce z prostoru  $PC(\Omega)$ může posloužit jako příklad funkce z prostoru  $L_2(\Omega)$  a podobně funkce z prostoru  $PC^1(\Omega)$ jako příklad funkce z prostoru  $H^1(\Omega)$ .

## 2.2. Klasická formulace

Naším cílem je určit funkci

$$u(x,y) \in C^{2}(\Omega) \cap C^{1}(\Omega \cup \overline{\Gamma}_{2}) \cap C(\overline{\Omega})$$

$$(2.1)$$

vyhovující diferenciální rovnici

$$-\nabla \cdot [p \,\nabla u] + qu = f \qquad \forall \ \Omega \tag{2.2}$$

a splňující okrajové podmínky

$$u = g \qquad \operatorname{na} \Gamma_1, \tag{2.3}$$

$$-p\frac{\partial u}{\partial n} = \alpha u - \beta \qquad \text{na } \Gamma_2.$$
(2.4)

Tečka ve vztahu (2.2) značí skalární součin a protože

$$\nabla \equiv \operatorname{grad} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)^T, \quad \operatorname{je} \quad -\nabla \cdot \left[p \,\nabla u\right] = -\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)^T \cdot p \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)^T = \\ = -\frac{\partial}{\partial x} \left(p \,\frac{\partial u}{\partial x}\right) - \frac{\partial}{\partial y} \left(p \,\frac{\partial u}{\partial y}\right) \equiv -(p \,u_x)_x - (p \,u_y)_y.$$

O hranici  $\Gamma$  předpokládejme  $\Gamma = \overline{\Gamma}_1 \cup \overline{\Gamma}_2$ ,  $\Gamma_1 \cap \Gamma_2 = \emptyset$ . Dále  $\mathbf{n} = (n_x, n_y)^T \equiv (n_1, n_2)^T$  je jednotkový vektor vnější normály hranice a

$$\frac{\partial u}{\partial n} = \mathbf{n} \cdot \nabla u = n_x \frac{\partial u}{\partial x} + n_y \frac{\partial u}{\partial y}$$

je derivace ve směru vnější normály. Okrajová podmínka (2.3) se nazývá Dirichletova, okrajová podmínka (2.4) se pro  $\alpha = 0$  nazývá Neumannova a pro  $\alpha \neq 0$  Newtonova.

Uloha může popisovat například problém dvourozměrného stacionárního vedení tepla. V tom případě je u(x, y) teplota, p(x, y) koeficient tepelné vodivosti, q(x, y) je koeficient přestupu tepla "plochou"  $\Omega$ ,  $f(x, y) = Q + qu_e$  je součtem tepelného zdroje Q(x, y) a tepelného toku  $qu_e$  "plochou"  $\Omega$  ( $u_e(x, y)$  je teplota okolí "plochy"  $\Omega$ ), g(x, y) předepsaná teplota na hranici  $\Gamma_1$ ,  $\alpha(x, y)$  koeficient přestupu tepla a  $\beta(x, y)$  zadaný tepelný tok na hranici  $\Gamma_2$ . Rovnice (2.2) pak má tvar

$$-\nabla \cdot [p \,\nabla u] + q(u - u_e) = Q \qquad \text{v} \ \Omega.$$
(2.2)

Newtonova okrajová podmínka se v úloze vedení tepla obvykle píše ve tvaru

$$-p\frac{\partial u}{\partial n} = \alpha(u - u_o) \qquad \text{na } \Gamma_2, \tag{2.4'}$$

kde  $u_o(x, y)$  je teplota okolí (hranice  $\Gamma_2$ ).

Pokud tutéž úlohu interpretujeme jako *úlohu průhybu membrány*, je u(x, y) výchylka, p(x, y) reprezentuje tuhost membrány, q(x, y) odpor prostředí, f(x, y) zatížení, g(x, y) předepsaný pokles podepřené části  $\Gamma_1$  hranice,  $\alpha(x, y)$  tuhost pružinového uložení a  $\beta(x, y)$ 

zatížení na části  $\Gamma_2$  hranice. Úloha (2.1) – (2.4) může být modelem i pro další problémy, například pro potenciální proudění tekutin, elektrostatický potenciál, kroucení tyče, difúzní šíření příměsi atd.

Funkce u(x, y) s vlastností (2.1) splňující (2.2) – (2.4) se nazývá klasické řešení. Pro jeho existenci je třeba předpokládat dostatečnou hladkost dat, a sice

$$p \in C^1(\overline{\Omega}), \quad f, q \in C(\overline{\Omega}), \quad g \in C(\overline{\Gamma}_1), \quad \alpha, \beta \in C(\overline{\Gamma}_2).$$
 (2.5a)

Dále budeme v souladu s obvyklým fyzikálním významem dat předpokládat

$$p(x,y) \ge p_0 > 0, \ q(x,y) \ge 0 \quad \text{v} \ \Omega, \quad \alpha(x,y) \ge 0 \quad \text{na} \ \Gamma_2.$$
 (2.5b)

Pro jednoznačnost řešení je třeba dále připojit podmínku

$$\begin{split} &\operatorname{mes}_{1}\Gamma_{1} > 0 \quad \operatorname{nebo} \\ &q(x,y) \geq q_{0} > 0 \quad \operatorname{na} \, \Omega_{0} \subset \Omega, \, \operatorname{mes}_{2}\Omega_{0} > 0, \quad \operatorname{nebo} \\ &\alpha(x,y) \geq \alpha_{0} > 0 \quad \operatorname{na} \, \Gamma_{20} \subset \Gamma_{2}, \, \operatorname{mes}_{1}\Gamma_{20} > 0, \end{split}$$

$$(2.5c)$$

kde mes<sub>1</sub> $\Gamma_1$  resp. mes<sub>1</sub> $\Gamma_{20}$  je délka části  $\Gamma_1$  resp.  $\Gamma_{20}$  hranice a mes<sub>2</sub> $\Omega_0$  je plocha podoblasti  $\Omega_0$ . Pro existenci řešení musíme předpokládat ještě něco navíc, například že

Ω je regulární oblast s hladkou hranicí a  $Γ = Γ_1$ , nebo že  $Γ = Γ_2$ , nebo že Ω je konvexní polygon a  $Γ = Γ_1$ .
(2.5d)

Soubor podmínek (2.5a) - (2.5d) nám zaručuje jednoznačnou existenci klasického řešení problému (2.1) - (2.4).

Poznámka 12. Nesplnění podmínky (2.5c) znamená řešit úlohu

$$-\nabla \cdot [p \nabla u] = f \quad \mathbf{v} \ \Omega, \quad -p \frac{\partial u}{\partial n} = -\beta \quad \mathrm{na} \ \Gamma$$

Pomocí Greenovy formule (2.6) lze ukázat, že tato úloha má řešení jen tehdy, platí-li

$$\int_{\Omega} f \, \mathrm{d}x \, \mathrm{d}y + \int_{\Gamma} \beta \, \mathrm{d}s = 0$$

V tom případě je řešení nekonečně mnoho a navzájem se liší o konstantu. $\hfill\square$ 

## 2.3. Greenova formule

Nechť  $f(x_1, x_2), g(x_1, x_2) \in H^1(\Omega)$ . Potom platí

$$\int_{\Omega} \frac{\partial f}{\partial x_i} g \, \mathrm{d}x = \int_{\Gamma} f g n_i \, \mathrm{d}s - \int_{\Omega} f \frac{\partial g}{\partial x_i} \, \mathrm{d}x.$$
(2.6)

Zde d $x = dx_1 dx_2$ , ds je diferenciál oblouku  $\Gamma$  a  $n_i$  je i-tá složka jednotkového vektoru vnější normály hranice.

## 2.4. Slabá formulace

Nechť  $v \in C^1(\overline{\Omega})$ . Vynásobením rovnice (2.2) funkcí v, integrací přes  $\Omega$  a použitím Greenovy formule dostaneme

$$-\int_{\Omega} \nabla \cdot [p \nabla u] v \, dx \, dy =$$

$$= -\int_{\Gamma} p[u_x n_x + u_y n_y] v \, ds + \int_{\Omega} p[u_x v_x + u_y v_y] \, dx \, dy =$$

$$= -\int_{\Gamma} p \frac{\partial u}{\partial n} v \, ds + \int_{\Omega} [p \nabla u \cdot \nabla v] \, dx \, dy = \int_{\Omega} (f - qu) v \, dx \, dy.$$
(2.7)

Funkci  $v(x, y) \in C^1(\overline{\Omega})$  nazveme testovací, splňuje-li v = 0 na  $\overline{\Gamma}_1$ . Dosadíme-li do (2.7) za v testovací funkci a užijeme (2.4), obdržíme rovnici

$$\int_{\Omega} [p \,\nabla u \cdot \nabla v + quv] \,\mathrm{d}x \,\mathrm{d}y + \int_{\Gamma_2} \alpha uv \,\mathrm{d}s = \int_{\Omega} fv \,\mathrm{d}x \,\mathrm{d}y + \int_{\Gamma_2} \beta v \,\mathrm{d}s. \tag{2.8}$$

Označme si

$$a(u,v) = \int_{\Omega} [p \,\nabla u \cdot \nabla v + quv] \,\mathrm{d}x \,\mathrm{d}y + \int_{\Gamma_2} \alpha uv \,\mathrm{d}s, \qquad (2.9)$$

$$L(v) = \int_{\Omega} f v \, \mathrm{d}x \, \mathrm{d}y + \int_{\Gamma_2} \beta v \, \mathrm{d}s, \qquad (2.10)$$

položme  $X = H^1(\Omega)$  a dále označme

$$V = \{ v \in X \mid v = 0 \text{ na } \Gamma_1 \}, \qquad W = \{ v \in X \mid v = g \text{ na } \Gamma_1 \}.$$
(2.11)

a(u, v) je symetrická bilineární forma a L(v) je lineární funkcionál. V nazveme prostorem testovacích funkcí a W nazveme množinou přípustných řešení. Zdůrazněme, že W není lineárním prostorem funkcí, neboť pro  $g \neq 0$  a  $v_1, v_2 \in W$  neplatí  $v_1 + v_2 \in W$ . Slabou (variační) formulací úlohy (2.1)-(2.4) rozumíme úlohu

najít 
$$u \in W$$
 splňující  $a(u, v) = L(v) \quad \forall v \in V.$  (2.12)

Funkci *u* vyhovující (2.12) nazýváme slabým řešením (úlohy (2.1) – (2.4)). Jednoznačnou existenci slabého řešení lze zaručit za výrazně slabších předpokladů než byly předpoklady (2.5a) - (2.5d), které jsme potřebovali pro jednoznačnou existenci řešení klasického. Pokud jde o hladkost dat, stačí místo (2.5a) předpokládat

$$p, q, f \in PC(\Omega), \quad g \in C(\overline{\Gamma}_1), \quad \alpha, \beta \in PC(\Gamma_2).$$
 (2.5a')

Tyto požadavky jsou realistické a odpovídají tomu, s čím se setkáváme při řešení praktických úloh. Předpoklady (2.5b) a (2.5c) ponecháme v platnosti. To není omezující, neboť tyto předpoklady jsou v praktických úlohách splněny. Konečně předpoklad (2.5d) nahradíme přirozeným požadavkem

$$\Omega$$
 je regulární oblast s hranicí po částech hladkou, (2.5ď)

který opět plně vyhovuje praktickým potřebám. Shrňme tedy, že jednoznačná existence slabého řešení je zaručena, jsou-li splněny předpoklady (2.5a'), (2.5b), (2.5c) a (2.5d').

# 2.5. Triangulace, po částech lineární funkce

Předpokládejme, že  $\Omega$  je polygon.  $\overline{\Omega}$  pokryjeme *triangulací*  $\Upsilon$  skládající se z trojúhelníkových *elementů e* takových, že uzávěry každých dvou různých trojúhelníků jsou buď to disjunktní nebo mají společný vrchol nebo stranu a že

$$\overline{\Omega} = \bigcup_{e \in \mathcal{T}} \overline{e}.$$

Trojúhelníky triangulace budeme nazývat také *prvky*. Vrcholy trojúhelníků budeme nazývat *uzly*. Tringulaci zvolíme tak, aby body průniku  $\overline{\Gamma}_1 \cap \overline{\Gamma}_2$  byly uzly. Počet všech prvků triangulace označíme PP, počet všech uzlů PU, počet uzlů ležících na  $\overline{\Gamma}_1$  označíme PB a počet zbývajících uzlů (ležících uvnitř  $\Omega$  a na  $\Gamma_2$ ) označíme PN. Strany elementů budeme značit S, množinu všech stran ležících na hranici  $\Gamma_2$  označíme S a počet všech stran  $S \in S$  označíme PS. Nejdelší stranu trojúhelníků triangulace označíme h. Symbol h budeme v dalším používat jako měřítko jemnosti triangulace. Kromě toho, použijeme-li písmeno h jako index u nějaké veličiny vyznačíme tím, že tato veličina závisí na triangulaci  $\mathcal{T}$ . Triangulaci popíšeme pomocí následujících souborů dat:

- 1. PRVKY[i, j], i = 1, ..., PP, j = 1, 2, 3, jsou čísla uzlů elementu  $e_i \in \mathcal{T}$ ;
- 2. STRANY[i, j], i = 1, ..., PS, j = 1, 2, jsou čísla uzlů strany  $S_i \in S$ ;
- 3. BODY[i], i = 1, ..., PB, jsou čísla uzlů ležících na  $\overline{\Gamma}_1$ ;
- 4. X[i], Y[i], i = 1, ..., PU, jsou x-ové a y-ové souřadnice uzlů.



Obr. 6. Triangulovaná polygonální oblast

| 1:  | 1  | 4  | 5  |
|-----|----|----|----|
| 2:  | 1  | 5  | 2  |
| 3:  | 2  | 5  | 6  |
| 4:  | 2  | 6  | 3  |
| 5:  | 3  | 6  | 7  |
| 6:  | 4  | 8  | 9  |
| 7:  | 4  | 9  | 5  |
| 8:  | 5  | 9  | 10 |
| 9:  | 5  | 10 | 6  |
| 10: | 6  | 10 | 11 |
| 11: | 6  | 11 | 7  |
| 12: | 7  | 11 | 12 |
| 13: | 13 | 9  | 8  |
| 14: | 13 | 14 | 9  |
| 15: | 14 | 10 | 9  |
| 16: | 14 | 15 | 10 |
| 17: | 15 | 11 | 10 |
| 18: | 15 | 16 | 11 |
| 19: | 16 | 12 | 11 |
| 20: | 18 | 14 | 13 |
| 21: | 18 | 19 | 14 |
| 22: | 19 | 15 | 14 |
| 23: | 19 | 20 | 15 |
| 24: | 15 | 20 | 21 |
| 25: | 15 | 21 | 16 |
| 26: | 21 | 22 | 16 |
| 27: | 22 | 17 | 16 |
| 28: | 22 | 23 | 17 |

1

 $\overline{2}$ 

3

7

12

16

17

23

22

21

20

19

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

2

3

7

12

16

17

23

22

21

20

19

18

1: 2:

1 4

3: 4:

5:

8

1318 Х

0

0

0

0,5

0,5

0,5

0,5

1

1

1

1

1,5

1,5

1,5

1,75

1,75

1,75

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

Y

0

0,5

 $\mathbf{KC}$ 

-1

1

2

-2

3

4

5-3

6

7

8

9

-4

10

11 12

13

-5

14

15

16

17

18

23:

1:

2:

1 3: 0 4: 0,55:1 6: 1,57: 0 8: 0,59: 10:1 1 1,511: 212:0 13:0,514:1 15:1,51,516:1,51,7517:20 18:20,519:220: 1 1,751,2521: 1,522:

Tab.1. Data popisující triangulaci

Z čistě formálních důvodů, umožňujících snadnější matematické vyjadřování, budeme v dalším textu předpokládat, že na hranici  $\overline{\Gamma}_1$  leží uzly s čísly  $PN+1,\ldots,PU$ . Pokud tomu tak není, jako třeba v příkladu podle obrázku 6, snadno si poradíme : uzly přečíslujeme. Můžeme k tomu použít kódovací tabulku KC, která ke každému uzlu I přiřadí tak zvané kódové číslo KC[I]:

{Vytvoření pole kódových čísel KC[1..PU]} for I:=1 to PU do KC[I]=0; for I:=1 to PB do KC[BODY[I]]=–I; J:=0;for I:=1 to PU do if KC[I] = 0 then begin J:=J+1; KC[I]:=J end; Vidíme, že uzly neležící na  $\overline{\Gamma}_1$  mají přiřazena kódová čísla  $1, \ldots, PN$  a uzly ležící na  $\overline{\Gamma}_1$  čísla  $-1, \ldots, -PB$ . Je-li KC[I] > 0, je novým číslem uzlu I číslo KC[I], pro KC[I] < 0 je novým číslem uzlu I číslo PN - KC[I].

Funkci, která je na každém trojúhelníku  $e \in \mathcal{T}$  lineární a globálně, tj. na  $\Omega$ , spojitá, nazveme funkcí po částech lineární. Každá taková funkce v(x, y) je jednoznačně určena svými hodnotami  $v(x_i, y_i)$  ve vrcholech  $P_i(x_i, y_i)$  triangulace  $\mathcal{T}$ . Prostor všech po částech lineárních funkcí označíme  $X_h$ . Funkce z  $X_h$  jsou v  $\overline{\Omega}$  spojité a mají v  $\overline{\Omega}$  po částech spojité derivace, tedy  $X_h \subset PC^1(\Omega) \subset X$ .

Speciálním případem funkcí z  $X_h$  jsou funkce  $w_i(x, y)$ , které jsou v  $P_i$  rovny jedné a v ostatních vrcholech jsou rovny nule. Těmto funkcím se říká bázové. Každá funkce  $v \in X_h$  může být pomocí svých hodnot v uzlech a pomocí bázových funkcí vyjádřena ve tvaru

$$v(x,y) = \sum_{i=1}^{PU} v(x_i, y_i) w_i(x, y).$$
(2.13)

 $X_h$  je prostor dimenze PU. Podstatnou a charakteristickou vlastností metody konečných prvků je ta skutečnost, že bázové funkce v ní používané jsou nenulové jen na velmi malé poddoblasti oblasti  $\Omega$ . Říkáme, že bázové funkce  $w_i$  mají malý *nosič*. (Nosičem funkce  $\varphi$  je uzávěr množiny všech bodů, v nichž je funkce  $\varphi$  nenulová). Dále definujme prostor testovacích funkcí

$$V_h = \{ v \in X_h \mid v(P_j) = 0 \ \forall P_j \in \overline{\Gamma}_1 \}$$

$$(2.14)$$

a množinu přípustných funkcí

$$W_h = \{ v \in X_h \mid v(P_j) = g(P_j) \; \forall P_j \in \overline{\Gamma}_1 \}.$$

$$(2.15)$$

Pro  $v \in V_h$  platí

$$v(x,y) = \sum_{i=1}^{PN} v(x_i, y_i) w_i(x, y)$$
(2.16)

a pro  $v \in W_h$  je

$$v(x,y) = \sum_{i=1}^{PN} v(x_i, y_i) w_i(x, y) + \sum_{i=PN+1}^{PU} g(x_i, y_i) w_i(x, y).$$
(2.17)

 $V_h$  je podprostor prostoru V a dimenze  $V_h$  je rovna PN. Množina přípustných řešení  $W_h$  pro  $g \neq 0$  opět zřejmě není lineárním prostorem a  $W_h$  je podmnožinou W pouze tehdy, když pro každou funkci  $v \in W_h$  je v = g na  $\overline{\Gamma}_1$ .

#### 2.6. Diskrétní slabá formulace

Označme  $I^e(g)$  numericky nebo přesně spočtený  $\int_e g(x, y) dx dy$  a  $I^S(g)$  numericky nebo přesně spočtený  $\int_S g(x, y) ds$ . ( $I^e(g)$  a  $I^S(g)$  jsou zřejmě lineární funkcionály). Pak diskrétní slabá (variační) formulace úlohy (2.1)–(2.4) zní

najít 
$$U \in W_h$$
 splňující  $a_h(U, v) = L_h(v) \quad \forall v \in V_h,$ 

$$(2.18)$$

kde

$$a_h(U,v) = \sum_{e \in \mathfrak{T}} I^e(p \,\nabla U \cdot \nabla v + qUv) + \sum_{S \in \mathfrak{S}} I^S(\alpha Uv), \qquad (2.19)$$

$$L_h(v) = \sum_{e \in \mathfrak{T}} I^e(fv) + \sum_{S \in \mathfrak{S}} I^S(\beta v).$$
(2.20)

Hodnotu MKP-slabého řešení U v uzlu  $P_j$  označíme  $\Delta_j = U(x_j, y_j)$  a hodnotu testovací funkce v v uzlu  $P_i$  označíme  $\Theta_i = v(x_i, y_i)$ . Podle (2.16) a (2.17) je

$$U(x,y) = \sum_{j=1}^{PN} \Delta_j w_j(x,y) + \sum_{j=PN+1}^{PU} g(x_j, y_j) w_j(x,y),$$
  
$$v(x,y) = \sum_{i=1}^{PN} \Theta_i w_i(x,y).$$
  
(2.21)

Všimněte si, že  $\sum_{j=1}^{PN} \Delta_j w_j(x, y) \in V_h$  a  $z = \sum_{j=PN+1}^{PU} g(x_j, y_j) w_j(x, y) \in W_h$ . Vzhledem k bilineárnosti formy  $a_h(U, v)$  a lineárnosti funkcionálu  $L_h(v)$  je

$$0 = a_h(U, v) - L_h(v) =$$

$$= \sum_{i=1}^{PN} \Theta_i \left\{ \sum_{j=1}^{PN} a_h(w_j, w_i) \Delta_j - \left[ L_h(w_i) - \sum_{j=PN+1}^{PU} a_h(w_j, w_i) g(x_j, y_j) \right] \right\} =$$

$$= \sum_{i=1}^{PN} \Theta_i \left[ \sum_{j=1}^{PN} k_{ij} \Delta_j - F_i \right] = \Theta^T \left[ \mathbf{K} \Delta - \mathbf{F} \right],$$
(2.22)

kde jsme si označili

$$k_{ij} = a_h(w_j, w_i), \quad F_i = L_h(w_i) - \sum_{j=PN+1}^{PU} a_h(w_j, w_i)g(x_j, y_j),$$
  

$$\mathbf{K} = \{k_{ij}\}_{i,j=1}^{PN}, \quad \mathbf{F} = (F_1, \dots, F_{PN})^T,$$
  

$$\boldsymbol{\Delta} = (\Delta_1, \dots, \Delta_{PN})^T, \boldsymbol{\Theta} = (\Theta_1, \dots, \Theta_{PN})^T.$$
(2.23)

Protože  $\Theta$  je libovolný vektor, musí platit

$$\mathbf{K}\boldsymbol{\Delta} = \mathbf{F}.\tag{2.24}$$

Z této soustavy lineárních rovnic spočítáme neznámé  $\Delta_1, \ldots, \Delta_{PN}$ . K se nazývá matice tuhosti a F vektor zatížení. Uveď me některé vlastnosti matice tuhosti.

- 1. **K** je symetrická:  $a_h(w_j, w_i) = a_h(w_i, w_j);$
- 2. K je řídká:  $a_h(w_j, w_i) = 0$ , pokud uzly  $P_j$  a  $P_i$  nejsou vrcholy téhož trojúhelníka;

3. K je pozitivně definitní:  $\Theta^T \mathbf{K} \Theta = a_h(v, v)$ ; integrujeme-li přesně, je

$$a_h(v,v) = \int_{\Omega} [p \,\nabla v \cdot \nabla v + qv^2] \,\mathrm{d}x \,\mathrm{d}y + \int_{\Gamma_2} \alpha v^2 \,\mathrm{d}s > 0 \text{ pro } v \neq 0$$

a dále  $a_h(v, v) = 0$  právě když v = 0 (stačí použít(2.5b) a (2.5c)); matice **K** však bude pozitivně definitní pro dostatečně malé *h* i tehdy, když integrujeme numericky užitím formulí, které uvedeme v následujícím odstavci 2.7;

4. Při vhodném očíslování proměnných je K pásová matice.

Soustavu rovnic (2.24) lze bez problémů vyřešit: pásovost a pozitivní definitnost matice  $\mathbf{K}$  umožňuje efektivní nasazení některé z modifikací Gaussovy eliminační metody bez výběru hlavních prvků, řídkost a pozitivní definitnost matice  $\mathbf{K}$  zase vybízí k řešení soustavy rovnic výkonnou iterační metodou.

### 2.7. Elementární matice a vektory

Matici tuhosti **K** a vektor zatížení **F** sestavíme pomocí elementárních matic  $\mathbf{K}^e$  a elementárních vektorů  $\mathbf{F}^e$  pro  $e \in \mathcal{T}$  a elementárních matic  $\mathbf{K}^S$  a elementárních vektorů  $\mathbf{F}^S$  pro  $S \in \mathcal{S}$ . Matici **K** budeme nazývat také globální maticí tuhosti a vektor **F** globálním vektorem zatížení.

#### a) Elementární matice a vektor na elementu e

Uvažme jeden konkrétní element *e* triangulace  $\mathfrak{T}$  s vrcholy  $P_i^e(x_i^e, y_i^e)$ , i = 1, 2, 3. Pro uzel  $P_i^e$  je *i* lokálním číslem uzlu na elementu *e*. Je-li c = c(e) číslo elementu *e*, pak globálním číslem uzlu  $P_i^e$  je číslo I = PRVKY[c, i].  $P_i^e$  a  $P_I$  jsou tedy jen různá označení téhož uzlu.

Nechť  $w_i^e(x,y)$  je restrikce bázové funkce  $w_I(x,y)$  na element e. Označme si

$$w_i^e(x,y) = a_i^e x + b_i^e y + c_i^e, \quad i = 1, 2, 3,$$
(2.25)

$$\mathbf{N}^{e} = \mathbf{N}^{e}(x, y) = (w_{1}^{e}(x, y), w_{2}^{e}(x, y), w_{3}^{e}(x, y)), \qquad (2.26)$$

$$\boldsymbol{\Delta}^{e} = (\Delta_{1}^{e}, \Delta_{2}^{e}, \Delta_{3}^{e})^{T}, \text{ kde } \Delta_{i}^{e} = U(x_{i}^{e}, y_{i}^{e}), \quad i = 1, 2, 3,$$
(2.27)

$$\boldsymbol{\Theta}^{e} = (\Theta_{1}^{e}, \Theta_{2}^{e}, \Theta_{3}^{e})^{T}, \text{ kde } \Theta_{i}^{e} = v(x_{i}^{e}, y_{i}^{e}), \quad i = 1, 2, 3.$$
(2.28)

Pak slabé řešení U a testovací funkci v lze na elementu e vyjádřit ve tvaru

$$U = \mathbf{N}^e \mathbf{\Delta}^e, \quad v = \mathbf{N}^e \mathbf{\Theta}^e. \tag{2.29}$$

Dále označme

$$\mathbf{B}^{e} = \nabla \mathbf{N}^{e} = \begin{pmatrix} \frac{\partial w_{1}^{e}}{\partial x} & \frac{\partial w_{2}^{e}}{\partial x} & \frac{\partial w_{3}^{e}}{\partial x} \\ \frac{\partial w_{1}^{e}}{\partial y} & \frac{\partial w_{2}^{e}}{\partial y} & \frac{\partial w_{3}^{e}}{\partial y} \end{pmatrix} = \begin{pmatrix} a_{1}^{e} & a_{2}^{e} & a_{3}^{e} \\ b_{1}^{e} & b_{2}^{e} & b_{3}^{e} \end{pmatrix}.$$
 (2.30)

Pak

$$\nabla U = \mathbf{B}^e \mathbf{\Delta}^e \quad \mathbf{a} \quad \nabla v = \mathbf{B}^e \mathbf{\Theta}^e. \tag{2.31}$$

Nyní již vyjádříme

$$I^{e}(p \nabla U \cdot \nabla v + qUv) = I^{e}([\nabla v]^{T} p \nabla U + vqU) =$$
  
=  $I^{e}([\Theta^{e}]^{T} [\Theta^{e}]^{T} p \Theta^{e} \Delta^{e} + [\Theta^{e}]^{T} [\mathbf{N}^{e}]^{T} q \mathbf{N}^{e} \Delta^{e}) = [\Theta^{e}]^{T} \mathbf{K}^{e} \Delta^{e},$  (2.32)

kde 
$$\mathbf{K}^e = \mathbf{K}^{e1} + \mathbf{K}^{e2}$$
 a (2.33)

$$\mathbf{K}^{e1} = I^e([\mathbf{B}^e]^T p \, \mathbf{B}^e), \quad \mathbf{K}^{e2} = I^e([\mathbf{N}^e]^T q \, \mathbf{N}^e).$$
(2.55)

 Při výpočtu prvků matice  $\mathbf{K}^{e1}$  se obvykle používá formule

$$I^{e}(g) = pl(e)g(x_{T}^{e}, y_{T}^{e}), (2.34)$$

kde pl(e) je plocha elementu e a  $x_T^e = \frac{1}{3}(x_1^e + x_2^e + x_3^e), y_T^e = \frac{1}{3}(y_1^e + y_2^e + y_3^e)$  jsou souřadnice těžiště elementu e. Formule (2.34) integruje přesně polynomy prvního stupně. Pomocí této formule snadno určíme

$$\mathbf{K}^{e1} = pl(e)p(x_T^e, y_T^e) \begin{pmatrix} a_1^e a_1^e + b_1^e b_1^e & a_1^e a_2^e + b_1^e b_2^e & a_1^e a_3^e + b_1^e b_3^e \\ a_2^e a_1^e + b_2^e b_1^e & a_2^e a_2^e + b_2^e b_2^e & a_2^e a_3^e + b_2^e b_3^e \\ a_3^e a_1^e + b_3^e b_1^e & a_3^e a_2^e + b_3^e b_2^e & a_3^e a_3^e + b_3^e b_3^e \end{pmatrix}.$$
(2.35)

Zbývá spočítat ko<br/>eficienty  $a^e_i,\,b^e_i,\,i=1,2,3,$ a vyjádřitpl(e).K tomu účelu stačí vyu<br/>žít vlastností bázových funkcí

$$w_i^e(x_j^e, y_j^e) = \begin{cases} 0 & \text{pro } i \neq j, \\ 1 & \text{pro } i = j, \end{cases} \quad i, j = 1, 2, 3.$$
(2.36)

Tak dostaneme

$$\begin{pmatrix} x_1^e & y_1^e & 1\\ x_2^e & y_2^e & 1\\ x_3^e & y_3^e & 1 \end{pmatrix} \begin{pmatrix} a_1^e & a_2^e & a_3^e\\ b_1^e & b_2^e & b_3^e\\ c_1^e & c_2^e & c_3^e \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

a pomocí Cramerova pravidla zjistíme

$$a_{1}^{e} = (y_{2}^{e} - y_{3}^{e})/d^{e}, \qquad b_{1}^{e} = (x_{3}^{e} - x_{2}^{e})/d^{e}, \qquad c_{1}^{e} = (x_{2}^{e}y_{3}^{e} - y_{2}^{e}x_{3}^{e})/d^{e}, a_{2}^{e} = (y_{3}^{e} - y_{1}^{e})/d^{e}, \qquad b_{2}^{e} = (x_{1}^{e} - x_{3}^{e})/d^{e}, \qquad c_{2}^{e} = (x_{3}^{e}y_{1}^{e} - y_{3}^{e}x_{1}^{e})/d^{e}, \qquad (2.37)$$
$$a_{3}^{e} = (y_{1}^{e} - y_{2}^{e})/d^{e}, \qquad b_{3}^{e} = (x_{2}^{e} - x_{1}^{e})/d^{e}, \qquad c_{3}^{e} = (x_{1}^{e}y_{2}^{e} - y_{1}^{e}x_{2}^{e})/d^{e},$$

kde 
$$d^e = (y_3^e - y_1^e)(x_2^e - x_1^e) - (x_1^e - x_3^e)(y_1^e - y_2^e).$$
 (2.38)

Je známo, že pro plochu trojúhelníka platí

$$pl(e) = \frac{1}{2}|d^e|.$$
 (2.39)

Snadno nahlédneme, že matice  $\mathbf{K}^{e1}$  je symetrická a že součet jejích prvků v každém řádku je roven nule. Proto lze matici  $\mathbf{K}^{e1}$  vyjádřit efektivněji,

$$\mathbf{K}^{e_1} = \frac{p(x_T^e, y_T^e)}{2|d^e|} \begin{pmatrix} -r^e - s^e & r^e & s^e \\ r^e & -r^e - t^e & t^e \\ s^e & t^e & -s^e - t^e \end{pmatrix},$$
(2.40)

kde

$$r^{e} = (y_{2}^{e} - y_{3}^{e})(y_{3}^{e} - y_{1}^{e}) + (x_{3}^{e} - x_{2}^{e})(x_{1}^{e} - x_{3}^{e}),$$
  

$$s^{e} = (y_{2}^{e} - y_{3}^{e})(y_{1}^{e} - y_{2}^{e}) + (x_{3}^{e} - x_{2}^{e})(x_{2}^{e} - x_{1}^{e}),$$
  

$$t^{e} = (y_{3}^{e} - y_{1}^{e})(y_{1}^{e} - y_{2}^{e}) + (x_{1}^{e} - x_{3}^{e})(x_{2}^{e} - x_{1}^{e}).$$
(2.41)

Uveď me si jednu zajímavou vlastnost prvků matice  $\mathbf{K}^{e1}$ . Lze ukázat, že platí

$$k_{ij}^{e1} = p(x_T^e, y_T^e) \left( -\frac{1}{2} \operatorname{cotg} \vartheta_{ij}^e \right) \quad \text{pro } i \neq j,$$
(2.42)

kde  $\vartheta_{ij}^e$  je vnitřní úhel trojúhelníka e u vrcholu  $P_k^e$ ,  $k \neq i, k \neq j$ . Protože součet prvků v každém řádku matice  $\mathbf{K}^{e1}$  je roven nule, z (2.42) mimo jiné plyne, že pro trojúhelník s úhly  $\vartheta_{ij}^e \leq \frac{\pi}{2}$  má matice  $\mathbf{K}^{e1}$  kladné diagonální prvky a nekladné prvky mimodiagonální. Při výpočtu prvků matice  $\mathbf{K}^{e2}$  se používá celá řada formulí. Užitím formule

$$I^{e}(g) = \frac{1}{3} pl(e) [g(x_{1}^{e}, y_{1}^{e}) + g(x_{2}^{e}, y_{2}^{e}) + g(x_{3}^{e}, y_{3}^{e})],$$
(2.43)

která rovněž integruje polynomy prvního stupně přesně, dostaneme diagonální matici

$$\mathbf{K}^{e2} = \frac{|d^e|}{6} \begin{pmatrix} q(x_1^e, y_1^e) & 0 & 0\\ 0 & q(x_2^e, y_2^e) & 0\\ 0 & 0 & q(x_3^e, y_3^e) \end{pmatrix}.$$
 (2.44)

Pokud bychom při výpočtu matice  $\mathbf{K}^{e2}$  použili formuli (2.34), dostali bychom plnou matici

$$\mathbf{K}^{e2} = \frac{|d^e|}{18} q(x_T^e, y_T^e) \begin{pmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix}.$$
 (2.45)

Někdy se používá ještě jiný způsob numerické integrace a sice

$$\mathbf{K}^{e2} = I^e([\mathbf{N}^e]^T q \, \mathbf{N}^e) = q(x_T^e, y_T^e) \int_e [\mathbf{N}^e]^T \mathbf{N}^e \, \mathrm{d}x \, \mathrm{d}y.$$
(2.46)

V tom případě bude matice  $\mathbf{K}^{e2}$  opět plná,

$$\mathbf{K}^{e2} = \frac{|d^e|}{24} q(x_T^e, y_T^e) \begin{pmatrix} 2 & 1 & 1\\ 1 & 2 & 1\\ 1 & 1 & 2 \end{pmatrix}.$$
 (2.47)

Při výpočtu

$$I^{e}(fv) = [\boldsymbol{\Theta}^{e}]^{T} I^{e}([\mathbf{N}^{e}]^{T} f) = [\boldsymbol{\Theta}^{e}]^{T} \mathbf{F}^{e}$$
(2.48)

použijeme buď to formuli (2.43) a dostaneme

$$\mathbf{F}^{e} = \frac{1}{6} \left| d^{e} \right| \left( f(x_{1}^{e}, y_{1}^{e}), f(x_{2}^{e}, y_{2}^{e}), f(x_{3}^{e}, y_{3}^{e}) \right)^{T},$$
(2.49)

nebo formuli (2.34) a obdržíme

$$\mathbf{F}^{e} = \frac{1}{6} |d^{e}| f(x_{T}^{e}, y_{T}^{e})(1, 1, 1)^{T}.$$
(2.50)

#### b) Elementární matice a vektor na straně S

Uvažme jednu konkrétní stranu S z množiny stran S s koncovými body  $P_i^S(x_i^S, y_i^S)$ , i = 1, 2. Pro uzel  $P_i^S$  je *i* lokálním číslem uzlu na straně S. Je-li c = c(S) číslo strany S, pak globálním číslem uzlu  $P_i^S$  je číslo I = STRANY[c, i].  $P_i^S$  a  $P_I$  jsou tedy jen různá označení téhož uzlu.

Nechť  $w_i^S(x,y)$  je restrikce bázové funkce  $w_I(x,y)$  na stranu S. Pak zřejmě platí  $w_i^S(x_j^S,y_j^S) = 0$  pro  $i \neq j$  a  $w_i^S(x_i^S,y_i^S) = 1$ . Označme

$$\begin{split} \mathbf{N}^{S} &= \mathbf{N}^{S}(x, y) = (w_{1}^{S}(x, y), w_{2}^{S}(x, y)), \\ \mathbf{\Delta}^{S} &= (\Delta_{1}^{S}, \Delta_{2}^{S})^{T}, \text{ kde } \Delta_{i}^{S} = U(x_{i}^{S}, y_{i}^{S}), \quad i = 1, 2, \\ \mathbf{\Theta}^{S} &= (\Theta_{1}^{S}, \Theta_{2}^{S})^{T}, \text{ kde } \Theta_{i}^{S} = v(x_{i}^{S}, y_{i}^{S}), \quad i = 1, 2. \end{split}$$

Pak slabé řešení U a testovací funkci v lze na straně S vyjádřit ve tvaru

$$U = \mathbf{N}^S \mathbf{\Delta}^S, \quad v = \mathbf{N}^S \mathbf{\Theta}^S.$$

Proto

$$I^{S}(\alpha Uv) = [\boldsymbol{\Theta}^{S}]^{T} I^{S}([\mathbf{N}^{S}]^{T} \alpha \, \mathbf{N}^{S}) \boldsymbol{\Delta}^{S} = [\boldsymbol{\Theta}^{S}]^{T} \mathbf{K}^{S} \boldsymbol{\Delta}^{S}, \qquad (2.51)$$

$$I^{S}(\beta v) = [\boldsymbol{\Theta}^{S}]^{T} I^{S}([\mathbf{N}^{S}]^{T} \beta) = [\boldsymbol{\Theta}^{S}]^{T} \mathbf{F}^{S}.$$
(2.52)

Integraci na straně S provedeme například lichoběžníkovou formulí

$$I^{S}(g) = \frac{1}{2} d^{S}[g(x_{1}^{S}, y_{1}^{S}) + g(x_{2}^{S}, y_{2}^{S})], \qquad (2.53)$$

kde

$$d^{S} = \sqrt{(x_{2}^{S} - x_{1}^{S})^{2} + (y_{2}^{S} - y_{1}^{S})^{2}}$$

je délka strany S. Po úpravě dostaneme

$$\mathbf{K}^{S} = \frac{1}{2} d^{S} \begin{pmatrix} \alpha(x_{1}^{S}, y_{1}^{S}) & 0\\ 0 & \alpha(x_{2}^{S}, y_{2}^{S}) \end{pmatrix}, \qquad \mathbf{F}^{S} = \frac{1}{2} d^{S} \begin{pmatrix} \beta(x_{1}^{S}, y_{1}^{S})\\ \beta(x_{2}^{S}, y_{2}^{S}) \end{pmatrix}.$$
(2.54)
Všimněte si, že matice  $\mathbf{K}^S$ vyšla diagonální. Při výpočtu integrálů je možné použít také obdélníkovou formuli

$$I^{S}(g) = d^{S}g(x_{T}^{S}, y_{T}^{S}), (2.55)$$

kde  $x_T^S = \frac{1}{2}(x_1^S + x_2^S), y_T^S = \frac{1}{2}(y_1^S + y_2^S)$  jsou souřadnice středu strany S. Pak dostaneme

$$\mathbf{K}^{S} = \frac{1}{4} d^{S} \alpha(x_{T}^{S}, y_{T}^{S}) \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad \mathbf{F}^{S} = \frac{1}{2} d^{S} \beta(x_{T}^{S}, y_{T}^{S}) \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
(2.56)

a matice  $\mathbf{K}^S$  je plná. Někdy se při výpočtu matice  $\mathbf{K}^S$  používá speciální postup,

$$\mathbf{K}^{S} = I^{S}([\mathbf{N}^{S}]^{T} \alpha \, \mathbf{N}^{S}) = \alpha(x_{T}^{S}, y_{T}^{S}) \int_{S} [\mathbf{N}^{S}]^{T} \mathbf{N}^{S} \, \mathrm{d}s,$$

který vede opět na plnou matici

$$\mathbf{K}^{S} = \frac{1}{6} d^{S} \alpha(x_{T}^{S}, y_{T}^{S}) \begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}.$$
(2.57)

### c) Sestavení globální matice a vektoru

Zkombinujeme-li (2.22), (2.19), (2.20), (2.32), (2.48), (2.51) a (2.52) vidíme, že pro slabé řešení U a libovolnou testovací funkci v platí

$$0 = a_h(U, v) - L_h(v) = \Theta^T [\mathbf{K} \Delta - \mathbf{F}] =$$
  
= 
$$\sum_{e \in \mathcal{T}} [\Theta^e]^T [\mathbf{K}^e \Delta^e - \mathbf{F}^e] + \sum_{S \in \mathcal{S}} [\Theta^S]^T [\mathbf{K}^S \Delta^S - \mathbf{F}^S].$$
(2.58)

Z této rovnosti lze odvodit pravidla pro sestavení globální matice  $\mathbf{K}$  a vektoru  $\mathbf{F}$  z lokálních matic  $\mathbf{K}^e$ ,  $\mathbf{K}^S$  a lokálních vektorů  $\mathbf{F}^e$ ,  $\mathbf{F}^S$ . Uvedeme si dva postupy.

#### Algoritmus 1 (eliminační)

Víme už, že uzly neležící na  $\overline{\Gamma}_1$  mají přiřazena kódová čísla  $1, \ldots, PN$  a uzly ležící na  $\overline{\Gamma}_1$  čísla  $-1, \ldots, -PB$ . Předpokládejme, že předepsané hodnoty řešení v uzlech BODY[I] jsou uloženy v pozici G[I] pole G[1..PB]. Následuje popis sestavovacího algoritmu.

{Nulování globální matice  $\mathbf{K} \sim K[1..PN, 1..PN]$  a vektoru  $\mathbf{F} \sim F[1..PN]$ } for I:=1 to PN do begin for J:=1 to PN do K[I,J]=0; F[I]:=0 end; {Zpracování příspěvků z elementů  $e \in \mathcal{T}$ } for E:=1 to PP do {prvky} begin {Výpočet elementární matice  $\mathbf{K}^e \sim KE[1..3, 1..3]$  a vektoru  $\mathbf{F}^e \sim FE[1..3]$  } for I:=1 to 3 do {řádky}

```
begin
      II:=KC[PRVKY[E,I]];
      if II > 0 then {rovnice se sestavuje}
      begin
         for J:=1 to 3 do {sloupce}
         begin
            JJ:=KC[PRVKY[E,J]];
            if JJ > 0 then K[II,JJ] := K[II,JJ] + KE[I,J] \{ p \check{r} i s p \check{e} v e k \text{ do matice } K \}
                       else F[II] = F[II] - KE[I,J] * G[-JJ] \{ příspěvek do vektoru F \}
         end; {sloupce}
         F[II] = F[II] + FE[I] \{ příspěvek do vektoru F \}
      end {sestavování rovnice}
   end {řádky}
end; {prvky}
{ Zpracování příspěvků ze stran S \in S}
for S:=1 to PS do {strany}
begin
   {Výpočet elementární matice \mathbf{K}^{S} \sim KS[1..2, 1..2] a vektoru \mathbf{F}^{S} \sim FS[1..2]}
   for I:=1 to 2 do {\check{r} \check{a} dky}
   begin
      II:=KC[STRANY[S,I]];
      if II > 0 then {rovnice se sestavuje}
      begin
          for J:=1 to 2 do {sloupce}
         begin
            JJ:=KC[STRANY[S,J]];
            if JJ > 0 then K[II,JJ] := K[II,JJ] + KS[I,J] {příspěvek do matice K}
                       else F[II] = F[II] - KS[I,J] * G[-JJ] \{ příspěvek do vektoru F \}
         end; {sloupce}
          F[II] := F[II] + FS[I] \{ příspěvek do vektoru F \}
      end {řádky}
   end {sestavování rovnice}
end; {strany}
```

Předpokládejme, že řešení soustavy rovnic s maticí soustavy K[1..PN, 1..PN] a vektorem pravé strany F[1..PN] dostaneme v poli Z[1..PN]. Pak pole D[1..PU] hodnot slabého řešení v uzlech dostaneme zpětným překódováním.

 $\begin{array}{l} \mbox{for I}{:=}1 \ \mbox{to PU do} \\ \mbox{begin} \\ J{:=}KC[I]; \\ \mbox{if } J>0 \ \mbox{then } D[I]{:=}Z[J] \ \mbox{else } D[I]{:=}G[-J] \\ \mbox{end}; \end{array}$ 

Algoritmus 1 nazýváme eliminační proto, že rovnice příslušné uzlům hranice  $\overline{\Gamma}_1$  vůbec nesestavujeme a že parametry příslušné uzlům hranice  $\overline{\Gamma}_1$  vyeliminujeme tím, že za ně

dosadíme předepsané hodnoty řešení a příslušné příspěvky z elementárních matic převedeme na pravé strany rovnic.

#### Algoritmus 2 (pružinový)

Při praktickém výpočtu diskrétního slabého řešení se někdy používá postup, který si nyní popíšeme. Je známo, že Dirichletova okrajová podmínka u = g může být přibližně splněna prostřednictvím okrajové podmínky Newtonova typu

$$-p\frac{\partial u}{\partial n} = \sigma(u-g) \qquad \text{na } \Gamma_1, \tag{2.59}$$

kde  $\sigma$  je velké kladné číslo. Lze ukázat, že pro  $\sigma \to +\infty$  platí  $u \to g$  na  $\Gamma_1$ . Zahrňme tedy podmínku (2.59) do diskrétní slabé formulace (2.18). To se projeví tím, že bude  $X_h = V_h = W_h$ , že počet neznámých parametrů PN bude roven počtu uzlů PU a dále že do  $a_h(U, v)$  přibudou členy  $I^S(\sigma U v)$  a do  $L_h(v)$  členy  $I^S(\sigma g v)$  pro strany S ležící na  $\Gamma_1$ . Integraci nových hraničních členů proveď me lichoběžníkovou formulí (2.53). Sestavovací algoritmus 2 odvodíme z algoritmu 1. Nejdříve zpracujeme elementy  $e \in \mathcal{T}$  a strany  $S \in S$ a sestavíme tak matici a vektor, které označíme  $\mathbf{K}$  a  $\mathbf{F}$ . Matici  $\mathbf{K}$  a vektor  $\mathbf{F}$  dále upravíme tak, že pro každý uzel  $P_i$  ležící na hranici  $\overline{\Gamma}_1$ 

- přičteme  $\sigma d_i$  k prvku  $k_{ii}$  matice **K** a
- přičteme  $\sigma d_i g(x_i, y_i)$  k prvku  $F_i$  vektoru **F**.

Přitom  $d_i$  se rovná jedné polovině ze součtu délek těch (jedné nebo dvou) stran hranice  $\Gamma_1$ , které obsahují uzel  $P_i$ . Protože členy  $\sigma d_i$  mají být hodně velké, lze je nahradit členy  $\rho_i = \kappa k_{ii}$ , kde  $\kappa$  je velké číslo, například  $\kappa = 10^{20}$ . Protože  $\rho_i$  je výrazně větší než  $k_{ii}$ , a protože lze předpokládat, že  $\rho_i$  je současně výrazně větší než  $F_i$ , stačí pro každý uzel  $P_i$  ležící na hranici  $\overline{\Gamma}_1$ 

- nahradit prvek  $k_{ii}$  matice **K** číslem  $\kappa k_{ii}$  a
- nahradit prvek  $F_i$  vektoru **F** číslem  $\kappa k_{ii}g(x_i, y_i)$ .

Následuje popis algoritmu 2.

{Nulování globální matice  $\mathbf{K} \sim K[1..PU, 1..PU]$  a vektoru  $\mathbf{F} \sim F[1..PU]$ } for I:=1 to PU do begin for J:=1 to PU do K[I,J]=0; F[I]:=0 end; {Zpracování příspěvků z elementů  $e \in \mathcal{T}$ } for E:=1 to PP do {prvky} begin {Výpočet elementární matice  $\mathbf{K}^e \sim KE[1..3, 1..3]$  a vektoru  $\mathbf{F}^e \sim FE[1..3]$  } for I:=1 to 3 do {řádky} begin II:=PRVKY[E,I];

```
for J:=1 to 3 do {sloupce}
      begin
         JJ:=PRVKY[E,J];
         K[II,JJ] := K[II,JJ] + KE[I,J] \{ příspěvek do matice K \}
      end; {sloupce}
      F[II] := F[II] + FE[I] \{ příspěvek do vektoru F \}
   end {řádky}
end; {prvky}
{ Zpracování příspěvků ze stran S \in S}
for S:=1 to PS do {strany}
begin
   {Výpočet elementární matice \mathbf{K}^{S} \sim KS[1..2, 1..2] a vektoru \mathbf{F}^{S} \sim FS[1..2]}
   for I:=1 to 2 do {\check{r}adky}
   begin
      II:=STRANY[S,I];
      for J:=1 to 2 do {sloupce}
      begin
         JJ:=STRANY[S,J];
         K[II,JJ] := K[II,JJ] + KS[I,J] \{příspěvek do matice K\}
      end; {sloupce}
      F[II] = F[II] + FS[I] \{ příspěvek do vektoru F \}
   end {řádky}
end; {strany}
{ Zpracování Dirichletovy okrajové podmínky}
KAPA:=1e20;
for B:=1 to PB do {body hranice \Gamma_1}
begin
   II:=BODY[I];
   Q:=K[II,II]*KAPA;
   K[II,II]:=Q; {modifikace diagonálního prvku}
   F[II]:=G[I]*Q \{modifikace pravé strany\}
end; {body hranice \overline{\Gamma}_1}
```

Vyřešením soustavy rovnic s maticí soustavy K[1..PU, 1..PU] a vektorem pravé strany F[1..PU] dostaneme přímo pole D[1..PU] hodnot slabého řešení v uzlech. Algoritmus 2 nazýváme pružinový proto, že v úlohách pružnosti má  $\sigma$  vystupující ve vztahu (2.59) význam tuhosti pružinového uložení.

### Příklad

Uvažme úlohu, jejíž geometrie a triangulace je popsána pomocí obrázku 6 a tabulky 1 a o jejíž datech předpokládáme

$$p = \overline{p}, \quad q = 0, \quad f = fy, \quad g = \overline{g}(1-x)^2, \quad \alpha = \overline{\alpha}, \quad \beta = \beta n_y,$$

kde  $\overline{p}$ ,  $\overline{f}$ ,  $\overline{g}$ ,  $\overline{\alpha}$  a  $\overline{\beta}$  jsou zadané konstanty a  $n_y$  je y-vá složka jednotkového vektoru vnější normály hranice. Naším cílem je zápis několika rovnic soustavy (2.24).

Začněme tím, že uvedeme elementární matici prvku 1. Z (2.35) dostaneme

$$\mathbf{K}^{e} = \frac{\overline{p}}{2} \begin{pmatrix} 1 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 1 \end{pmatrix}.$$
 element typu 1

Snadno ověříme, že elementární matice prvků 1, 3, 5, 6, 8, 10 a 12 (označme je jako elementy typu 1) jsou stejné: pro  $p(x,y) = \overline{p}$  konstantní má element e a jeho obraz v zobrazení

$$\hat{x} = ax + b,$$
  $\hat{y} = ay + c,$   $(a, b, c \text{ jsou konstanty})$ 

tutéž matici  $\mathbf{K}^{e1}$ , jak lze zjistit analýzou vztahu (2.35). Prvky 2, 4, 7, 9 a 11 označme jako elementy typu 2, jejich elementární matice je

$$\mathbf{K}^{e} = \frac{\overline{p}}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$
 element typu 2

Prvky 13, 15, 17, 19, 20, 22 a 27 typu 3 mají elementární matici

$$\mathbf{K}^{e} = \frac{\overline{p}}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
 element typu 3

a prvky 14, 16, 18, 21, 23, 26 a 28 typu 4 mají elementární matici

$$\mathbf{K}^{e} = \frac{\overline{p}}{2} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}.$$
 element typu 4

Výpočtem ověříme, že elementární matice prvku 24 je stejná jako u prvků typu 2 a elementární matice prvku 25 je stejná jako u prvků typu 4.

Elementární vektor  $\mathbf{F}^e$  počítaný užitím formule (2.49) má na všech prvcích tvar

$$\mathbf{F}^{e} = \frac{1}{3} \overline{f} pl(e) \begin{pmatrix} y_{1}^{e} \\ y_{2}^{e} \\ y_{3}^{e} \end{pmatrix}, \quad \text{kde } pl(e) = \begin{cases} 0,03125 & \text{pro prvky } 26, 27, 28, \\ 0,0625 & \text{pro prvky } 24, 25, \\ 0,125 & \text{pro ostatní prvky} \end{cases}$$

je plocha prvku e a  $y_i^e$  je y-ová souřadnice jeho i-tého vrcholu.

Elementární matice  $\mathbf{K}^{S}$  a vektory  $\mathbf{F}^{S}$  počítané podle (2.54) jsou tvaru

$$\mathbf{K}^{S} = \frac{1}{2} \overline{\alpha} \, d^{S} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{kde } d^{S} = \begin{cases} 0, 5 & \text{pro strany 1, 2, 11, 12,} \\ 0, 5\sqrt{2} & \text{pro strany 3, 4, 5,} \\ 0, 25 & \text{pro stranu 6, 7, 8, 9,} \\ 0, 25\sqrt{2} & \text{pro stranu 10} \end{cases}$$

je délka strany S,

$$\mathbf{F}^{S} = \frac{1}{2} \overline{\beta} d_{n}^{S} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \text{kde } d_{n}^{S} = \begin{cases} 0, 5 & \text{pro strany } 3, 4, 5, \\ 0, 25 & \text{pro stranu } 7, 10, \\ 0 & \text{pro zbývající strany} \end{cases}$$

je součin $d^S n_y$ délky stranyS <br/>ay-ové složky jednotkového vektoru vnější normály na této straně.

Sestavme nejdříve rovnici příslušnou neznámé v uzlu 6. Z kódovací tabulky vyčteme KC[6]=4, takže půjde o čtvrtou rovnici. Sestavíme ji pomocí příspěvků z prvků 3, 4, 5, 9, 10 a 11 obsahujících uzel 6. Začněme například prvkem 3. To je prvek typu 1. Z pole PRVKY zjistíme, že uzel 6 je třetím uzlem prvku 3 (neboť PRVKY[3,3]=6) a proto použijeme třetí řádek elementární matice a elementárního vektoru. Protože

$$KC[PRVKY[3,1]] = 1, \quad KC[PRVKY[3,2]] = 3, \quad KC[PRVKY[3,3]] = 4,$$

příspěvek do levé strany rovnice bude

 $\frac{1}{2}\overline{p}\left[0\cdot\Delta_1-1\cdot\Delta_3+1\cdot\Delta_4\right]$ 

a příspěvek do pravé strany rovnice

$$\frac{1}{3}\overline{f}0, 125\cdot 1,$$

neboť obsah prvku 6 je 0,125 a y-ová souřadnice uzlu 6 je 1. Stejně zpracujeme i zbývající prvky a výsledek zaznamenáme do tabulky.

| pravá strana          | levá strana                                                | řádek | typ | prvek |
|-----------------------|------------------------------------------------------------|-------|-----|-------|
| $0,125/3\overline{f}$ | $0,5\overline{p}\left[-\Delta_3+\Delta_4\right]$           | 3     | 1   | 3     |
| $0,125/3\overline{f}$ | $0,5\overline{p}\left[\Delta_4-\Delta_2\right]$            | 2     | 2   | 4     |
| $0,125/3\overline{f}$ | $0,5\overline{p}\left[-\Delta_2+2\Delta_4-\Delta_5\right]$ | 2     | 1   | 5     |
| $0,125/3\overline{f}$ | $0,5\overline{p}\left[-\Delta_3-\Delta_7+2\Delta_4\right]$ | 3     | 2   | 9     |
| $0,125/3\overline{f}$ | $0,5\overline{p}\left[\Delta_4-\Delta_7\right]$            | 1     | 1   | 10    |
| $0,125/3\overline{f}$ | $0,5\overline{p}\left[\Delta_4-\Delta_5\right]$            | 1     | 2   | 11    |

Sloučením jednotlivých příspěvků dostaneme rovnici

 $\overline{p}\left[-\Delta_2 - \Delta_3 + 4\Delta_4 - \Delta_5 - \Delta_7\right] = 0,25\overline{f}.$ 

Stejný výsledek obdržíme standardní diskretizací rovnice  $\overline{p} \Delta u = f$  metodou sítí (stačí si uvědomit, že velikost oka sítě h = 0, 5, takže  $h^2 = 0, 25$ , a že v uzlu 6 je  $f = \overline{f}$ ).

Další rovnicí, kterou si odvodíme, bude rovnice příslušná neznámé v uzlu 5. Protože KC[5]=3, jde o třetí rovnici. Sestavíme ji pomocí příspěvků z prvků 1, 2, 3, 7, 8 a 9. Narozdíl od odvození předchozí rovnice nyní uzel 4, společný vrchol prvků 1 a 7, leží na hranici  $\Gamma_1$  a je v něm tedy předepsána hodnota řešení  $u(P_4) = g(P_4) = \overline{g}(1-0,5)^2 = 0,25\overline{g}$ .

| prvek | typ | řádek | levá strana                                                | pravá strana                                         |
|-------|-----|-------|------------------------------------------------------------|------------------------------------------------------|
| 1     | 1   | 3     | $0, 5\overline{p}\Delta_3$                                 | $0,5\overline{p}g(P_4)+0,125\cdot 0,5/3\overline{f}$ |
| 2     | 2   | 2     | $0,5\overline{p}\left[\Delta_3-\Delta_1\right]$            | $0,125\cdot 0,5/3\overline{f}$                       |
| 3     | 1   | 2     | $0,5\overline{p}\left[-\Delta_1+2\Delta_3-\Delta_4\right]$ | $0,125\cdot 0,5/3\overline{f}$                       |
| 7     | 2   | 3     | $0,5\overline{p}\left[-\Delta_{6}+2\Delta_{3}\right]$      | $0,5\overline{p}g(P_4)+0,125\cdot 0,5/3\overline{f}$ |
| 8     | 1   | 1     | $0,5\overline{p}\left[\Delta_3-\Delta_6\right]$            | $0,125\cdot 0,5/3\overline{f}$                       |
| 9     | 2   | 1     | $0,5\overline{p}\left[\Delta_3-\Delta_4\right]$            | $0,125\cdot 0,5/3\overline{f}$                       |

Na hranici  $\Gamma_1$ leží také uzel 1, pro který  $u(P_1) = g(P_1) = \overline{g}(1-1)^2 = 0$ . Příspěvky jednotlivých prvků zaznamenáme do tabulky

a zjistíme, že člen  $g(P_1)$  se mezi nimi neobjevil. Sestavená rovnice má tvar

$$\overline{p}\left[-\Delta_1 + 4\Delta_3 - \Delta_4 - \Delta_6\right] = 0,25\left[\overline{p}\,\overline{g} + 0,5\overline{f}\right].$$

Také tuto rovnici lze dostat standardní diskretizací používanou v metodě sítí.

Nakonec sestavíme rovnici příslušnou neznámé v uzlu 16. Protože KC[16]=12, jde o rovnici číslo 12. Sestavíme ji pomocí příspěvků z prvků 18, 19, 25, 26 a 27 užitím tabulky

| prvek | typ | řádek | levá strana                                                         | pravá strana                     |
|-------|-----|-------|---------------------------------------------------------------------|----------------------------------|
| 18    | 4   | 2     | $0,5\overline{p}\left[-\Delta_{11}+2\Delta_{12}-\Delta_{8}\right]$  | $0,125\cdot 1,5/3\overline{f}$   |
| 19    | 3   | 1     | $0,5\overline{p}\left[\Delta_{12}-\Delta_{8}\right]$                | $0,125\cdot 1,5/3\overline{f}$   |
| 25    | 4   | 3     | $0,5\overline{p}\left[-\Delta_{16}+\Delta_{12}\right]$              | $0,0625\cdot 1,5/3\overline{f}$  |
| 26    | 4   | 3     | $0,5\overline{p}\left[-\Delta_{17}+\Delta_{12}\right]$              | $0,03125\cdot 1,5/3\overline{f}$ |
| 27    | 3   | 3     | $0,5\overline{p}\left[-\Delta_{17}-\Delta_{13}+2\Delta_{12}\right]$ | $0,03125\cdot 1,5/3\overline{f}$ |

Protože strana 5 spojující uzly 12 a 17 je částí hranice  $\Gamma_2$ , přičteme k levé straně člen  $k_{2,2}^S \Delta_{12} = 0, 25\sqrt{2}\overline{\alpha}\Delta_{12}$  a k pravé straně člen  $F_2^S = 0, 25\overline{\beta}$ . Na hranici  $\Gamma_2$  leží také strana 6 spojující uzly 16 a 17. Na této straně je  $\beta = 0$ , takže k pravé straně nepřičítáme nic, k levé straně však přičteme příspěvek  $k_{1,1}^S \Delta_{12} = 0, 125 \overline{\alpha} \Delta_{12}$ . Celkem dostaneme rovnici

$$-\overline{p}\,\Delta_8 - 0, 5\overline{p}\,\Delta_{11} + [3, 5\overline{p} + 0, 125(1 + 2\sqrt{2})\,\overline{\alpha}\,]\Delta_{12} - 0, 5\overline{p}\,\Delta_{13} - 0, 5\overline{p}\,\Delta_{16} - \overline{p}\,\Delta_{17} = 0, 125\,[1, 5\overline{f} + 2\overline{\beta}\,].$$

Získat analog této rovnice metodou sítí je nesnadné.

# 2.8. Několik poznámek

**Poznámka 13.** V technických aplikacích nás často zajímá hodnota gradientu řešení. Na elementu e je gradient konstantní,

$$\nabla U = \mathbf{B}^e \mathbf{\Delta}^e,\tag{2.60}$$

a odpovídá nejlépe hodnotě  $\nabla u$  v těžišti elementu *e*. Za aproximaci  $\nabla u$  v uzlu *P* se obvykle bere aritmetický průměr hodnot  $\nabla U$  ze všech elementů obsahujících uzel *P* jako svůj vrchol.  $\Box$ 

**Poznámka 14.** Za předpokladu dostatečné hladkosti slabého řešení lze ukázat, že pro chybu u - U slabého řešení a jeho konečněprvkové po částech lineární aproximace platí

$$\max_{\overline{\Omega}} |u - U| = O(h^2) \quad \text{a} \quad \max_{\overline{e}} \|\nabla(u - U)\| = O(h) \quad \forall e \in \mathcal{T},$$

kde  $\|\cdot\|$  označuje délku vektoru.  $\Box$ 

**Poznámka 15.** Tam, kde se slabé řešení u prudce mění, je aproximace U pomocí po částech lineárních funkcí málo přesná, pokud triangulaci nezvolíme dostatečně přesně. V praxi často známe tato kritická místa. Pak stačí zahustit síť v kritické části oblasti  $\Omega$ , zatímco v nekritické části oblasti  $\Omega$  jemnou síť nevolíme, abychom zbytečně nezvětšovali počet neznámých. Takovýto způsob volby sítě je jednou ze značných výhod metody konečných prvků.

**Poznámka 16.** Triangulaci volíme tak, aby žádný vnitřní úhel trojúhelníků triangulace nebyl příliš velký. Je-li to možné, používáme trojúhelníky s úhly rovnými nejvýše  $\pi/2$  a pokud možno se vyhýbáme také úhlům příliš malým. Jsou-li vnitřní úhly všech trojúhelníků triangulace netupé (tj. menší nebo rovné  $\pi/2$ ), pak uvážíme-li výklad za vztahem (2.42) a použijeme-li elementární matice  $\mathbf{K}^{e2}$  tvaru (2.44) a elementární matice  $\mathbf{K}^{S}$  tvaru (2.54), zjistíme, že matice tuhosti  $\mathbf{K}$  má na hlavní diagonále kladné prvky a mimo hlavní diagonálu prvky nekladné. Navíc lze ukázat, že  $\mathbf{K}$  je *ireducibilně diagonálně dominantní matice* (stručně IDDM), viz [7], což znamená, že:

- $\alpha$ ) **K** je ireducibilní, tj. pro libovolné dva indexy  $i_0, j, 1 \leq i_0, j \leq PN$ , existují nenulové koeficienty  $k_{i_0i_1}, k_{i_1i_2}, \ldots, k_{i_{\ell-1},i_{\ell}}$ , kde  $i_{\ell}=j$ ;
- $\beta$ ) **K** je diagonálně dominantní, tj.

$$|k_{ii}| \ge \sum_{\substack{j=1\\j\neq i}}^{PN} |k_{ij}| \quad \text{pro } i = 1, \dots, PN;$$

 $\gamma$ ) existuje index  $i_0$ , pro který

$$|k_{i_0i_0}| > \sum_{\substack{j=1\\j\neq i_0}}^{PN} |k_{i_0j}|.$$

IDDM s kladnými diagonálními a nekladnými mimodiagonálními prvky je tzv. regulární *M-matice*, viz [13], [8]. Je známo, že symetrická regulární M-matice je pozitivně definitní. Je-li tedy matice tuhosti **K** symetrická regulární M-matice, je pozitivně definitní nezávisle na velikosti h.  $\Box$ 

**Poznámka 17.** Triangulace jsou obvykle generovány automaticky. Lokální zhušťování se často provádí bisekcí: spojením středů stran dostaneme z originálního trojúhelníka typu A čtyři shodné menší trojúhelníky typu B. Napojení na okolní hrubou triangulaci

zajistí dva přechodové trojúhelníky typu C vzniklé rozdělením trojúhelníka typu A těžnicí. Lokální zjemnění triangulace je ilustrováno na obrázku 7.  $\Box$ 

**Poznámka 18.** Doposud jsme předpokládali, že  $\Omega$  je polygon. To nám umožnilo bez problémů vykrýt oblast  $\Omega$  triangulací  $\mathcal{T}$ . Jak ale postupovat, když  $\Omega$  je regulární oblast s hranicí po částech hladkou a hladké hraniční oblouky jsou křivé? I v takovém případě pokryjeme oblast  $\Omega$  triangulací  $\mathcal{T}$ . Přitom  $\mathcal{T}$  rozumíme stejně jako dříve množinu trojúhelníkových elementů  $e_i$  takových, že  $\overline{e_i} \cap \overline{e_j}$  pro  $i \neq j$  je buď to množina prázdná nebo je to společná strana nebo společný vrchol. Označíme

$$\overline{\Omega}_h = \bigcup_{e \in \mathcal{T}} \overline{e}$$

Hranici oblasti  $\Omega_h$  značme  $\partial \Omega_h$  nebo také  $\Gamma_h$ . Naším cílem samozřejmě je, aby náhrada oblasti  $\Omega$  pomocí  $\Omega_h$  byla pokud možno co nejdokonalejší. Toho lze docílit, přijmeme-li následující předpoklady:

- 1) uzly triangulace a těžiště jejich elementů leží v  $\overline{\Omega}$ ;
- 2) uzly ležící na hranici  $\Gamma_h$  leží také na hranici  $\Gamma$ ;
- 3) společné body průniku  $\overline{\Gamma}_1 \cap \overline{\Gamma}_2$  jsou uzly triangulace.

Z podmínky 2 mimo jiné vyplývá, že při vykrývání oblasti  $\Omega$  elementy *e* nesmíme uvnitř náhradní oblasti  $\Omega_h$  vytvořit omylem nějaké "díry". Je zřejmé, že nemusí platit



Obr. 7. Zjemnění triangulace bisekcí

 $\Omega_h \subset \Omega$  ani  $\Omega \subset \Omega_h$ . Avšak obě oblasti  $\Omega$  a  $\Omega_h$  se mohou lišit jen v okolí svých hranic  $\Gamma$  a  $\Gamma_h$  a kdyby se křivé oblouky hranice  $\Gamma$  vypřímily, pak by se oblasti  $\Omega_h$  a  $\Omega$  ztotožnily.

Podmínka 3 nám zase umožňuje přirozeným způsobem přiřadit k části hranice  $\Gamma_1$ její aproximaci  $\Gamma_{1h}$  a k části  $\Gamma_2$  její aproximaci  $\Gamma_{2h}$  tak, aby  $\Gamma_h = \overline{\Gamma}_{1h} \cup \overline{\Gamma}_{2h}$  a přitom  $\overline{\Gamma}_{1h} \cap \overline{\Gamma}_{2h} = \overline{\Gamma}_1 \cap \overline{\Gamma}_2$ .

Algoritmus popisující vytvoření globální matice **K** a globálního vektoru **F** se změní jen nepatrně. Malý problém totiž představuje ta skutečnost, že  $\Omega_h$  nemusí být částí  $\Omega$  a že  $\Gamma \neq \Gamma_h$ , takže funkce p, q a f nemusejí být definovány na celé oblasti  $\overline{\Omega}_h$ , funkce g nemusí být definována na  $\overline{\Gamma}_{1h}$  a funkce  $\alpha$  a  $\beta$  nemusejí být definovány na  $\overline{\Gamma}_{2h}$ . S funkcí g žádné problémy nevzniknou, neboť hodnoty této funkce potřebujeme znát jen v uzlech hranice  $\overline{\Gamma}_{1h}$  a tyto uzly jsou podle předpokladu 2 současně uzly hranice  $\overline{\Gamma}_1$ . U zbývajících funkcí stačí znát jejich hodnoty v uzlech formulí numerické integrace. Vzhledem k podmínce 1 a 2 žádné problémy nenastanou, jsou-li uzly integrace současně uzly triangulace a nebo jsouli těžišti elementů e. Takže jedinou potíž představují vztahy (2.56) a (2.57) obsahující hodnoty funkcí  $\alpha$  a  $\beta$  ve středu  $(x_T^S, y_T^S)$  strany S. Ale zde je pomoc snadná: hodnotu ve středu nahradíme aritmetickým průměrem hodnot v koncových bodech strany.  $\Box$ 

# 2.9. Minimalizační formulace

Definujme funkcionál

$$\Pi(w) = \frac{1}{2}a(w,w) - L(w)$$
(2.61)

a zabývejme se minimalizační úlohou

najít 
$$u \in W$$
 splňující  $\Pi(u) \le \Pi(w) \quad \forall w \in W.$  (2.62)

Ukážeme, že "slabá" úloha (2.12) a minimalizační úloha (2.62) mají stejná řešení. Předpokládejme nejdříve, že u je řešením (2.12). Nechť  $w \in W$  a položme v = w - u, takže  $v \in V$  a w = u + v. Máme

$$\Pi(w) = \Pi(u+v) = \frac{1}{2}a(u+v,u+v) - L(u+v) =$$

$$= \frac{1}{2}a(u,u) + \frac{1}{2}a(u,v) + \frac{1}{2}a(v,u) + \frac{1}{2}a(v,v) - L(u) - L(v) =$$

$$= \frac{1}{2}a(u,u) - L(u) + a(u,v) - L(v) + \frac{1}{2}a(v,v) =$$

$$= \Pi(u) + \frac{1}{2}a(v,v) \ge \Pi(u),$$

poněvadž a(u,v) = a(v,u), a(u,v) - L(v) = 0 a  $a(v,v) \ge 0$ , takže u je řešením (2.62).

Obráceně, nechť u je řešením (2.62). Potom pro každé  $v \in V$  a každé reálné číslo t je  $\Pi(u) \leq \Pi(u + tv)$ . Tedy diferencovatelná funkce

$$\begin{split} \varphi(t) &= \Pi(u+tv) = \frac{1}{2} a(u+tv, u+tv) - L(u+tv) = \\ &= \frac{1}{2} a(u, u) + \frac{1}{2} a(u, tv) + \frac{1}{2} a(tv, u) + \frac{1}{2} a(tv, tv) - L(u) - L(tv) = \\ &= \frac{1}{2} a(u, u) - L(u) + t[a(u, v) - L(v)] + \frac{1}{2} t^2 a(v, v) \end{split}$$

má minimum pro t=0a tudíž $\varphi'(0)=0.$  Avšak $\varphi'(0)=a(u,v)-L(v)$ a protou je řešením (2.12).

Definujeme-li

$$\Pi_h(w) = \frac{1}{2} a_h(w, w) - L_h(w), \qquad (2.61d)$$

pak také diskrétní minimalizační úloha

najít  $U \in W_h$  splňující  $\Pi_h(U) \le \Pi_h(w) \quad \forall w \in W_h$  (2.62d)

má stejné řešení jako diskrétní "slabá" úloha (2.18). Dokažme si to. Pro w = v + z, kde v je libovolná funkce z  $V_h$ , tedy  $v = \sum_{i=1}^{PN} \Theta_i w_i$ , a  $z = \sum_{i=PN+1}^{PU} g(x_i, y_i) w_i \in W_h$ , platí

$$\Pi_{h}(w) = \frac{1}{2} a_{h}(w, w) - L_{h}(w) =$$

$$= \frac{1}{2} a_{h}(v, v) - [L_{h}(v) - a_{h}(z, v)] + [\frac{1}{2} a_{h}(z, z) - L_{h}(z)] =$$

$$= \Theta^{T}[\frac{1}{2} \mathbf{K} \Theta - \mathbf{F}] + \Pi_{h}(z)$$

(využili jsme symetri<br/>i $a_h(v, z) = a_h(z, v)$ a označení (2.23)), takže řešení úlohy (2.62d) je ekvivalentní minimalizaci funkce

$$\Phi(\mathbf{\Theta}) = \mathbf{\Theta}^T [\frac{1}{2} \mathbf{K} \mathbf{\Theta} - \mathbf{F}] + \Pi_h(z)$$

v PN-rozměrném Euklidově prostoru  $\mathbb{R}^{PN}$ . Vzhledem k symetrii matice **K** musí pro stacionární bod  $\Delta$  funkce  $\Phi(\Theta)$  platit

grad 
$$\Phi(\mathbf{\Delta}) = \frac{1}{2} \mathbf{K} \mathbf{\Delta} + [\frac{1}{2} \mathbf{\Delta}^T \mathbf{K}]^T - \mathbf{F} = \mathbf{K} \mathbf{\Delta} - \mathbf{F} = \mathbf{0},$$

 $\Delta$  tedy splňuje rovnici (2.24). Protože Hessova matice

$$\left\{\frac{\partial^2 \Phi(\boldsymbol{\Delta})}{\partial \Theta_i \partial \Theta_j}\right\}_{i,j=1}^{PN} = \mathbf{K}$$

je pozitivně definitní,  $\Delta$  minimalizuje  $\Phi(\Theta)$  v  $\mathbb{R}^{PN}$  a  $U = \sum_{i=1}^{PN} \Delta_i w_i + \sum_{i=PN+1}^{PU} g(x_i, y_i) w_i$ minimalizuje  $\Pi_h(w)$  ve  $W_h$  a je řešením jak úlohy (2.62d) tak úlohy (2.18).

**Poznámka 19.** Slabá formulace, kterou lze odvodit z formulace minimalizační, bývá označována také jako formulace variační (toto pojmenování má svůj původ ve variačním počtu, který učí, že pro symetrickou bilineární formu a(w, v) a lineární funkcionál L(w) je  $\delta \Pi(w) \equiv a(w, v) - L(v)$  pro  $v \in V$  první variací funkcionálu  $\Pi(w) = \frac{1}{2}a(w, w) - L(w)$  pro  $w \in W$ ). Minimalizační formulace je tedy méně obecná než formulace slabá. Na druhé straně je však minimalizační formulace formálně jednodušší, například v diskrétní minimalizační formulaci vystupuje jen jedna sada parametrů, totiž parametry  $\{\Theta_i\}_{i=1}^{PN}$  jako argumenty minimalizované funkce  $\Phi(\Theta)$ , a proto lze-li úlohu formulovat minimalizačně, inženýři takové formulaci obvykle dávají přednost.  $\Box$ 

# 2.10. Nestacionární úloha vedení tepla

Budeme se zabývat úlohou určit funkci  $u(x, y, t), (x, y) \in \overline{\Omega}, t \in \langle 0, T \rangle$ , vyhovující diferenciální rovnici

$$c\frac{\partial u}{\partial t} - \nabla \cdot [p\,\nabla u] + qu = f \quad \text{pro} \ (x,y) \in \Omega, \ t \in (0,T)$$
(2.63)

a splňující okrajové podmínky

$$u = g \operatorname{pro}(x, y) \in \Gamma_1, \ t \in (0, T),$$

$$(2.64)$$

$$-p\frac{\partial u}{\partial n} = \alpha u - \beta \quad \text{pro} \ (x, y) \in \Gamma_2, \ t \in (0, T)$$

$$(2.65)$$

a počáteční podmínku

0

$$u(x, y, 0) = \varphi(x, y) \quad \text{pro} \ (x, y) \in \overline{\Omega}.$$
 (2.66)

Přitom t je čas, u(x, y, t) teplota,  $c(x, y, t) = C\rho$  je součin tepelné kapacity C(x, y, t)a hustoty  $\rho(x, y, t)$ , p(x, y, t) je tepelná vodivost, q(x, y, t) je koeficient přestupu tepla "plochou"  $\Omega$ ,  $f(x, y, t) = Q + qu_e$  je součtem tepelného zdroje Q(x, y, t) a tepelného toku  $qu_e$  "plochou"  $\Omega$  ( $u_e(x, y, t)$  je teplota okolí "plochy"  $\Omega$ ), g(x, y, t) je předepsaná teplota na hranici  $\Gamma_1$ ,  $\alpha(x, y, t)$  je koeficient přestupu tepla a  $\beta(x, y, t) = \alpha u_o$  je tepelný tok na hranici  $\Gamma_2$  ( $u_o(x, y, t)$  je teplota okolí hranice  $\Gamma_2$ ). Proto rovnici (2.63) píšeme častěji ve tvaru

$$C\varrho \frac{\partial u}{\partial t} - \nabla \cdot [p \nabla u] + q(u - u_e) = Q \quad \text{pro} \ (x, y) \in \Omega, \ t \in (0, T),$$
(2.63)

a okrajovou podmínku (2.65) ve tvaru

$$-p\frac{\partial u}{\partial n} = \alpha(u - u_o) \quad \text{pro} \ (x, y) \in \Gamma_2, \ t \in (0, T).$$

$$(2.65')$$

Slabou formulaci získáme podobně jako ve stacionárním případě (2.1)–(2.4). Rovnici (2.63) násobíme testovací funkcí v(x, y) a integrujeme přes  $\Omega$ . Při označení

$$(w,v) = \int_{\Omega} wv \, \mathrm{d}x \, \mathrm{d}y$$

dostaneme užitím Greenovy formule (2.6)

$$(c u_t, v) + a(u, v) = L(v) \quad \forall v \in V \quad \text{a pro} \quad t \in (0, T),$$

$$(2.67a)$$

$$u = g \quad \text{pro} \ (x, y) \in \overline{\Gamma}_1, \ t \in (0, T),$$

$$(2.67b)$$

$$u(x, y, 0) = \varphi(x, y) \quad \text{pro} \ (x, y) \in \overline{\Omega},$$
(2.67c)

kde a(u, v) je určeno vztahem (2.9), L(v) vztahem (2.10) a kde jsme si označili  $u_t = \partial u/\partial t$ . a(u, v) a L(v) budeme diskretizovat nejdříve v prostorových souřadnicích zcela stejným způsobem jako ve stacionárním případě. Nyní ovšem hodnoty přibližného řešení U v uzlech  $P_j$  jsou funkcemi času:  $U_j = U_j(t) = U(x_j, y_j, t)$ . To však nic nemění na aproximaci a(u, v)a L(v): a(u, v) aproximujeme pomocí  $a_h(U, v)$  užitím vztahu (2.19) a L(v) aproximujeme pomocí  $L_h(v)$  užitím vztahu (2.20). V rovnici (2.67a) je však ještě člen  $(c u_t, v)$ . Ten nahradíme výrazem

$$(c U_t, v)_h = \sum_{e \in \mathfrak{T}} I^e(c U_t v),$$

kde  $I^e$  je formule (2.43). Poněvadž  $U_t = \sum_{j=1}^{PU} \dot{U}_j(t) w_j(x, y)$  (tečka značí derivaci podle času), dostaneme

$$I^{e}(c U_{t} v) = [\Theta^{e}]^{T} I^{e}([\mathbf{N}^{e}]^{T} c \mathbf{N}^{e}) \dot{\Delta}^{e} = [\Theta^{e}]^{T} \mathbf{C}^{e} \dot{\Delta}^{e},$$
  
kde  $\mathbf{C}^{e} = \frac{pl(e)}{3} \begin{pmatrix} c(x_{1}^{e}, y_{1}^{e}, t) & 0 & 0\\ 0 & c(x_{2}^{e}, y_{2}^{e}, t) & 0\\ 0 & 0 & c(x_{3}^{e}, y_{3}^{e}, t) \end{pmatrix}$ 

a  $\dot{\Delta}^e = \dot{\Delta}^e(t) = (\dot{\Delta}^e_1(t), \dot{\Delta}^e_2(t), \dot{\Delta}^e_3(t))^T, \dot{\Delta}^e_i(t) = \dot{U}^e_i(t), i = 1, 2, 3.$  Matice  $\mathbf{C}^e$  je diagonální a proto také  $(c U_t, v)_h = \mathbf{\Theta}^T \mathbf{C} \dot{\Delta}$ , kde  $\mathbf{C}$  je diagonální matice,

$$c_{ii} = c(x_i, y_i, t) \sum_{e \ni P_i} \frac{pl(e)}{3} = pl(D_i)c(x_i, y_i, t),$$

kde  $pl(D_i)$  se rovná jedné třetině ze součtu ploch všech trojúhelníků majících společný vrchol  $P_i$ . Aproximací (2.67a) – (2.67c) tedy dostaneme úlohu

$$\mathbf{C}\dot{\mathbf{\Delta}} + \mathbf{K}\mathbf{\Delta} = \mathbf{F}, \qquad \mathbf{\Delta}(0) = \boldsymbol{\varphi},$$
(2.68)

kde  $\boldsymbol{\varphi} = (\varphi(x_1, y_1), \dots, \varphi(x_{PN}, y_{PN}))^T$ . (2.68) je soustava obyčejných diferenciálních rovnic prvního řádu pro neznámé  $\Delta_i(t) = U_i(t)$  s počátečními podmínkami  $U_i(0) = \varphi(x_i, y_i)$ ,  $i = 1, \dots, PN$ . Matice **C**, **K** a vektor **F** obecně závisejí na *t*.

Počáteční úlohu (2.68) lze přibližně vyřešit vhodnou numerickou metodou. Casto se používá tzv.  $\Theta$ -metoda, viz [26], [5]. Její použití si nyní stručně naznačíme. Uvažujme dělení intervalu  $\langle 0, T \rangle : 0 = t_0 < t_1 \cdots < t_Q = T$  a označme  $\Delta t_i = t_{i+1} - t_i$ ,  $t_{i+\theta} = t_i + \Delta t_i \theta$ , kde  $i = 0, \ldots, Q - 1$ . Nechť  $\Delta^i$  označuje aproximaci  $\Delta(t_i)$ . Položíme  $\Delta^0 = \varphi$  a  $\Delta^{i+1}$  pro  $i = 0, \ldots, Q - 1$  spočteme řešením soustavy rovnic

$$[\mathbf{C}^{i+\theta} + \Delta t_i \theta \mathbf{K}^{i+\theta}] \mathbf{\Delta}^{i+1} = [\mathbf{C}^{i+\theta} - \Delta t_i (1-\theta) \mathbf{K}^{i+\theta}] \mathbf{\Delta}^i + \Delta t_i \mathbf{F}^{i+\theta},$$
(2.69)

kde

$$\mathbf{C}^{i+\theta} = \mathbf{C}(t_{i+\theta}), \quad \mathbf{K}^{i+\theta} = \mathbf{K}(t_{i+\theta}), \quad \mathbf{F}^{i+\theta} = \mathbf{F}(t_{i+\theta}).$$
(2.69f)

Pro  $\frac{1}{2} \leq \theta \leq 1$  je schéma (2.69) bezpodmínečně stabilní a tedy dobré výsledky dostaneme i pro poměrně velké časové kroky  $\Delta t_i$ . Pro  $0 \leq \theta < \frac{1}{2}$  je metoda jen podmíněně stabilní: abychom dostali rozumné výsledky, musí časový krok splňovat omezení

 $\Delta t_i \le A_T h^2 \tag{2.70}$ 

pro vhodnou konstantu  $A_T$  (nezávislou na h). Konstantu  $A_T$  je až na výjimečné případy obtížné přesně určit. To samo o sobě však není na závadu, užíváme-li při řešení (2.69) řízený výběr délky kroku s cílem udržet chybu časové diskretizace ve zvolené toleranci. Pak totiž mechanismus řízení délky kroku automaticky zařídí takový výběr kroku, aby vztah (2.70) byl splněn. Problém však zůstává v tom, že takto vybraný krok bude velmi malý.

Pro explicitní Eulerovo schéma, kterému přísluší  $\theta = 0$ , je matice soustavy rovnic (2.69) diagonální a soustava se rozpadne na samostatné rovnice tvaru  $c_{kk}^i \Delta_k^{i+1} = g_k$ , kde  $g_k$  je známé, a tedy řešení soustavy rovnic je "laciné". Omezení časového kroku (2.70) si přesto často vyžádá větší objem výpočtů než použití bezpodmínečně stabilní metody s větším krokem. Pro  $\theta > 0$  už matice soustavy rovnic (2.69) diagonální není a proto vždy užijeme bezpodmínečně stabilní  $\theta$ -metodu. Nejpřesnější výsledky obdržíme pro *Crankovo-Nicolsonovo schéma*, kterému odpovídá  $\theta = \frac{1}{2}$  (metoda je 2. řádu přesnosti), nejstabilnější je však *implicitní Eulerovo schéma*, kterému přísluší  $\theta = 1$ .

Za předpokladu existence dostatečně hladkého slabého řešení lze ukázat, že platí

$$\max_{i,j} |u(x_j, y_j, t_i) - U_j^i| = \begin{cases} O(h^2 + \Delta t) & \text{pro } \theta \neq \frac{1}{2}, \\ O(h^2 + \Delta t^2) & \text{pro } \theta = \frac{1}{2}, \end{cases}$$
(2.71)

kde  $\Delta t = \max_i \Delta t_i$ . Proto se nejčastěji používá Crankovo-Nicolsonovo schéma. Jen v případě nesouladu počátečních a okrajových podmínek nebo při prudké změně okrajových podmínek je účelné pro několik časových kroků použít implicitní Eulerovo schéma, které je sice méně přesné, zato však stabilnější.

# 2.11. Dynamika

Budeme se zabývat úlohou určit funkci  $u(x, y, t), (x, y) \in \overline{\Omega}, t \in \langle 0, T \rangle$ , vyhovující diferenciální rovnici

$$\varrho \frac{\partial^2 u}{\partial t^2} - \nabla \cdot [p \nabla u] + qu = f \quad \text{pro} \ (x, y) \in \Omega, \ t \in (0, T)$$

$$(2.72)$$

a splňující okrajové podmínky

$$u = g \quad \text{pro} \ (x, y) \in \overline{\Gamma}_1, \ t \in (0, T),$$

$$(2.73)$$

$$-p\frac{\partial u}{\partial n} = \alpha u - \beta \quad \text{pro} \ (x, y) \in \Gamma_2, \ t \in (0, T)$$

$$(2.74)$$

a počáteční podmínky

$$u(x, y, 0) = \varphi(x, y), \quad \frac{\partial u(x, y, 0)}{\partial t} = \psi(x, y) \quad \text{pro} \ (x, y) \in \overline{\Omega}.$$
 (2.75)

Úloha (2.72) – (2.75) je dobrým modelem kmitající membrány. Přitom t je čas, u(x, y, t)výchylka,  $(\partial u/\partial t$  rychlost a  $\partial^2 u/\partial t^2$  zrychlení),  $\varrho(x, y, t)$  hustota, p(x, y, t) charakterizuje tuhost membrány, q(x, y, t) odpor okolního prostředí, g(x, y, t) předepsaný pokles podepřené části  $\Gamma_1$  hranice,  $\alpha(x, y, t)$  tuhost pružinového uložení a  $\beta(x, y, t)$  zatížení na části  $\Gamma_2$  hranice.

Při odvozování slabé formulace postupujeme podobně jako v úloze vedení tepla a dostaneme

$$(\varrho u_{tt}, v) + a(u, v) = L(v) \quad \forall v \in V \quad \text{a pro} \quad t \in (0, T),$$
(2.76a)

$$u = g \quad \text{pro} \ (x, y) \in \overline{\Gamma}_1, \ t \in (0, T),$$

$$(2.76b)$$

$$u(x, y, 0) = \varphi(x, y), \quad \frac{\partial u(x, y, 0)}{\partial t} = \psi(x, y) \quad \text{pro} \ (x, y) \in \overline{\Omega}.$$
 (2.76c)

Člen  $(\varrho u_{tt}, v)$  aproximujeme výrazem

$$(\varrho U_{tt}, v)_h = \sum_{e \in \mathcal{T}} I^e(\varrho U_{tt}, v)$$

a užitím formule (2.43) obdržíme ( $\rho U_{tt}, v$ )<sub>h</sub> =  $\Theta^T \mathbf{M} \mathbf{\ddot{\Delta}}$  (dvě tečky značí druhou derivaci podle času), kde **M** je diagonální matice, tzv. *matice hmotnosti*,

$$m_{ii} = \varrho(x_i, y_i, t) \sum_{e \ni P_i} \frac{pl(e)}{3} = pl(D_i)\varrho(x_i, y_i, t),$$

a kde  $pl(D_i)$  je stejně jako v předchozím odstavci rovno jedné třetině ze součtu ploch všech trojúhelníků majících společný vrchol  $P_i$ . Aproximací (2.76a)–(2.76c) tedy dostaneme úlohu

$$\mathbf{M}\ddot{\mathbf{\Delta}} + \mathbf{K}\mathbf{\Delta} = \mathbf{F}, \qquad \mathbf{\Delta}(0) = \boldsymbol{\varphi}, \quad \dot{\mathbf{\Delta}}(0) = \boldsymbol{\psi},$$
(2.77)

kde  $\varphi = (\varphi(x_1, y_1), \dots, \varphi(x_{PN}, y_{PN}))^T$  a  $\psi = (\psi(x_1, y_1), \dots, \psi(x_{PN}, y_{PN}))^T$ . (2.77) je soustava obyčejných diferenciálních rovnic druhého řádu (tzv. pohybové rovnice) pro neznámé  $\Delta_i(t) = U_i(t)$  s počátečními podmínkami  $U_i(0) = \varphi(x_i, y_i)$ ,  $\dot{U}_i(0) = \psi(x_i, y_i)$ ,  $i = 1, \dots, PN$ . V úlohách dynamiky obvykle ještě uvažujeme tlumení a místo úlohy (2.77) řešíme úlohu

$$\mathbf{M}\ddot{\mathbf{\Delta}} + \mathbf{C}\dot{\mathbf{\Delta}} + \mathbf{K}\mathbf{\Delta} = \mathbf{F}, \qquad \mathbf{\Delta}(0) = \boldsymbol{\varphi}, \quad \dot{\mathbf{\Delta}}(0) = \boldsymbol{\psi},$$
(2.77)

kde **C** je tzv. *matice útlumu*. Při proporcionálním útlumu je  $\mathbf{C} = \alpha_M \mathbf{M} + \alpha_K \mathbf{K}$  pro vhodná čísla  $\alpha_M$  a  $\alpha_K$ . Matice **M**, **C**, **K** a vektor **F** obecně závisejí na *t*.

Počáteční úlohu (2.77') lze přibližně vyřešit vhodnou numerickou metodou. Casto se používá metoda centrálních diferencí (MCD) a Newmarkova metoda (NM), viz [2], [5]. Použití těchto dvou metod si nyní stručně naznačíme. Uvažujme dělení intervalu  $\langle 0, T \rangle$ :  $0 = t_0 < t_1 \cdots < t_Q = T$  a označme  $\Delta t_i = t_{i+1} - t_i$ ,  $i = 0, \ldots, Q - 1$ . Nechť  $\Delta^i$  označuje aproximaci  $\Delta(t_i)$  a podobně  $\dot{\Delta}^i$  aproximaci  $\dot{\Delta}(t_i)$  a  $\ddot{\Delta}^i$  aproximaci  $\ddot{\Delta}(t_i)$ .

a) Metoda centrálních diferencí. Pro jednoduchost uvažujme rovnoměrné dělení s krokem  $\Delta t = T/Q$ . Položíme

$$\boldsymbol{\Delta}^{0} = \boldsymbol{\varphi}, \quad \boldsymbol{\Delta}^{1} = \boldsymbol{\varphi} + \Delta t \boldsymbol{\psi} + \frac{1}{2} \Delta t^{2} [\mathbf{M}^{0}]^{-1} [\mathbf{F}^{0} - \mathbf{C}^{0} \boldsymbol{\psi} - \mathbf{K}^{0} \boldsymbol{\varphi}], \quad (2.78)$$

kde  $\mathbf{M}^0 = \mathbf{M}(0)$ ,  $\mathbf{C}^0 = \mathbf{C}(0)$ ,  $\mathbf{K}^0 = \mathbf{K}(0)$ , a  $\Delta^{i+1}$  pro  $i = 1, \dots, Q-1$  spočteme řešením soustavy rovnic

$$\left[\frac{1}{\Delta t^2}\mathbf{M}^i + \frac{1}{2\Delta t}\mathbf{C}^i\right]\mathbf{\Delta}^{i+1} = \mathbf{F}^i - \left[\mathbf{K}^i - \frac{2}{\Delta t^2}\mathbf{M}^i\right]\mathbf{\Delta}^i - \left[\frac{1}{\Delta t^2}\mathbf{M}^i - \frac{1}{2\Delta t}\mathbf{C}^i\right]\mathbf{\Delta}^{i-1}, \quad (2.79)$$

kde  $\mathbf{M}^{i} = \mathbf{M}(t_{i})$ ,  $\mathbf{C}^{i} = \mathbf{C}(t_{i})$  a  $\mathbf{K}^{i} = \mathbf{K}(t_{i})$ . MCD je jen podmíněně stabilní: abychom dostali rozumné výsledky, musí časový krok splňovat omezení

$$\Delta t \le A_D h \tag{2.80}$$

pro vhodnou konstantu  $A_D$  (nezávislou na h). Omezení (2.80) není zdaleka tak přísné jako omezení (2.70), které jsme dostali v úloze vedení tepla pro  $\Theta$ -metodu s  $0 \le \Theta < 0.5$ . To je také důvod, proč se MCD stále s úspěchem používá.

b) Newmarkova metoda. NM závisí na hodnotách dvou parametrů, které ovlivňují přesnost metody a její stabilitu. My si zde uvedeme NM s optimálními a nejčastěji používanými hodnotami těchto parametrů, pro které metoda bude jak bezpodmínečně stabilní tak dostatečně přesná. Položíme

$$\boldsymbol{\Delta}^{0} = \boldsymbol{\varphi}, \quad \dot{\boldsymbol{\Delta}}^{0} = \boldsymbol{\psi}, \quad \ddot{\boldsymbol{\Delta}}^{0} = [\mathbf{M}^{0}]^{-1} [\mathbf{F}^{0} - \mathbf{C}^{0} \boldsymbol{\psi} - \mathbf{K}^{0} \boldsymbol{\varphi}]$$
(2.81)

a pro  $i = 0, \ldots, Q - 1$  spočteme  $\ddot{\mathbf{\Delta}}^{i+1}$  řešením soustavy rovnic

$$[\mathbf{M}^{i+1} + \frac{1}{2}\Delta t_i \mathbf{C}^{i+1} + \frac{1}{4}\Delta t_i^2 \mathbf{K}^{i+1}]\ddot{\mathbf{\Delta}}^{i+1} =$$
  
=  $\mathbf{F}^{i+1} - \mathbf{K}^{i+1}\mathbf{\Delta}^i - [\mathbf{C}^{i+1} + \Delta t_i \mathbf{K}^{i+1}]\dot{\mathbf{\Delta}}^i - [\frac{1}{2}\Delta t_i \mathbf{C}^{i+1} + \frac{1}{4}\Delta t_i^2 \mathbf{K}^{i+1}]\ddot{\mathbf{\Delta}}^i$  (2.82)

a dále dopočítáme

$$\dot{\boldsymbol{\Delta}}^{i+1} = \dot{\boldsymbol{\Delta}}^{i} + \frac{1}{2} \Delta t_{i} [\ddot{\boldsymbol{\Delta}}^{i} + \ddot{\boldsymbol{\Delta}}^{i+1}],$$

$$\boldsymbol{\Delta}^{i+1} = \boldsymbol{\Delta}^{i} + \Delta t_{i} \dot{\boldsymbol{\Delta}}^{i} + \frac{1}{4} \Delta t_{i}^{2} [\ddot{\boldsymbol{\Delta}}^{i} + \ddot{\boldsymbol{\Delta}}^{i+1}].$$
(2.83)

Přitom  $\mathbf{M}^{i+1} = \mathbf{M}(t_{i+1}), \mathbf{C}^{i+1} = \mathbf{C}(t_{i+1}) \ a \ \mathbf{K}^{i+1} = \mathbf{K}(t_{i+1}).$ 

Za předpokladu existence dostatečně hladkého slabého řešení lze ukázat, že pro obě zde uvedené metody platí

$$\max_{i,j} |u(x_j, y_j, t_i) - U_j^i| = O(h^2 + \Delta t^2),$$
(2.84)

kde  $\Delta t = \max_i \Delta t_i$ .

V úlohách dynamiky funkce  $\rho$ , p, q a  $\alpha$  obvykle nezávisejí na čase. Pak však na čase nezávisejí ani matice **M**, **K** a v případě proporcionálního útlumu ani matice **C**. Zvolíme-li navíc ještě rovnoměrné dělení intervalu  $\langle 0, T \rangle$ , takže  $\Delta t_i = \Delta t = T/Q$ , lze soustavy lineárních rovnic (2.79) i (2.82) zapsat schématicky ve tvaru  $\mathbf{Ax}^i = \mathbf{b}^i$  s maticí soustavy **A**, která zůstává pro všechny kroky stejná. Efektivním způsobem řešení takových soustav je modifikace Gaussovy eliminační metody nazývaná *LU-rozklad*. Nejdříve matici **A** rozložíme na součin dolní trojúhelníkové matice **L** a horní trojúhelníkové matice **U**,  $\mathbf{A} = \mathbf{LU}$ . Postup rozkladu a počet potřebných aritmetických operací je přitom analogický přímému chodu Gaussovy eliminace. Dále pak v každém kroku řešíme dvě soustavy  $\mathbf{Ly}^i = \mathbf{b}^i$  a  $\mathbf{Ux}^i = \mathbf{y}^i$  a využíváme toho, že řešení soustav s trojúhelníkovou maticí je snadné (odpovídá zpětnému chodu Gaussovy eliminace).

V dynamice se také často řeší tzv. problém vlastních čísel. Jde o určení čísla  $\lambda$  a funkce u(x, y) definované a nenulové v  $\overline{\Omega}$  tak, aby byla splněna diferenciální rovnice

$$-\nabla \cdot [p \,\nabla u] + qu = \lambda \varrho u \quad \text{pro} \ (x, y) \in \Omega \tag{2.85}$$

a okrajové podmínky

$$u = 0 \quad \text{pro} \ (x, y) \in \overline{\Gamma}_1, \tag{2.86}$$

$$-p\frac{\partial u}{\partial n} = \alpha u \quad \text{pro} (x, y) \in \Gamma_2.$$
(2.87)

use nazývá vlastní funkce nebo také vlastní tvar a  $\lambda$  vlastní číslo. Obvyklým způsobem odvozená slabá formulace zní:

najít 
$$\lambda \in \mathbb{R}$$
 a  $u \in V, u \neq 0$ , splňující  $a(u, v) = \lambda(\varrho u, v) \quad \forall v \in V.$  (2.88)

Lze ukázat, že existují kladná vlastní čísla  $0 < \lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$  a jim odpovídající nenulové vlastní funkce  $u_1, u_2, \ldots$  s vlastnostmi  $a(u_i, u_j) = (\varrho u_i, u_j) = 0$  pro  $i \neq j$ . Příslušná diskrétní formulace je tvaru

najít 
$$\Lambda \in \mathbb{R}$$
 a  $U \in V_h$ ,  $U \neq 0$ , splňující  $a_h(U, v) = \Lambda(\varrho U, v)_h \quad \forall v \in V_h$ . (2.89)

Lze ukázat, že existuje PN kladných vlastních čísel  $0 < \Lambda_1 \leq \Lambda_2 \leq \cdots \leq \Lambda_{PN}$  a jim odpovídajících nenulových vlastních funkcí  $U_1, U_2, \ldots U_{PN}$  takových, že pro  $i \neq j$  platí  $a_h(U_i, U_j) = (\varrho U_i, U_j)_h = 0$ . Maticový zápis (2.89) je

najít 
$$\Lambda \in \mathbb{R}$$
 a  $\boldsymbol{\delta} \in \mathbb{R}^{PN}, \boldsymbol{\delta} \neq \mathbf{0}$ , splňující  $\mathbf{K}\boldsymbol{\delta} = \Lambda \mathbf{M}\boldsymbol{\delta}$ . (2.90)

Vlastní vektory  $\boldsymbol{\delta}_i$  příslušné vlastní číslům  $\Lambda_i$  lze určit tak, že  $\boldsymbol{\delta}_i^T \mathbf{K} \boldsymbol{\delta}_j = \boldsymbol{\delta}_i^T \mathbf{M} \boldsymbol{\delta}_j = 0$  pro  $i \neq j$  a  $\boldsymbol{\delta}_i^T \mathbf{M} \boldsymbol{\delta}_i = 1$ . Přitom souvislost mezi vlastním vektorem  $\boldsymbol{\delta}_i = (\delta_{i,1}, \dots, \delta_{i,PN})^T$  a vlastní funkcí  $U_i$  je dána vztahem  $U_i(x, y) = \sum_{j=1}^{PN} \delta_{i,j} w_j(x, y)$ . Zobecněný problém vlastních čísel (2.90) řešíme pomocí vhodné numerické metody. V praxi nás přitom obvykle zajímá jen několik nejmenších vlastních čísel a jim odpovídajících vlastních funkcí. Mezi nejčastěji používané metody patří *metoda iterací v podprostorech*, viz [2],[4], *Lanczosova metoda*, viz [4] nebo *Arnoldiho metoda*, viz [12],[24]. Za předpokladu existence dostatečně hladkého slabého řešení platí

$$\max_{\overline{\Omega}} |u_i - U_i| = O(h^2), \quad |\lambda_i - \Lambda_i| = O(h^2) \quad \text{pro } i = 1, \dots, PN.$$

Ukažme si, jak můžeme pomocí vlastních čísel  $\Lambda_i$  a vlastních vektorů  $\boldsymbol{\delta}_i$  určit řešení úlohy (2.77) v případě, že matice **M** a **K** nazávisejí na *t*. Řešení hledejme ve tvaru  $\boldsymbol{\Delta}(t) = \mathbf{Y}\mathbf{q}(t)$ , kde  $\mathbf{Y} = (\boldsymbol{\delta}_1, \dots, \boldsymbol{\delta}_{PN})$  a  $\mathbf{q}(t) = (q_1(t), \dots, q_{PN}(t))^T$  je třeba určit. Dosazením do  $\mathbf{M}\ddot{\boldsymbol{\Delta}} + \mathbf{K}\boldsymbol{\Delta} = \mathbf{F}$  dostaneme  $\mathbf{M}\mathbf{Y}\ddot{\mathbf{q}} + \mathbf{K}\mathbf{Y}\mathbf{q} = \mathbf{F}$ . Vynásobíme-li tuto rovnici zleva maticí  $\mathbf{Y}^T$ , dostaneme  $\ddot{\mathbf{q}} + \boldsymbol{\Lambda}\mathbf{q} = \mathbf{Y}^T\mathbf{F}$ , neboť  $\mathbf{Y}^T\mathbf{M}\mathbf{Y} = \mathbf{I}$  je jednotková matice a  $\mathbf{Y}^T\mathbf{K}\mathbf{Y} = \boldsymbol{\Lambda}$ , kde  $\boldsymbol{\Lambda} = \text{diag}\{\Lambda_1, \dots, \Lambda_{PN}\}$  je diagonální matice s vlastními čísly  $\Lambda_1, \dots, \Lambda_{PN}$  na hlavní diagonále. Dostaneme tedy PN na sobě nezávislých obyčejných diferenciálních rovnic  $\ddot{q}_i(t) + \Lambda_i q_i(t) = h_i(t)$ , kde  $h_i(t)$  je i-tá složka vektoru  $\mathbf{Y}^T\mathbf{F}(t)$ . Vynásobením rovnice  $\boldsymbol{\Delta}(0) = \mathbf{Y}\mathbf{q}(0) = \boldsymbol{\varphi}$  resp.  $\dot{\boldsymbol{\Delta}}(0) = \mathbf{Y}\dot{\mathbf{q}}(0) = \boldsymbol{\psi}$  zleva maticí  $\mathbf{Y}^T\mathbf{M}$ dostaneme  $\mathbf{q}(0) = \mathbf{Y}^T\mathbf{M}\boldsymbol{\varphi}$  resp.  $\dot{\mathbf{q}}(0) = \mathbf{Y}^T\mathbf{M}\boldsymbol{\psi}$ , takže funkce  $q_i(t)$  je určena počátečními podmínkami  $q_i(0) = r_i$ ,  $\dot{q}_i(0) = s_i$ , kde  $r_i$  resp.  $s_i$  je i-tá složka vektoru  $\mathbf{Y}^T\mathbf{M}\boldsymbol{\varphi}$  resp.  $\mathbf{Y}^T\mathbf{M}\boldsymbol{\psi}$ .

V případě úlohy (2.77') a proporcionálního útlumu, tedy pro  $\mathbf{C} = \alpha_M \mathbf{M} + \alpha_K \mathbf{K}$ , opět klademe  $\boldsymbol{\Delta}(t) = \mathbf{Y}\mathbf{q}(t)$  a i-tou složku  $q_i(t)$  vektoru  $\mathbf{q}(t)$  získáme snadno řešením počáteční úlohy

$$\ddot{q}_i(t) + (\alpha_M + \alpha_K \Lambda_i) \, \dot{q}_i(t) + \Lambda_i q_i(t) = h_i(t), \qquad q_i(0) = r_i, \quad \dot{q}_i(0) = s_i, \tag{2.91}$$

kde  $h_i(t)$ ,  $r_i$  a  $s_i$  jsou stejně jako dříve i-té složky vektorů  $\mathbf{Y}^T \mathbf{F}(t)$ ,  $\mathbf{Y}^T \mathbf{M} \boldsymbol{\varphi}$  a  $\mathbf{Y}^T \mathbf{M} \boldsymbol{\psi}$ .

V některých případech lze získat uspokojující aproximaci řešení pomocí jen několika nejmenších vlastních čísel a vektorů. Položíme  $\mathbf{Y} = (\boldsymbol{\delta}_1, \dots, \boldsymbol{\delta}_m)$  pro vhodné  $m \leq PN$ , řešením úloh (2.91) pro  $i = 1, \dots, m$  určíme  $q_i(t)$  a dostaneme  $\boldsymbol{\Delta}(t) \doteq \mathbf{Y}\mathbf{q}(t)$ , kde  $\mathbf{q}(t) = (q_1(t), \dots, q_m(t))^T$ .

# 2.12. Rovinná napjatost a rovinná deformace

Doposud jsme se zabývali skalárními úlohami, jejichž řešením byla jediná funkce. V tomto odstavci si uvedeme významnou aplikaci, jejíž řešení tvoří dvojice funkcí.

#### a) Klasická formulace

V rovinné úloze pružnosti nebo deformace vektor napětí

$$\boldsymbol{\sigma} = (\sigma_x, \sigma_y, \tau_{xy})^T \tag{2.92}$$

splňuje Cauchyovy rovnice statické rovnováhy

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + f_1 = 0, \qquad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + f_2 = 0 \qquad \text{pro} \ (x, y) \in \Omega, \tag{2.93}$$

kde  $\sigma_x(x, y)$  resp.  $\sigma_y(x, y)$  je normálové napětí v řezu x = konst. resp. y = konst.,  $\tau_{xy}$  je tečné napětí v řezu x = konst. nebo y = konst. a  $f_1(x, y)$  resp.  $f_2(x, y)$  je složka vektoru

$$\mathbf{f} = (f_1, f_2)^T \tag{2.94}$$

objemového zatížení působícího ve směru os<br/>yxresp. y.~Hookův zákon (fyzikální rovnice) zapíšeme ve tvaru

$$\boldsymbol{\sigma} = \mathbf{D}(\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}^0), \tag{2.95}$$

kde

$$\mathbf{D} = \{d_{ij}(x, y)\}_{i,j=1}^3 \tag{2.96}$$

je symetrická pozitivně definitní matice tuhosti materiálu,

$$\boldsymbol{\varepsilon} = (\varepsilon_x, \varepsilon_y, \gamma_{xy})^T \tag{2.97}$$

je vektor deformace a

$$\boldsymbol{\varepsilon}^0 = (\varepsilon_x^0, \varepsilon_y^0, \gamma_{xy}^0)^T \tag{2.98}$$

je vektor počáteční deformace. Přitom  $\varepsilon_x(x, y)$  resp.  $\varepsilon_y(x, y)$  je poměrné prodloužení ve směru osy x resp. y a  $\gamma_{xy}$  je poměrná úhlová deformace (zkosení) v rovině xy. Podobně  $\varepsilon_x^0(x, y)$  resp.  $\varepsilon_y^0(x, y)$  je poměrné počáteční prodloužení ve směru osy x resp. y a  $\gamma_{xy}^0$ je poměrná počáteční úhlová deformace v rovině xy. Například při tepelném zatěžování izotropního materiálu je

$$\varepsilon_x^0 = \varepsilon_y^0 \equiv \varepsilon_t = \begin{cases} \alpha \Delta T & \text{pro rovinnou napjatost,} \\ \alpha \Delta T(1+\nu) & \text{pro rovinnou deformaci,} \end{cases} \quad \gamma_{xy}^0 = 0.$$
(2.99)

Přitom  $\alpha$  je koeficient tepelné roztažnosti,  $\Delta T$  je změna teploty a  $\nu$  je Poissonův součinitel příčného zúžení (0 <  $\nu$  < 0,5). Pro izotropní materiál jsou z prvků matice tuhosti **D** nenulové pouze členy  $d_{11}=d_{22}$ ,  $d_{12}=d_{21}$  a  $d_{33}$  a platí pro ně v případě rovinné napjatosti

$$d_{11} = d_{22} = \frac{E}{1 - \nu^2}, \ d_{12} = d_{21} = \frac{E\nu}{1 - \nu^2}, \ d_{33} = \frac{E}{2(1 + \nu)},$$
(2.100)

a v případě rovinné deformace

$$d_{11} = d_{22} = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)}, \ d_{12} = d_{21} = \frac{E\nu}{(1+\nu)(1-2\nu)}, \ d_{33} = \frac{E}{2(1+\nu)}, \ (2.101)$$

kde E je Youngův modul pružnosti v tahu resp. tlaku. Z geometrických rovnic

$$\varepsilon_x = \frac{\partial u_1}{\partial x}, \quad \varepsilon_y = \frac{\partial u_2}{\partial y}, \quad \gamma_{xy} = \frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x},$$
(2.102)

dostaneme vztah mezi vektorem deformace a vektorem posunutí

$$\mathbf{u} = (u_1, u_2)^T, \tag{2.103}$$

v němž  $u_1(x,y)$  resp.  $u_2(x,y)$  je posun bodu (x,y) ve směru osy x resp. y. Dosazením ze vztahů (2.95), (2.102) do (2.93) dostaneme soustavu dvou parciálních diferenciálních rovnic

$$-\frac{\partial}{\partial x}\left[d_{11}\frac{\partial u_{1}}{\partial x}+d_{12}\frac{\partial u_{2}}{\partial y}+d_{13}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right]-$$
$$-\frac{\partial}{\partial y}\left[d_{31}\frac{\partial u_{1}}{\partial x}+d_{32}\frac{\partial u_{2}}{\partial y}+d_{33}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right]=$$
$$=f_{1}-\frac{\partial}{\partial x}\left[d_{11}\varepsilon_{x}^{0}+d_{12}\varepsilon_{y}^{0}+d_{13}\gamma_{xy}^{0}\right]-\frac{\partial}{\partial y}\left[d_{31}\varepsilon_{x}^{0}+d_{32}\varepsilon_{y}^{0}+d_{33}\gamma_{xy}^{0}\right],$$
$$-\frac{\partial}{\partial x}\left[d_{31}\frac{\partial u_{1}}{\partial x}+d_{32}\frac{\partial u_{2}}{\partial y}+d_{33}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right]-$$
$$-\frac{\partial}{\partial y}\left[d_{21}\frac{\partial u_{1}}{\partial x}+d_{22}\frac{\partial u_{2}}{\partial y}+d_{23}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right]=$$
$$=f_{2}-\frac{\partial}{\partial x}\left[d_{31}\varepsilon_{x}^{0}+d_{32}\varepsilon_{y}^{0}+d_{33}\gamma_{xy}^{0}\right]-\frac{\partial}{\partial y}\left[d_{21}\varepsilon_{x}^{0}+d_{22}\varepsilon_{y}^{0}+d_{23}\gamma_{xy}^{0}\right].$$
$$(2.104)$$

Pro izotropní materiál se rovnice (2.104) nazývají *Laméovy statické rovnice*. Zavedeme-li Laméovy konstanty

$$\lambda = \begin{cases} \frac{E\nu}{1-\nu^2} & \text{pro rovinnou napjatost,} \\ \frac{E\nu}{(1+\nu)(1-2\nu)} & \text{pro rovinnou deformaci,} \end{cases} \qquad \mu = \frac{E}{2(1+\nu)}, \qquad (2.105)$$

pak dosazením do (2.100) a (2.101) snadno ověříme, že

$$d_{11} = d_{22} = \lambda + 2\mu, \quad d_{12} = \lambda, \quad d_{33} = \mu, \quad d_{13} = d_{23} = 0,$$
 (2.106)

a vyjádříme-li počáteční poměrné prodloužení  $\pmb{\varepsilon}^0$  pomocí (2.99), dostaneme Laméovy rovnice ve tvaru

$$-\mu\Delta\mathbf{u} - (\lambda + \mu) \operatorname{grad} \operatorname{div} \mathbf{u} = \mathbf{f} - 2(\lambda + \mu) \operatorname{grad} \varepsilon_t$$

kde

$$\Delta \mathbf{u} = \begin{pmatrix} \Delta u_1 \\ \Delta u_2 \end{pmatrix}, \qquad \Delta u_i = \frac{\partial^2 u_i}{\partial x^2} + \frac{\partial^2 u_i}{\partial y^2}, \qquad \text{div } \mathbf{u} = \frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y}$$

Okrajové podmínky uvažujeme dvojího druhu. Na části  $\overline{\Gamma}_1$  hranice předepišme geometrické okrajové podmínky

$$u_1 = g_1, \quad u_2 = g_2 \quad \text{na} \ \overline{\Gamma}_1$$
 (2.107)

a na části $\Gamma_2$ hranice statické okrajové podmínky

$$\sigma_x n_x + \tau_{xy} n_y = p_1, \quad \tau_{xy} n_x + \sigma_y n_y = p_2 \quad \text{na } \Gamma_2. \tag{2.108}$$

Zde  $g_1(x, y)$  a  $g_2(x, y)$  jsou předepsané posuny na části  $\overline{\Gamma}_1$  hranice a  $p_1(x, y)$  a  $p_2(x, y)$  jsou *x*-ová a *y*-ová složka povrchového zatížení. Označme  $\mathbf{g} = (g_1, g_2)^T$  a  $\mathbf{p} = (p_1, p_2)^T$ . Budeme předpokládat, že geometrické okrajové podmínky jsou předepsány alespoň na části hranice, tedy že  $\Gamma_1 \neq \emptyset$ . Rovnice (2.104) spolu s okrajovými podmínkami (2.107) a (2.108) představují klasickou (diferenciální) formulaci úlohy rovinné napjatosti či deformace.

#### b) Slabá formulace

Definujme prostor **X** dvojic funkcí  $\mathbf{v}(x, y) = (v_1(x, y), v_2(x, y))^T$  předpisem

$$\mathbf{X} = \{ \mathbf{v} \,|\, v_1 \in H^1(\Omega), \, v_2 \in H^1(\Omega) \}, \tag{2.109}$$

prostor testovacích funkcí

$$\mathbf{V} = \{ \mathbf{v} \in \mathbf{X} \mid \mathbf{v} = \mathbf{0} \quad \text{na} \ \overline{\Gamma}_1 \}$$
(2.110)

a množinu přípustných řešení

$$\mathbf{W} = \{ \mathbf{v} \in \mathbf{X} \, | \, \mathbf{v} = \mathbf{g} \quad \text{na} \ \overline{\Gamma}_1 \}. \tag{2.111}$$

Vynásobme první z Cauchyových rovnic (2.93) funkcí  $v_1$  a druhou funkcí  $v_2$ , kde  $\mathbf{v} = (v_1, v_2) \in \mathbf{V}$ , obě rovnice sečtěme a integrujeme přes  $\Omega$ . Užitím Greenovy formule (2.6), statických okrajových podmínek (2.108), Hookova zákona (2.95), geometrických rovnic (2.102) a označení

$$\boldsymbol{\varepsilon}(\mathbf{v}) = \left(\frac{\partial v_1}{\partial x}, \frac{\partial v_2}{\partial y}, \frac{\partial v_1}{\partial y} + \frac{\partial v_2}{\partial x}\right)^T \tag{2.112}$$

dostaneme

$$\int_{\Omega} \left\{ \left[ \frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + f_1 \right] v_1 + \left[ \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + f_2 \right] v_2 \right\} dx dy =$$

$$= \int_{\partial \Omega} \left\{ \left[ \sigma_x n_x + \tau_{xy} n_y \right] v_1 + \left[ \tau_{xy} n_x + \sigma_y n_y \right] v_2 \right\} ds -$$

$$- \int_{\Omega} \left[ \sigma_x \frac{\partial v_1}{\partial x} + \tau_{xy} \frac{\partial v_1}{\partial y} + \tau_{xy} \frac{\partial v_2}{\partial x} + \sigma_y \frac{\partial v_2}{\partial y} \right] dx dy + \int_{\Omega} \left[ f_1 v_1 + f_2 v_2 \right] dx dy =$$

$$= \int_{\Gamma_2} \left[ p_1 v_1 + p_2 v_2 \right] ds - \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}) \cdot \boldsymbol{\sigma} dx dy + \int_{\Omega} \mathbf{v} \cdot \mathbf{f} dx dy =$$

$$= \int_{\Gamma_2} \mathbf{v} \cdot \mathbf{p} ds - \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}) \cdot \mathbf{D} \left[ \boldsymbol{\varepsilon}(\mathbf{u}) - \boldsymbol{\varepsilon}^0 \right] dx dy + \int_{\Omega} \mathbf{v} \cdot \mathbf{f} dx dy.$$

Proto slabou (variační) formulaci úlohy rovinné napjatosti či deformace lze psát ve tvaru

najít 
$$\mathbf{u} \in \mathbf{W}$$
 splňující  $a(\mathbf{u}, \mathbf{v}) = L(\mathbf{v}) \quad \forall \mathbf{v} \in \mathbf{V},$  (2.113)

kde

$$a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}) \cdot \mathbf{D}\boldsymbol{\varepsilon}(\mathbf{u}) \, \mathrm{d}x \, \mathrm{d}y, \qquad (2.114)$$

$$L(\mathbf{v}) = \int_{\Omega} \mathbf{v} \cdot \mathbf{f} \, \mathrm{d}x \, \mathrm{d}y + \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}) \cdot \mathbf{D} \boldsymbol{\varepsilon}^0 \, \mathrm{d}x \, \mathrm{d}y + \int_{\Gamma_2} \mathbf{v} \cdot \mathbf{p} \, \mathrm{d}s.$$
(2.115)

Jestliže funkce  $d_{ij} \in PC(\Omega)$  pro i, j = 1, 2, 3, funkce  $f_1, f_2, \varepsilon_x^0, \varepsilon_y^0, \gamma_{xy}^0 \in PC(\Omega)$ , funkce  $p_1, p_2 \in PC(\Gamma_2)$  a funkce  $g_1, g_2 \in C(\overline{\Gamma}_1)$ , pak existuje jediné slabé řešení úlohy (2.113).

### c) Diskrétní slabá formulace

Oblast $\Omega$ triangulujeme stejně jako v odstavci 2.5 a definujeme konečně<br/>prvkový prostor funkcí

$$\mathbf{X}_{h} = \{ \mathbf{v} \mid v_{1} \in X_{h}, v_{2} \in X_{h} \}.$$
(2.116)

Dimenze prostoru  $\mathbf{X}_h$  je rovna 2 PU. V prostoru  $\mathbf{X}_h$  volíme bázové funkce

$$\mathbf{w}_{j1}(x,y) = (w_j(x,y),0)^T, \quad \mathbf{w}_{j2}(x,y) = (0,w_j(x,y))^T, \qquad j = 1,\dots,PU.$$
 (2.117)

Pak každou funkci  $\mathbf{v}(x, y) \in \mathbf{X}_h$  můžeme zapsat ve tvaru

$$\mathbf{v}(x,y) = \sum_{j=1}^{PU} \left[ v_1(x_j, y_j) \mathbf{w}_{j1}(x, y) + v_2(x_j, y_j) \mathbf{w}_{j2}(x, y) \right].$$
(2.118)

Konečně<br/>prvkový prostor testovacích funkcí $\mathbf{V}_h$  definujeme předpisem

$$\mathbf{V}_{h} = \{ \mathbf{v} \in \mathbf{X}_{h} \mid \mathbf{v}(P_{j}) = \mathbf{0} \; \forall P_{j} \in \overline{\Gamma}_{1} \}$$
(2.119)

a množinu  $\mathbf{W}_h$ konečně<br/>prvkových přípustných funkcí určíme jako množinu

$$\mathbf{W}_{h} = \{ \mathbf{v} \in \mathbf{X}_{h} \mid \mathbf{v}(P_{j}) = \mathbf{g}(P_{j}) \; \forall P_{j} \in \overline{\Gamma}_{1} \}.$$
(2.120)

Pro  $\mathbf{v} \in \mathbf{V}_h$  platí

$$\mathbf{v}(x,y) = \sum_{j=1}^{PN} \left[ v_1(x_j, y_j) \mathbf{w}_{j1}(x, y) + v_2(x_j, y_j) \mathbf{w}_{j2}(x, y) \right]$$
(2.121)

a pro  $\mathbf{v} \in \mathbf{W}_h$  je

$$\mathbf{v}(x,y) = \sum_{j=1}^{PN} \left[ v_1(x_j, y_j) \mathbf{w}_{j1}(x, y) + v_2(x_j, y_j) \mathbf{w}_{j2}(x, y) \right] + \sum_{j=PN+1}^{PU} \left[ g_1(x_j, y_j) \mathbf{w}_{j1}(x, y) + g_2(x_j, y_j) \mathbf{w}_{j2}(x, y) \right].$$
(2.122)

Pak diskrétní slabou formulaci úlohy rovinné napjatosti či deformace lze zapsat ve tvaru

najít 
$$\mathbf{U} \in \mathbf{W}_h$$
 splňující  $a_h(\mathbf{U}, \mathbf{v}) = L_h(\mathbf{v}) \quad \forall \mathbf{v} \in \mathbf{V}_h,$  (2.123)

kde

$$a_h(\mathbf{U}, \mathbf{v}) = \sum_{e \in \mathcal{T}} I^e(\boldsymbol{\varepsilon}(\mathbf{v}) \cdot \mathbf{D}\boldsymbol{\varepsilon}(\mathbf{U})), \qquad (2.124)$$

$$L_h(\mathbf{v}) = \sum_{e \in \mathcal{T}} I^e(\mathbf{v} \cdot \mathbf{f}) + \sum_{e \in \mathcal{T}} I^e(\boldsymbol{\varepsilon}(\mathbf{v}) \cdot \mathbf{D}\boldsymbol{\varepsilon}^0) + \sum_{S \in \mathcal{S}} I^S(\mathbf{v} \cdot \mathbf{p}).$$
(2.125)

Hodnotu složky  $U_l$ řešení **U** v uzlu  $P_j$  označíme  $\Delta_{jl} = U_l(x_j, y_j)$  a hodnotu složky  $v_l$  testovací funkce **v** v uzlu  $P_i$  označíme  $\Theta_{il} = v_l(x_i, y_i)$ . Podle (2.119) a (2.120) je

$$\mathbf{U}(x,y) = \sum_{j=1}^{PN} \left[ \Delta_{j1} \mathbf{w}_{j1}(x,y) + \Delta_{j2} \mathbf{w}_{j2}(x,y) \right] + \sum_{j=PN+1}^{PU} \left[ g_1(x_j,y_j) \mathbf{w}_{j1}(x,y) + g_2(x_j,y_j) \mathbf{w}_{j2}(x,y) \right], \qquad (2.126)$$
$$\mathbf{v}(x,y) = \sum_{j=1}^{PN} \left[ \Theta_{i1} \mathbf{w}_{i1}(x,y) + \Theta_{i2} \mathbf{w}_{i2}(x,y) \right].$$

Vzhledem k bilineárnosti formy  $a_h(\mathbf{U}, \mathbf{v})$  a lineárnosti funkcionálu  $L_h(\mathbf{v})$  lze dosazením z (2.126) do (2.124) a (2.125) odvodit

$$0 = a_h(\mathbf{U}, \mathbf{v}) - L_h(\mathbf{v}) = \sum_{i=1}^{PN} [\boldsymbol{\Theta}_i]^T \left\{ \sum_{j=1}^{PN} \mathbf{K}_{ij} \boldsymbol{\Delta}_j - \mathbf{F}_i \right\} = \boldsymbol{\Theta}^T [\mathbf{K} \boldsymbol{\Delta} - \mathbf{F}], \qquad (2.127)$$

kde jsme užili označení

$$\mathbf{K} = \{\mathbf{K}_{ij}\}_{i,j=1}^{PN} \quad \text{a} \quad \mathbf{K}_{ij} = \begin{pmatrix} a_h(\mathbf{w}_{j1}, \mathbf{w}_{i1}) & a_h(\mathbf{w}_{j2}, \mathbf{w}_{i1}) \\ a_h(\mathbf{w}_{j1}, \mathbf{w}_{i2}) & a_h(\mathbf{w}_{j2}, \mathbf{w}_{i2}) \end{pmatrix},$$

$$\mathbf{F} = (\mathbf{F}_1^T, \dots, \mathbf{F}_{PN}^T)^T \quad \text{a} \quad \mathbf{F}_i = \begin{pmatrix} L_h(\mathbf{w}_{i1}) \\ L_h(\mathbf{w}_{i2}) \end{pmatrix} - \sum_{j=PN+1}^{PU} \mathbf{K}_{ij} \begin{pmatrix} g_1(x_j, y_j) \\ g_2(x_j, y_j) \end{pmatrix},$$

$$\mathbf{\Delta} = (\mathbf{\Delta}_1^T, \dots, \mathbf{\Delta}_{PN}^T)^T \quad \text{a} \quad \mathbf{\Delta}_i = \begin{pmatrix} \Delta_{i1} \\ \Delta_{i2} \end{pmatrix},$$

$$\mathbf{\Theta} = (\mathbf{\Theta}_1^T, \dots, \mathbf{\Theta}_{PN}^T)^T \quad \text{a} \quad \mathbf{\Theta}_i = \begin{pmatrix} \Theta_{i1} \\ \Theta_{i2} \end{pmatrix}.$$
(2.128)

Protože  $\Theta$  je libovolný vektor, musí platit

$$\mathbf{K}\boldsymbol{\Delta} = \mathbf{F}.\tag{2.129}$$

Matice tuhosti  ${\bf K}$  je symetrická, pozitivně definitní a při vhodném očíslování uzlů také pásová.

#### d) Elementární matice a vektory

Globální matici tuhosti **K** a globální vektor zatížení **F** sestavíme pomocí elementárních matic  $\mathbf{K}^e$  a elementárních vektorů  $\mathbf{F}^e$  pro  $e \in \mathcal{T}$  a elementárních vektorů  $\mathbf{F}^S$  pro  $S \in \mathcal{S}$ .

Elementární matice a vektor na elementu e. Postupujeme podobně jako v od-

stavci 2.7. Označíme si

$$\mathbf{N}^{e} = \begin{pmatrix} w_{1}^{e} & 0 & w_{2}^{e} & 0 & w_{3}^{e} & 0 \\ 0 & w_{1}^{e} & 0 & w_{2}^{e} & 0 & w_{3}^{e} \end{pmatrix},$$

$$\mathbf{\Delta}^{e} = \begin{pmatrix} \mathbf{\Delta}_{1}^{e} \\ \mathbf{\Delta}_{2}^{e} \\ \mathbf{\Delta}_{3}^{e} \end{pmatrix} \quad \mathbf{a} \quad \mathbf{\Delta}_{i}^{e} = \begin{pmatrix} \mathbf{\Delta}_{i1}^{e} \\ \mathbf{\Delta}_{i2}^{e} \end{pmatrix} \equiv \begin{pmatrix} U_{1}(x_{i}^{e}, y_{i}^{e}) \\ U_{2}(x_{i}^{e}, y_{i}^{e}) \end{pmatrix}, \quad i = 1, 2, 3,$$

$$\mathbf{\Theta}^{e} = \begin{pmatrix} \mathbf{\Theta}_{1}^{e} \\ \mathbf{\Theta}_{2}^{e} \\ \mathbf{\Theta}_{3}^{e} \end{pmatrix} \quad \mathbf{a} \quad \mathbf{\Theta}_{i}^{e} = \begin{pmatrix} \mathbf{\Theta}_{i1}^{e} \\ \mathbf{\Theta}_{i2}^{e} \end{pmatrix} \equiv \begin{pmatrix} v_{1}(x_{i}^{e}, y_{i}^{e}) \\ v_{2}(x_{i}^{e}, y_{i}^{e}) \end{pmatrix}, \quad i = 1, 2, 3.$$

$$(2.130)$$

Pak slabé řešení U a testovací funkci v lze na elementu evyjádřit ve tvaru

$$\mathbf{U}^e = \mathbf{N}^e \boldsymbol{\Delta}^e, \quad \mathbf{v}^e = \mathbf{N}^e \boldsymbol{\Theta}^e. \tag{2.131}$$

Dále označme

$$\mathbf{B}^{e} = \boldsymbol{\varepsilon}(\mathbf{N}^{e}) \equiv \begin{pmatrix} \frac{\partial w_{1}^{e}}{\partial x} & 0 & \frac{\partial w_{2}^{e}}{\partial x} & 0 & \frac{\partial w_{3}^{e}}{\partial x} & 0 \\ 0 & \frac{\partial w_{1}^{e}}{\partial y} & 0 & \frac{\partial w_{2}^{e}}{\partial y} & 0 & \frac{\partial w_{3}^{e}}{\partial y} \\ \frac{\partial w_{1}^{e}}{\partial y} & \frac{\partial w_{1}^{e}}{\partial x} & \frac{\partial w_{2}^{e}}{\partial y} & \frac{\partial w_{2}^{e}}{\partial x} & \frac{\partial w_{3}^{e}}{\partial y} & \frac{\partial w_{3}^{e}}{\partial x} \end{pmatrix} = \\ = \begin{pmatrix} a_{1}^{e} & 0 & a_{2}^{e} & 0 & a_{3}^{e} & 0 \\ 0 & b_{1}^{e} & 0 & b_{2}^{e} & 0 & b_{3}^{e} \\ b_{1}^{e} & a_{1}^{e} & b_{2}^{e} & a_{2}^{e} & b_{3}^{e} & a_{3}^{e} \end{pmatrix}.$$

$$(2.132)$$

Předpokládejme, že matice tuhosti materiál<br/>u ${\bf D}$ je na elementu ekonstantní. Tuto matici označ<br/>me

 $\mathbf{D}^e = \{d^e_{ij}\}^3_{i,j=1}, \text{ kde } d^e_{ij} \text{ jsou na } e \text{ konstanty.}$ 

Pak je ale matice  $\boldsymbol{\varepsilon}(\mathbf{U}) \cdot \mathbf{D}^{e} \boldsymbol{\varepsilon}(\mathbf{v})$  na elementu *e* rovněž konstantní a zřejmě

$$I^{e}(\boldsymbol{\varepsilon}(\mathbf{U}^{e}) \cdot \mathbf{D}^{e} \boldsymbol{\varepsilon}(\mathbf{v}^{e})) = [\boldsymbol{\Theta}^{e}]^{T} \left\{ \frac{1}{2} \left| d^{e} \right| [\mathbf{B}^{e}]^{T} \mathbf{D}^{e} \mathbf{B}^{e} \right\} \boldsymbol{\Delta}^{e} = [\boldsymbol{\Theta}^{e}]^{T} \mathbf{K}^{e} \boldsymbol{\Delta}^{e}$$
(2.133)

(připomeňme, že  $\frac{1}{2}|d^e| = pl(e)$  je plocha trojúhelníka e, viz (2.39)). Matici

$$\mathbf{K}^{e} = \frac{1}{2} \left| d^{e} \right| \left[ \mathbf{B}^{e} \right]^{T} \mathbf{D}^{e} \mathbf{B}^{e}$$
(2.134)

nazveme elementární maticí tuhosti. Při integraci členu  $I^e({\bf v}\cdot{\bf f})$ užijeme formuli (2.43) a dostaneme

$$I^{e}(\mathbf{v} \cdot \mathbf{f}) = [\mathbf{\Theta}^{e}]^{T} I^{e}([\mathbf{N}^{e}]^{T} \mathbf{f}) = [\mathbf{\Theta}^{e}]^{T} \mathbf{F}^{e1}, \qquad (2.135)$$

kde elementární vektor  $\mathbf{F}^{e1}$  je tvaru

$$\mathbf{F}^{e1} = \frac{|d^e|}{6} \begin{pmatrix} \mathbf{F}_1^{e1} \\ \mathbf{F}_2^{e1} \\ \mathbf{F}_3^{e1} \end{pmatrix} \quad \text{a} \quad \mathbf{F}_i^{e1} = \begin{pmatrix} f_1(x_i^e, y_i^e) \\ f_2(x_i^e, y_i^e) \end{pmatrix} \quad \text{pro } i = 1, 2, 3.$$
(2.136)

Konečně vyjádřeme člen  $I^e(\boldsymbol{\varepsilon}(\mathbf{v}) \cdot \mathbf{D}^e \boldsymbol{\varepsilon}^0)$ . Předpokládejme, že počáteční deformace je na elementu *e* konstantní a označme ji  $\boldsymbol{\varepsilon}^{0e}$ . Pak je  $\boldsymbol{\varepsilon}(\mathbf{v}) \cdot \mathbf{D}^e \boldsymbol{\varepsilon}^{0e}$  konstantní vektor a platí

$$I^{e}(\boldsymbol{\varepsilon}(\mathbf{v}) \cdot \mathbf{D}^{e} \boldsymbol{\varepsilon}^{0e}) = [\boldsymbol{\Theta}^{e}]^{T} \left\{ \frac{1}{2} |d^{e}| [\mathbf{B}^{e}]^{T} \mathbf{D}^{e} \boldsymbol{\varepsilon}^{0e} \right\} = [\boldsymbol{\Theta}^{e}]^{T} \mathbf{F}^{e2}$$
(2.137)

 $\operatorname{pro}$ 

$$\mathbf{F}^{e2} = \frac{1}{2} \left| d^e \right| \left[ \mathbf{B}^e \right]^T \mathbf{D}^e \,\boldsymbol{\varepsilon}^{0e}. \tag{2.138}$$

Odvodili jsme tedy

$$I^{e}(\mathbf{v}\cdot\mathbf{f}) + I^{e}(\boldsymbol{\varepsilon}(\mathbf{v})\cdot\mathbf{D}\boldsymbol{\varepsilon}^{0}) = [\boldsymbol{\Theta}^{e}]^{T}\mathbf{F}^{e}, \quad \text{kde} \quad \mathbf{F}^{e} = \mathbf{F}^{e1} + \mathbf{F}^{e2}$$
(2.139)

je elementární vektor. Elementární matici $\mathbf{K}^e$ a elementární vektor $\mathbf{F}^e$ si vyjádřeme ve tvaru

$$\mathbf{K}^{e} = \{\mathbf{K}^{e}_{ij}\}^{3}_{i,j=1}, \quad \mathbf{F}^{e} = ([\mathbf{F}^{e}_{1}]^{T}, [\mathbf{F}^{e}_{2}]^{T} [\mathbf{F}^{e}_{3}]^{T})^{T},$$
(2.140)

kde matice  $\mathbf{K}_{ij}^e$ , i, j = 1, 2, 3, jsou matice řádu dva a  $\mathbf{F}_i^e = \mathbf{F}_i^{e1} + \mathbf{F}_i^{e2}$ , i = 1, 2, 3, jsou sloupcové vektory se dvěma složkami. Pro izotropní materiál pomocí (2.106) odvodíme

$$\mathbf{K}_{ij}^{e} = \frac{1}{2} |d^{e}| \begin{pmatrix} (\lambda^{e} + 2\mu^{e})a_{i}^{e}a_{j}^{e} + \mu^{e}b_{i}^{e}b_{j}^{e} & \lambda^{e}a_{i}^{e}b_{j}^{e} + \mu^{e}a_{j}^{e}b_{i}^{e} \\ \mu^{e}a_{i}^{e}b_{j}^{e} + \lambda^{e}a_{j}^{e}b_{i}^{e} & \mu^{e}a_{i}^{e}a_{j}^{e} + (\lambda^{e} + 2\mu^{e})b_{i}^{e}b_{j}^{e} \end{pmatrix},$$

$$\mathbf{F}_{i}^{e2} = |d^{e}|(\lambda^{e} + \mu^{e})\varepsilon_{t}^{0e} \begin{pmatrix} a_{i}^{e} \\ b_{i}^{e} \end{pmatrix}.$$
(2.141)

Přitom  $\lambda^e$  a  $\mu^e$  jsou Laméovy konstanty a  $\varepsilon_t^{0e}$  je poměrné délkové tepelné protažení. O všech těchto třech veličinách předpokládáme, že jsou na elementu *e* konstantní, což jsme vyznačili horním indexem *e*.

Elementární vektor na straně S. Označíme si

$$\mathbf{N}^{S} = \begin{pmatrix} w_{1}^{S} & 0 & w_{2}^{S} & 0\\ 0 & w_{1}^{S} & 0 & w_{2}^{S} \end{pmatrix},$$
  
$$\mathbf{\Theta}^{S} = \begin{pmatrix} \mathbf{\Theta}_{1}^{S}\\ \mathbf{\Theta}_{2}^{S} \end{pmatrix} \quad \mathbf{a} \quad \mathbf{\Theta}_{i}^{S} = \begin{pmatrix} \mathbf{\Theta}_{i1}^{S}\\ \mathbf{\Theta}_{i2}^{S} \end{pmatrix} \equiv \begin{pmatrix} v_{1}(x_{i}^{S}, y_{i}^{S})\\ v_{2}(x_{i}^{S}, y_{i}^{S}) \end{pmatrix}, \quad i = 1, 2, 3.$$

Pak testovací funkci **v** lze na straně S vyjádřit ve tvaru  $\mathbf{v}^{S} = \mathbf{N}^{S} \Theta^{S}$ . Proto

$$I^{S}(\mathbf{v}^{S} \cdot \mathbf{p}) = [\boldsymbol{\Theta}^{S}]^{T} I^{S}([\mathbf{N}^{S}]^{T} \mathbf{p}) = [\boldsymbol{\Theta}^{S}]^{T} \mathbf{F}^{S}.$$
(2.142)

Integrujeme-li lichoběžníkovou formulí (2.53), dostaneme elementární vektor

$$\mathbf{F}^{S} = \frac{d^{S}}{2} \begin{pmatrix} \mathbf{F}_{1}^{S} \\ \mathbf{F}_{2}^{S} \end{pmatrix}, \quad \text{kde} \quad \mathbf{F}_{i}^{S} = \begin{pmatrix} p_{1}(x_{i}^{S}, y_{i}^{S}) \\ p_{2}(x_{i}^{S}, y_{i}^{S}) \end{pmatrix} \quad \text{pro } i = 1, 2.$$
(2.143)

### e) Sestavení globální matice a vektoru

Ze vztahů (2.127), (2.124), (2.125), (2.133), (2.139) a (2.143) dostaneme

$$0 = a_h(\mathbf{U}, \mathbf{v}) - L_h(\mathbf{v}) = \mathbf{\Theta}^T [\mathbf{K} \mathbf{\Delta} - \mathbf{F}] =$$
  
= 
$$\sum_{e \in \mathcal{T}} [\mathbf{\Theta}^e]^T [\mathbf{K}^e \mathbf{\Delta}^e - \mathbf{F}^e] - \sum_{S \in \mathcal{S}} [\mathbf{\Theta}^S]^T \mathbf{F}^S.$$
 (2.144)

Z této rovnosti lze odvodit pravidla pro sestavení globální matice **K** a vektoru **F** z lokálních matic **K**<sup>e</sup> a lokálních vektorů **F**<sup>e</sup> a **F**<sup>S</sup>. Postupuje se podobně jako v odstavci 2.7.

## Algoritmus 1 (eliminační)

- 1) Matici **K** a vektor **F** vynulujeme.
- 2) Pro každý element  $e \in \mathcal{T}$  provedeme :

pro i=1,2,3 určíme I=KC[PRVKY[e,i]]; je-li I>0, pak provedeme :

- a) pro j=1,2,3 určíme J=KC[PRVKY[e,j]]; je-li J>0, přičteme matici  $\mathbf{K}_{ij}^e$  k matici  $\mathbf{K}_{IJ}$ , v opačném případě odečteme vektor  $\mathbf{K}_{ij}^e \mathbf{g}_i^e$  od vektoru  $\mathbf{F}_I$ ;
- b) vektor  $\mathbf{F}_{i}^{e}$  přičteme k vektoru  $\mathbf{F}_{I}$ .
- 3) Pro každou stranu  $S \in S$  provedeme : pro i=1,2 určíme I=KC[STRANY[S,i]] a je-li I>0, vektor  $\mathbf{F}_i^S$  přičteme k vektoru  $\mathbf{F}_I$ .

Přitom symbolem  $\mathbf{g}_j^e$  rozumíme vektor  $(g_1(x_j^e, y_j^e), g_2(x_j^e, y_j^e))^T$ .

### Algoritmus 2 (pružinový)

- 1) Matici **K** a vektor **F** vynulujeme.
- 2) Pro každý element  $e \in \mathcal{T}$  provedeme : pro i=1,2,3 určíme I=PRVKY[e,i];
  - a) pro j=1,2,3 určíme J=PRVKY[e,j] a matici $\mathbf{K}_{ij}^e$  přičteme k matici $\mathbf{K}_{IJ};$
  - b) vektor  $\mathbf{F}_{i}^{e}$  přičteme k vektoru  $\mathbf{F}_{I}$ .
- 3) Pro každou stranu  $S \in S$  provedeme : pro i=1,2 určíme I=STRANY[S,i] a vektor  $\mathbf{F}_i^S$  přičteme k vektoru  $\mathbf{F}_I$ .
- 4) Postupně pro i=1,...,PB určíme I=BODY[i] a provedeme:

položíme  $\mathbf{Q}_I = \kappa \mathbf{K}_I$  a vektor  $\mathbf{K}_I$  nahradíme vektorem  $\mathbf{Q}_I$  a vektor  $\mathbf{F}_I$  nahradíme vektorem  $\mathbf{Q}_I \cdot \mathbf{g}_I$ .

Přitom  $\mathbf{K}_I = \text{diag}\{\mathbf{K}_{II}\}$  je vektor tvořený diagonálními prvky matice  $\mathbf{K}_{II}$ , symbolem  $\mathbf{g}_I$  rozumíme vektor  $(g_1(x_I, y_I), g_2(x_I, y_I))^T$  a tečka ve výrazu  $\mathbf{Q}_I \cdot \mathbf{g}_I$  označuje skalární součin.

Při popisu algoritmů 1 i 2 jsme se v zájmu dosažení jejich hutné formy záměrně dopustili určitých nepřesností, které je třeba uvést na pravou míru. Tak například tvrzení "matici  $\mathbf{K}_{ij}^e$  přičteme k matici  $\mathbf{K}_{IJ}$ " je třeba chápat tak, že prvky matice  $\mathbf{K}_{ij}^e$  přičteme k prvkům matice  $\mathbf{K}$  určeným pozicí matice  $\mathbf{K}_{IJ}$  v matici  $\mathbf{K}$ , tedy k pozicím s indexy

```
\left[\begin{array}{ccc} (2\,\mathrm{I}{-1},\,2\,\mathrm{J}{-1}\,) & (2\,\mathrm{I}{-1},\,2\,\mathrm{J}\,) \\ (2\,\mathrm{I}\,\,,\,2\,\mathrm{J}{-1}\,) & (2\,\mathrm{I}\,\,,\,2\,\mathrm{J}\,) \end{array}\right].
```

Podobně tvrzení "vektor  $\mathbf{F}_i^e$  přičteme k vektoru  $\mathbf{F}_I$ " je třeba chápat tak, že prvky vektoru  $\mathbf{F}_i^e$  přičteme k prvkům vektoru  $\mathbf{F}$  určeným pozicí vektoru  $\mathbf{F}_I$  ve vektoru  $\mathbf{F}$ , tedy k pozicím s indexy

$$\left[ egin{array}{c} 2\,\mathrm{I-1} \\ 2\,\mathrm{I} \end{array} 
ight].$$

Konečně tvrzení "vektor  $\mathbf{K}_I$  nahradíme vektorem  $\mathbf{Q}_I$ " znamená, že prvky vektoru  $\mathbf{Q}_I$  nahradí obsah matice  $\mathbf{K}$  v pozicích určených indexy

$$\left[\begin{array}{cc} (2\,\mathrm{I-1},\,2\,\mathrm{I-1}\,) & \\ & (2\,\mathrm{I},\,2\mathrm{I}\,) \end{array}\right].$$

#### f) Závěrečné poznámky

**Poznámka 20.** Po vyřešení soustavy rovnic (2.129) určíme složky vektoru deformace a napětí na prvcích. K tomu využijeme vztahu

$$\sigma(\mathbf{U}) = \mathbf{D}^{e}[\boldsymbol{\varepsilon}(\mathbf{U}) - \boldsymbol{\varepsilon}^{0e}] = \mathbf{D}^{e}[\mathbf{B}^{e}\boldsymbol{\Delta}^{e} - \boldsymbol{\varepsilon}^{0e}].$$
(2.145)

Deformace a napětí jsou po prvcích konstantní a tedy globálně nespojité. Vektory  $\boldsymbol{\varepsilon}(\mathbf{U})$  a  $\sigma(\mathbf{U})$  vystihují deformaci a napětí nejlépe v těžišti prvku. Deformace a napětí v uzlech se obyčejně počítá průměrováním z elementů obsahujících tento uzel.  $\Box$ 

Poznámka 21. Za předpokladu existence dostatečně hladkého slabého řešení platí

$$\max_{\overline{\Omega}} \|\mathbf{u} - \mathbf{U}\| = O(h^2) \quad \text{a} \quad \max_{\overline{e}} \|\sigma(\mathbf{u}) - \sigma(\mathbf{U})\| = O(h) \quad \forall e \in \mathcal{T},$$

kde  $\|\cdot\|$  označuje délku vektoru.  $\Box$ 

# 2.13. Izoparametrické prvky

Zatím jsme se seznámili s nejjednodušším konečným prvkem používaným pro řešení rovinných úloh popsaných pomocí jedné nebo několika parciálních diferenciálních rovnic druhého řádu: z geometrického hlediska šlo o trojúhelník, na němž bylo konečněprvkové řešení lineárním polynomem jednoznačně určeným svými hodnotami ve vrcholech. Obecně, hovoříme-li o konečném prvku, musí být definovány jeho tři následující vlastnosti: 1) geometrický tvar prvku

2) typ funkce na něm definované

3) parametry jednoznačně tuto funkci určující

Druhá a třetí vlastnost konečného prvku nám určuje funkci, kterou nazýváme násada. Doposud používaný lineární trojúhelníkový prvek označme symbolicky T3. Jeho největší předností je jednoduchost algoritmů, které lze jeho užitím vyvinout. Konkrétně, bez problémů se generuje triangulace oblasti i její případné lokální zahuštění, elementární matice (řádu 3) a vektory (o 3 složkách) se snadno odvozují a jejich výsledný tvar je dobře srozumitelný. Jedinou nevýhodou prvku T3 je jeho malá přesnost: chyba lineární aproximace na prvcích stejně jako případná chyba, jíž se dopouštíme aproximací oblasti s obecně křivou hranicí polygonem, je řádu  $O(h^2)$ , což má za následek, že chyba řešení je ve funkčních hodnotách  $O(h^2)$  a v derivacích dokonce jen O(h), viz poznámka 14 (odstavec 2.8). Chceme-li dostat přesnější aproximaci řešení, musíme přesněji aproximovat jak hledanou neznámou funkci, tak i oblast Ω. Vhodným prostředkem k dosažení tohoto cíle je použití izoparametrických konečných prvků. Používají se prvky trojúhelníkové nebo čtyřúhelníkové s obecně křivými stranami. Na obrázku 8 je nám již známý lineární trojúhelníkový prvek T3 se třemi uzly  $P_i^e(x_i^e, y_i^e)$ , i=1,2,3, na obrázku 9 je kvadratický trojúhelníkový prvek T6 se šesti uzly  $P_i^e(x_i^e, y_i^e)$ , i=1,...,6, na obrázku 10 je bilineární čtyřúhelníkový prvek Q4 se čtyřmi uzly  $P_i^e(x_i^e, y_i^e)$ , i=1,...,4 a na obrázku 11 je neúplný bikvadratický čtyřúhelníkový prvek Q8 s osmi uzly  $P_i^e(x_i^e, y_i^e)$ , i=1,...,8 a (úplný) bikvadratický čtyřúhelníkový prvek Q9 s devíti uzly  $P_i^e(x_i^e, y_i^e)$ , i=1,...,9. (Při označení prvků jsme použili prvá písmena anglických slov "triangle" pro trojúhelník a "quadrangle" pro čtyřúhelník.)



Obr. 8. Prvek T3

Obr. 9. Prvek T6

Lineární a bilineární prvky mají strany přímé, u kvadratických a bikvadratických prvků jsou strany tvořeny parabolami. Podobně lze konstruovat prvky, jejichž parametricky vyjádřené strany jsou polynomy vyšších stupňů.



Obr. 10. Prvek Q4

Obr. 11. Prvek Q8 a Q9

Symbolem  $\hat{e}$  si označme tak zvaný referenční prvek. Pro trojúhelníkové prvky T3 a T6 je referenční prvek pravoúhlý rovnoramenný trojúhelník uvedený na obrázku 12 a pro čtyřúhelníkové prvky Q4, Q8 a Q9 je referenční prvek čtverec uvedený na obrázku 13.



Obr. 12. Trojúhelníkový referenční prvek

Obr. 13. Čtyřúhelníkový referenční prvek

Obrázek 12 v sobě zahrnuje vlastně dva referenční prvky, neboť prvku T3 přísluší referenční prvek  $\hat{e}$  s uzly  $\hat{P}_i^e(\xi_i^e, \eta_i^e)$ , i=1,2,3 a prvku T6 přísluší geometricky stejný referenční prvek  $\hat{e}$ , tentokrát však s uzly  $\hat{P}_i^e(\xi_i^e, \eta_i^e)$ , i=1,...,6. Podobně obrázek 13 v sobě zahrnuje tři referenční prvky: prvku Q4 přísluší referenční prvek  $\hat{e}$  s uzly  $\hat{P}_i^e(\xi_i^e, \eta_i^e)$ , i=1,...,4, prvku Q8 přísluší geometricky stejný referenční prvek  $\hat{e}$  s uzly  $\hat{P}_i^e(\xi_i^e, \eta_i^e)$ , i=1,...,4, prvku Q8 přísluší geometricky stejný referenční prvek  $\hat{e}$  s uzly  $\hat{P}_i^e(\xi_i^e, \eta_i^e)$ , i=1,...,8 a konečně prvku Q9 přísluší geometricky opět stejný referenční prvek  $\hat{e}$ , avšak s uzly  $\hat{P}_i^e(\xi_i^e, \eta_i^e)$ , i=1,...,9. Na referenční prvku  $\hat{e}$  definujme bázové funkce  $\hat{N}_i^e(\xi, \eta)$  s vlastnostmi

$$\hat{N}_i^e(\xi_j, \eta_j) = \begin{cases} 1 \text{ pro } i = j \\ 0 \text{ pro } i \neq j \end{cases} \quad \text{a pro } i, j = 1, \dots, p_e,$$

$$(2.146)$$

kde  $p_e=3$  pro prvek T3,  $p_e=4$  pro prvek Q4,  $p_e=6$  pro prvek P6,  $p_e=8$  pro prvek Q8 a  $p_e = 9$  pro prvek Q9. Pro lineární trojúhelníkový prvek T3 je

$$\hat{N}_1^e = 1 - \xi - \eta,$$
  $\hat{N}_2^e = \xi,$   $\hat{N}_3^e = \eta,$ 

pro kvadratický trojúhelníkový prvek T6 je

$$\begin{split} \hat{N}_1^e &= 2(1-\xi-\eta)(\frac{1}{2}-\xi-\eta), \quad \hat{N}_4^e &= 4\xi(1-\xi-\eta), \\ \hat{N}_2^e &= 2\xi(\xi-\frac{1}{2}), \qquad \qquad \hat{N}_5^e &= 4\xi\eta, \\ \hat{N}_3^e &= 2\eta(\eta-\frac{1}{2}), \qquad \qquad \hat{N}_6^e &= 4\eta(1-\xi-\eta), \end{split}$$

pro bilineární čtyřúhelníkový prvek Q4 je

$$\hat{N}_1^e = \frac{1}{4}(1-\xi)(1-\eta), \quad \hat{N}_3^e = \frac{1}{4}(1+\xi)(1+\eta), \hat{N}_2^e = \frac{1}{4}(1+\xi)(1-\eta), \quad \hat{N}_4^e = \frac{1}{4}(1-\xi)(1+\eta),$$

pro neúplný bikvadratický čtyřúhelníkový prvek Q8 je

$$\hat{N}_{1}^{e} = \frac{1}{4}(1-\xi)(1-\eta)(-\xi-\eta-1), \quad \hat{N}_{5}^{e} = \frac{1}{2}(1-\xi^{2})(1-\eta), \\
\hat{N}_{2}^{e} = \frac{1}{4}(1+\xi)(1-\eta)(\xi-\eta-1), \quad \hat{N}_{6}^{e} = \frac{1}{2}(1+\xi)(1-\eta^{2}), \\
\hat{N}_{3}^{e} = \frac{1}{4}(1+\xi)(1+\eta)(\xi+\eta-1), \quad \hat{N}_{7}^{e} = \frac{1}{2}(1-\xi^{2})(1+\eta), \\
\hat{N}_{4}^{e} = \frac{1}{4}(1-\xi)(1+\eta)(-\xi+\eta-1), \quad \hat{N}_{8}^{e} = \frac{1}{2}(1-\xi)(1-\eta^{2}),$$

a pro bikvadratický čtyřúhelníkový prvek Q9 je

$$\begin{split} \hat{N}_{1}^{e} &= \frac{1}{4} \xi \eta (1-\xi) (1-\eta), \quad \hat{N}_{5}^{e} &= \frac{1}{2} \eta (1-\xi^{2}) (\eta-1), \\ \hat{N}_{2}^{e} &= \frac{1}{4} \xi \eta (1+\xi) (\eta-1), \quad \hat{N}_{6}^{e} &= \frac{1}{2} \xi (1+\xi) (1-\eta^{2}), \\ \hat{N}_{3}^{e} &= \frac{1}{4} \xi \eta (1+\xi) (1+\eta), \quad \hat{N}_{7}^{e} &= \frac{1}{2} \eta (1-\xi^{2}) (1+\eta), \\ \hat{N}_{4}^{e} &= \frac{1}{4} \xi \eta (\xi-1) (1+\eta), \quad \hat{N}_{8}^{e} &= \frac{1}{2} \xi (\xi-1) (1-\eta^{2}), \\ \hat{N}_{9}^{e} &= (1-\xi^{2}) (1-\eta^{2}). \end{split}$$

Pomocí bázových funkcí definujme zobrazení

$$x = x^{e}(\xi, \eta) = \sum_{i=1}^{p_{e}} x_{i}^{e} \hat{N}_{i}^{e}(\xi, \eta),$$
  

$$y = y^{e}(\xi, \eta) = \sum_{i=1}^{p_{e}} y_{i}^{e} \hat{N}_{i}^{e}(\xi, \eta)$$
(2.147)

které zobrazuje uzly  $\hat{P}^e_i$ na uzl<br/>y $P^e_i,\,i=1,\ldots,p_e.$  Předpokládejme, že "reálný" element<br/> eje jednoznačným obrazem referenčního elementu  $\hat{e}$ . Pak existuje inverzní zobrazení

$$\xi = \xi^e(x, y), \quad \eta = \eta^e(x, y) \quad \text{pro} \ (x, y) \in e \tag{2.148}$$

přiřazující ke každému bodu  $(x, y) \in e$  bod  $(\xi, \eta)$  elementu  $\hat{e}$  (a tedy zejména přiřazující bodům  $P_i^e$  body  $\hat{P}_i^e$ ,  $i = 1, \ldots, p_e$ ). Tak tomu je tehdy, když Jacobiova matice

$$\mathbf{J}^{e}(\xi,\eta) = \begin{pmatrix} \frac{\partial x^{e}(\xi,\eta)}{\partial \xi} & \frac{\partial x^{e}(\xi,\eta)}{\partial \eta} \\ \frac{\partial y^{e}(\xi,\eta)}{\partial \xi} & \frac{\partial y^{e}(\xi,\eta)}{\partial \eta} \end{pmatrix}$$
(2.149)

zobrazení (2.147) je regulární pro každé  $(\xi, \eta) \in \hat{e}$ , tedy je-li  $|\det \mathbf{J}^e(\xi, \eta)| > 0 \ \forall (\xi, \eta) \in \hat{e}$ . To platí zejména za těchto okolností:

- pro prvky T6, Q8 a Q9 leží uzly na stranách prvků "blízko" středů úseček spojujících koncové body těchto stran;
- pro prvek Q9 leží uzel  $P_9^e$  "blízko" těžiště čtyřúhelníka  $Q = P_1^e P_2^e P_3^e P_4^e$ ;
- pro prvky Q4, Q8 a Q9 je Q konvexní čtyřúhelník.

Proto je-li to možné, užíváme prvky s přímými stranami, vnitřní uzly přímých stran prvků T6, Q8 a Q9 volíme ve středech těchto stran a uzel  $P_9^e$  prvku Q9 volíme v těžišti čtyřúhelníka Q. Prvky Q4, Q8 a Q9, pro které Q není konvexní čtyřúhelník, nepoužíváme vůbec.

V dalším budeme pro libovolnou funkci g(x, y) definovanou na prvku e užívat označení

$$\hat{g}^e = \hat{g}^e(\xi, \eta) = g(x^e(\xi, \eta), y^e(\xi, \eta)) \quad \text{pro} \ (\xi, \eta) \in \hat{e}.$$

Bázové funkce na prvku e definujeme předpisem

$$w_i^e(x,y) = \hat{N}_i^e(\xi^e(x,y), \eta^e(x,y)), \quad i = 1, \dots, p_e.$$
(2.150)

Protože  $\hat{w}_i^e(\xi,\eta) = \hat{N}_i^e(\xi,\eta)$ , z (2.146) plyne

$$w_i^e(x_j^e, y_j^e) = \begin{cases} 1 \text{ pro } i = j \\ 0 \text{ pro } i \neq j \end{cases} \quad \text{a pro } i, j = 1, \dots, p_e.$$
(2.151)

Explicitní vyjádření bázových funkcí  $w_i^e(x, y)$  obecně najít neumíme. (Výjimkou jsou trojúhelníkové prvky s přímými stranami a čtyřúhelníkové prvky obdélníkového tvaru, navíc v případě prvků T6, Q8 a Q9 s uzly ve středech stran a pro prvek Q9 s uzlem v těžišti: pak je totiž zobrazení (2.147) i (2.148) lineární a  $w_i^e(x, y)$  je polynom "stejného typu" jako  $\hat{N}_i^e(\xi, \eta)$ .) To nám však při vývoji algoritmů vadit nebude, neboť zcela vystačíme se znalostí explicitního vyjádření "referenčních" bázových funkcí  $\hat{N}_i^e(\xi, \eta)$ .

Na prvkue definujeme násadu v předpisem

$$v = v^{e}(x, y) = \sum_{i=1}^{p_{e}} v_{i}^{e} w_{i}^{e}(x, y), \text{ kde } v_{i}^{e} = v(x_{i}^{e}, y_{i}^{e}), i = 1, \dots, p_{e}.$$
(2.152)

Z vyjádření

$$\hat{v}^e(\xi,\eta) = \sum_{i=1}^{p_e} v_i^e \hat{N}_i^e(\xi,\eta) \quad \text{pro} \ (\xi,\eta) \in \hat{e}$$

plyne, že násadu aproximujeme na prvku stejně dobře jako jeho geometrii, viz (2.147). Odtud pochází název *izoparametrický prvek*: počet parametrů určujících násadu prvku je stejný jako počet uzlů popisujících jeho geometrii. *Subparametrické prvky* mají větší počet parametrů určujících násadu než počet uzlů potřebných k popisu geometrie. Takové prvky je vhodné použít tehdy, když k popisu geometrie části vykrývané oblasti vystačíme s trojúhelníky nebo čtyřúhelníky s přímými stranami, avšak pro dosažení požadované vyšší přesnosti aproximace chceme použít násadu s větším počtem parametrů, například se šesti parametry pro trojúhelník nebo s osmi či devíti parametry pro čtyřúhelník. Použití *superparametrických prvků*, u nichž je násada popsána pomocí menšího počtu parametrů než je počet uzlů popisujících geometrii prvku, je méně obvyklé.

Oblast  $\Omega$  vykryjeme konečnými prvky, triangulujeme ji. Použijeme buďto jen prvky typu T3 nebo jen typu Q4 nebo libovolnou kombinaci těchto dvou typů prvků. Druhou možností je použití buďto jen prvků typu T6 nebo jen typu Q8 nebo jen typu Q9 nebo libovolnou kombinaci těchto tří typů prvků. Prvky s křivými stranami používáme obvykle jen tehdy, když křivá strana aproximuje křivou část hranice  $\partial\Omega$  oblasti  $\Omega$ , případně křivou část hranice  $\partial\Omega_i$  oblasti  $\Omega_i$ , kde  $\overline{\Omega} = \bigcup \overline{\Omega}_i$  (rozdělení oblasti  $\Omega$  na podoblasti  $\Omega_i$  může být motivováno například snahou zajistit, aby na každé podoblasti byly funkce p, q a f spojité). Množinu všech použitých prvků nazveme triangulací a označíme ji  $\mathcal{T}$ . Pro každé dva prvky  $e_i$  a  $e_j$  triangulace  $\mathcal{T}$  budeme požadovat, aby  $\overline{e}_i \cap \overline{e}_j$  pro  $i \neq j$  byla buďto množina prázdná nebo společná strana nebo společný vrchol (vrcholem izoparametrického prvku e rozumíme jeden z uzlů  $P_i^e$ ,  $i = 1, \ldots, q_e$ , kde  $q_e = 3$  pro prvek trojúhelníkového typu a  $q_e = 4$  pro prvek typu čtyřúhelníkového). Množinu uzlů všech prvků triangulace nazveme množinou uzlů triangulace. Dále stejně jako v poznámce 18 (odstavec 2.8) označíme

$$\overline{\Omega}_h = \bigcup_{e \in \mathfrak{T}} \overline{e}$$

a  $\Omega_h$  považujeme za náhradní oblast aproximující oblast  $\Omega$ . Hranici oblasti  $\Omega_h$  značme  $\partial \Omega_h$  nebo také  $\Gamma_h$ . Předpokládejme, že

- 1) uzly a těžiště prvků triangulace leží v  $\Omega$ ;
- 2) uzly ležící na hranici  $\Gamma_h$  leží také na hranici  $\Gamma$ ;
- 3) společné body průniku  $\overline{\Gamma}_1 \cap \overline{\Gamma}_2$  jsou uzly triangulace.

Částem  $\Gamma_1$  a  $\Gamma_2$  hranice  $\Gamma$  přirozeným způsobem přiřadíme jejich aproximace  $\Gamma_{1h}$  a  $\Gamma_{2h}$ tak, aby  $\Gamma_h = \overline{\Gamma}_{1h} \cup \overline{\Gamma}_{2h}$  a přitom  $\overline{\Gamma}_{1h} \cap \overline{\Gamma}_{2h} = \overline{\Gamma}_1 \cap \overline{\Gamma}_2$ .

V moderních programech MKP je triangulace generována automaticky tak, aby respektovala geometrii oblasti, materiálové vlastnosti, okrajové podmínky a zvolený typ prvků.

Konečněprvkový prostor  $X_h$  definujeme jako prostor (konečněprvkových, náhradních) funkcí v(x, y) definovaných na  $\overline{\Omega}_h$  takových, že jejich restrikce na element e má tvar uvedený vztahem (2.152). Z (2.152), (2.150) a z vlastností referenčních bázových funkcí  $\hat{N}_i^e$  plyne, že hodnoty funkce  $v(x, y) \in X_h$  na straně S elementu e jsou určeny pouze pomocí parametrů  $v_i^e = v(x_i^e, y_i^e)$  v uzlech  $P_i^e$  strany S. Z toho důvodu  $X_h \subset C(\overline{\Omega}_h)$ . Protože navíc  $X_h \subset PC^1(\Omega_h)$ , platí také  $X_h \subset H^1(\Omega_h)$ . Je-li PU počet všech uzlů  $P_i(x_i, y_i)$  triangulace  $\mathcal{T}$ , je  $X_h$  PU-dimenzionální prostor. Za bázové funkce prostoru  $X_h$  volíme takové jeho funkce, pro které platí  $w_i(x_j, y_j) = 0$ pro  $i \neq j$ ,  $w_i(x_i, y_i) = 1$ . Je-li  $P_i^e$  lokální značení uzlu  $P_I$ , pak restrikce bázové funkce  $w_I$ na element e je funkce  $w_i^e$ , viz (2.150).

Strany prvků budeme značit S, množinu všech stran ležících na hranici  $\Gamma_{2h}$  označíme S a počet všech stran  $S \in S$  označíme PS. Strana prvku T3 nebo Q4 je úsečka s koncovými body  $P_1^S(x_1^S, y_1^S)$ ,  $P_2^S(x_2^S, y_2^S)$ . Tato přímá strana, kterou budeme nazývat stranou E2, je zobrazena na obrázku 14. Strana prvku T6 nebo Q8 nebo Q9 je parabolický oblouk s koncovými body  $P_1^S(x_1^S, y_1^S)$ ,  $P_2^S(x_2^S, y_2^S)$  a s vnitřním bodem  $P_3^S(x_3^S, y_3^S)$ . Tato parabolická strana, kterou budeme nazývat stranou E3, je zobrazena na obrázku 15. (Strany označujeme písmenem E podle prvního písmene anglického překladu "edge" českého slova hrana.)



Obr. 14. Strana E2

Obr. 15. Strana E3

$$\begin{array}{c|c} S & \xi \\ \hline \hat{P}_1^S(0) & \hat{P}_3^S(\frac{1}{2}) & \hat{P}_2^S(1) \end{array}$$

Obr. 16. Referenční strana

Symbolem  $\hat{S}$  označme tzv. referenční stranu. Pro stranu E2 je  $\hat{S}$  úsečka s krajními body  $\hat{P}_1^S(\xi_1)$ a  $\hat{P}_2^S(\xi_2)$ , kde  $\xi_1 = 0$  a  $\xi_2 = 1$ , a pro stranu E3 je  $\hat{S}$  tatáž úsečka, navíc s uzlem  $\hat{P}_3^S(\xi_3)$ , kde  $\xi_3 = \frac{1}{2}$ . Referenční strany obou typů jsou zobrazeny v jediném obrázku 16.

Na referenční straně definujme bázové funkce. Pro stranu E2 je

$$\hat{N}_1^S = 1 - \xi, \quad \hat{N}_2^S = \xi$$

a pro stranu E3 je

$$\hat{N}_1^S = (1 - 2\xi)(1 - \xi), \quad \hat{N}_2^S = \xi(2\xi - 1) \quad \hat{N}_3^S = 4\xi(1 - \xi).$$

Pak geometrii strany S popíšeme vztahy

$$x = x^{S}(\xi) = \sum_{i=1}^{p_{S}} x_{i}^{S} \hat{N}_{i}^{S}(\xi), \quad y = y^{S}(\xi) = \sum_{i=1}^{p_{S}} y_{i}^{S} \hat{N}_{i}^{S}(\xi) \quad \text{pro } \xi \in \hat{S},$$
(2.153)

kde  $p_S = 2$  pro stranu E2 a  $p_S = 3$  pro stranu E3. Na straně S definujme bázové funkce

$$w_i^S(x,y) = \hat{N}_i^S(\xi), \quad i = 1, \dots, p_S,$$
(2.154)

kde $\xi\in \hat{S}$ je vzorem bodu  $(x,y)\in S$ v zobrazení (2.153). Označíme-li pro funkcig(x,y) definovanou na straněS

$$\hat{g}^S = \hat{g}^S(\xi) = g(x^S(\xi), y^S(\xi)) \quad \text{pro } \xi \in \hat{S},$$

pak zřejmě  $\hat{w}_i^S(\xi) = \hat{N}_i^S(\xi)$ . Bázová funkce  $w_i^S(x, y)$  je zřejmě restrikcí bázové funkce  $w_j^e(x, y)$  pro  $P_j^e \equiv P_i^S$  na stranu S . Restrikci konečně<br/>prvkové funkce v z prostoru  $X_h$  na stranu S lze vyjádřit ve tvaru

$$v = v^{S}(x, y) = \sum_{i=1}^{p_{S}} v_{i}^{S} w_{i}^{S}(x, y), \text{ kde } v_{i}^{S} = v(x_{i}^{S}, y_{i}^{S}), i = 1, \dots, p_{S},$$
(2.155)

pro  $(x, y) \in S$  a ve tvaru

$$\hat{v}^{S}(\xi) = \sum_{i=1}^{p_{S}} v_{i}^{S} \hat{N}_{i}^{S}(\xi)$$
(2.156)

pro  $\xi \in \hat{S}$ .

Počet všech uzlů ležících na  $\overline{\Gamma}_{1h}$  označíme PB a počet zbývajících uzlů ležících v  $\Omega$ a na  $\Gamma_{2h}$  označíme PN. Zřejmě PN=PU-PB. Největší z průměrů prvků triangulace  $\mathfrak{T}$ označíme h.

Použití izoparametrických prvků si budeme ilustrovat na řešení úlohy (2.1)–(2.4) s obecně křivou hranicí. Pro funkci  $\hat{h}^e(\xi,\eta)$  definovanou na referenčním prvku  $\hat{e}$  nechť

$$\hat{I}^{e}(\hat{h}^{e}) = \sum_{i=1}^{Q_{e}} \hat{A}_{i}^{e} \hat{h}^{e}(\xi_{i}^{Qe}, \eta_{i}^{Qe})$$

je kvadraturní formule pro přibližný výpočet  $\int_{\hat{e}} \hat{h}^e(\xi, \eta) d\xi d\eta$ . Předpokládejme, že uzly  $(\xi_i^{Qe}, \eta_i^{Qe})$  kvadraturní formule  $\hat{I}^e(\cdot)$  jsou buďto uzly  $\hat{P}_i^e$  referenčního prvku  $\hat{e}$  nebo jsou to jeho vnitřní body. Formule  $\hat{I}^e(\cdot)$  indukuje kvadraturní formuli

$$I^{e}(g) = \hat{I}^{e}(\hat{g}^{e}|\det \mathbf{J}^{e}|)$$
(2.157)

pro přibližný výpočet  $\int_{e} g(x, y) \, \mathrm{d}x \, \mathrm{d}y$ . Zřejmě platí

$$I^{e}(g) = \sum_{i=1}^{Q_{e}} A^{e}_{i}g(x^{Qe}_{i}, y^{Qe}_{i}),$$
  
kde  $A^{e}_{i} = \hat{A}^{e}_{i} |\det \mathbf{J}^{e}(\xi^{Qe}_{i}, \eta^{Qe}_{i})|, \ x^{Qe}_{i} = x^{e}(\xi^{Qe}_{i}, \eta^{Qe}_{i}), \ y^{Qe}_{i} = y^{e}(\xi^{Qe}_{i}, \eta^{Qe}_{i}), \ i = 1, \dots, Q_{e}.$ 

Zdůrazněme, že vzhledem k předpokladům o výběru uzlů kvadraturní formule  $\hat{I}^e(\cdot)$  a vzhledem k předpokladům o oblasti  $\Omega_h$  lze také předpokládat, že uzly kvadraturní formule  $I^e(\cdot)$  leží pro dostatečně malé  $h \vee \overline{\Omega}$  a proto je výraz  $I^e(g)$  pro každou funkci g definovanou v  $\overline{\Omega}_h$  a pro každý prvek  $e \in \mathcal{T}$  dobře definován.

Pro funkci  $\hat{h}^{S}(\xi)$  definovanou na referenční straně  $\hat{S}$  nechť

$$\hat{I}^{S}(\hat{h}^{S}) = \sum_{i=1}^{Q_{S}} \hat{A}_{i}^{S} \hat{h}^{S}(\xi_{i}^{QS})$$

je kvadraturní formule pro přibližný výpoče<br/>t $\int_{\hat{S}} \hat{h}^S(\xi)\,\mathrm{d}\xi.$ Formule $\hat{I}^S(\cdot)$ indukuje kvadraturní formuli

$$I^{S}(g) = \hat{I}^{S}(\hat{g}^{S}J^{S}), \quad \text{kde} \quad J^{S}(\xi) = \sqrt{\left[\frac{d\,x^{S}(\xi)}{d\xi}\right]^{2} + \left[\frac{d\,y^{S}(\xi)}{d\xi}\right]^{2}}, \tag{2.158}$$

pro přibližný výpočet  $\int_S g(x,y)\,\mathrm{d}s.$ Zřejmě platí

$$I^{S}(g) = \sum_{i=1}^{Q_{S}} A_{i}^{S} g(x_{i}^{QS}, y_{i}^{QS}),$$
  
kde  $A_{i}^{S} = \hat{A}_{i}^{S} J^{S}(\xi_{i}^{QS}), \ x_{i}^{QS} = x^{S}(\xi_{i}^{QS}), \ y_{i}^{QS} = y^{S}(\xi_{i}^{QS}), \ i = 1, \dots, Q_{S}.$ 

K funkcím  $\alpha$  a  $\beta$  definovaným na  $\overline{\Gamma}_2$  přiřaď<br/>me interpolanty  $\alpha^I$  a  $\beta^I$  definované na  $\overline{\Gamma}_{2h}$  tak, že restrikce  $\alpha^{IS}$  <br/>a  $\beta^{IS}$  těchto interpolantů na strany  $S \in \mathbb{S}$  jsou tvaru

$$\alpha^{IS}(x,y) = \sum_{i=1}^{p_S} \alpha(x_i^S, y_i^S) w_i^S(x,y), \quad \beta^{IS}(x,y) = \sum_{i=1}^{p_S} \beta(x_i^S, y_i^S) w_i^S(x,y).$$
(2.159)

Diskrétní slabá formulace stejně jako množina přípustných řešení  $W_h$  a prostor testovacích funkcí  $V_h$  zůstávají beze změny, viz vztahy (2.18),(2.15),(2.14). Bilineární forma  $a_h(U, v)$  a lineární funkcionál  $L_h(v)$  jsou však určeny nově:

$$a_h(U,v) = \sum_{e \in \mathfrak{T}} I^e(p \,\nabla U \cdot \nabla v + qUv) + \sum_{S \in \mathfrak{S}} I^S(\alpha^I Uv), \qquad (2.160)$$

$$L_{h}(v) = \sum_{e \in \mathcal{T}} I^{e}(fv) + \sum_{S \in \mathcal{S}} I^{S}(\beta^{I}v).$$
(2.161)

Dříve než přistoupíme k vyjádření elementárních matic a vektorů, odvoď me si pro funkci g(x, y) definovanou na prvku e vztah mezi vektorem

$$[\widehat{\nabla g}]^e(\xi,\eta) = \begin{pmatrix} \frac{\partial g(x^e(\xi,\eta), y^e(\xi,\eta))}{\partial x} \\ \frac{\partial g(x^e(\xi,\eta), y^e(\xi,\eta))}{\partial y} \end{pmatrix} \text{ a vektorem } \hat{\nabla} \hat{g}^e(\xi,\eta) = \begin{pmatrix} \frac{\partial \hat{g}^e(\xi,\eta)}{\partial \xi} \\ \frac{\partial \hat{g}^e(\xi,\eta)}{\partial \eta} \end{pmatrix}.$$

Užitím pravidla o derivování složené funkce  $\hat{g}^e(\xi,\eta) = g(x^e(\xi,\eta), y^e(\xi,\eta))$  obdržíme

$$\hat{\nabla}\hat{g}^{e} = \left(\begin{array}{c} \frac{\partial g(x^{e}(\xi,\eta),y^{e}(\xi,\eta))}{\partial x}\frac{\partial x^{e}(\xi,\eta)}{\partial \xi} + \frac{\partial g(x^{e}(\xi,\eta),y^{e}(\xi,\eta))}{\partial y}\frac{\partial y^{e}(\xi,\eta)}{\partial \xi}\\ \frac{\partial g(x^{e}(\xi,\eta),y^{e}(\xi,\eta))}{\partial x}\frac{\partial x^{e}(\xi,\eta)}{\partial \eta} + \frac{\partial g(x^{e}(\xi,\eta),y^{e}(\xi,\eta))}{\partial y}\frac{\partial y^{e}(\xi,\eta)}{\partial \eta} \end{array}\right).$$

Odtud a z (2.149) plyne  $\hat{\nabla}\hat{g}^e = [\mathbf{J}^e]^T [\widehat{\nabla g}]^e$  (index  $^T$  jako obvykle označuje transpozici) a tedy platí

$$[\widehat{\nabla g}]^e = [\mathbf{J}^e]^{-T} \widehat{\nabla} \hat{g}^e, \qquad (2.162)$$

kde  $[\mathbf{J}^e]^{-T} = \{[\mathbf{J}^e]^T\}^{-1}$  je matice inverzní k matici  $[\mathbf{J}^e]^T$ ,

$$[\mathbf{J}^{e}]^{-T} = [\det \mathbf{J}^{e}]^{-1} \hat{\mathbf{G}}^{e}, \quad \text{kde} \quad \hat{\mathbf{G}}^{e} = \begin{pmatrix} \frac{\partial y^{e}}{\partial \eta} & -\frac{\partial y^{e}}{\partial \xi} \\ -\frac{\partial x^{e}}{\partial \eta} & \frac{\partial x^{e}}{\partial \xi} \end{pmatrix}.$$
 (2.163)

Na elementueoznačíme

$$\mathbf{N}^{e} = \mathbf{N}^{e}(x, y) = (w_{1}^{e}(x, y), \dots, w_{p_{e}}^{e}(x, y)), \qquad (2.164)$$

$$\boldsymbol{\Delta}^{e} = (\Delta_{1}^{e}, \dots, \Delta_{p_{e}}^{e})^{T}, \text{ kde } \Delta_{i}^{e} = U(x_{i}^{e}, y_{i}^{e}), \quad i = 1, \dots, p_{e},$$

$$(2.165)$$

$$\Theta^{e} = (\Theta_{1}^{e}, \dots, \Theta_{p_{e}}^{e})^{T}, \text{ kde } \Theta_{i}^{e} = v(x_{i}^{e}, y_{i}^{e}), \quad i = 1, \dots, p_{e}.$$
(2.166)

Pak slabé řešení Ua testovací funkci vlze na elementu evyjádřit ve tvaru

$$U = \mathbf{N}^e \boldsymbol{\Delta}^e, \quad v = \mathbf{N}^e \boldsymbol{\Theta}^e. \tag{2.167}$$

Dále označme

$$\mathbf{B}^{e} = \nabla \mathbf{N}^{e} = (\nabla w_{1}^{e}, \dots, \nabla w_{p_{e}}^{e}).$$
(2.168)

Vztahy (2.31)–(2.33) a (2.48) zůstávají v platnosti. Zbývá tedy vyjádřit elementární matice  $\mathbf{K}^{e1}$ ,  $\mathbf{K}^{e2}$  a elementární vektor  $\mathbf{F}^{e}$ . Pomocí (2.162), (2.163) a (2.168) dostaneme

$$\hat{\mathbf{B}}^{e} = ([\widehat{\nabla w_{1}^{e}}]^{e}, \dots, [\widehat{\nabla w_{p_{e}}^{e}}]^{e}) = [\mathbf{J}^{e}]^{-T} \hat{\mathbf{L}}^{e} = [\det \mathbf{J}^{e}]^{-1} \hat{\mathbf{G}}^{e} \hat{\mathbf{L}}^{e}, \qquad (2.169)$$

kde

$$\hat{\mathbf{L}}^{e} = (\hat{\nabla}\hat{N}_{1}^{e}, \dots, \hat{\nabla}\hat{N}_{p_{e}}^{e}) = \begin{pmatrix} \frac{\partial\hat{N}_{1}^{e}}{\partial\xi}, & \dots, & \frac{\partial\hat{N}_{p_{e}}^{e}}{\partial\xi} \\ \frac{\partial\hat{N}_{1}^{e}}{\partial\eta}, & \dots, & \frac{\partial\hat{N}_{p_{e}}^{e}}{\partial\eta} \end{pmatrix}.$$
(2.170)

Označme ještě

$$\hat{\mathbf{N}}^{e} = (\hat{N}_{1}^{e}, \dots, \hat{N}_{p_{e}}^{e}).$$
(2.171)

Pak z (2.33), (2.157), (2.169) a (2.48) plyne

$$\mathbf{K}^{e1} = I^{e}([\mathbf{B}^{e}]^{T} p \, \mathbf{B}^{e}) = \hat{I}^{e}([\hat{\mathbf{B}}^{e}]^{T} \hat{p}^{e} \, \hat{\mathbf{B}}^{e} |\det \mathbf{J}^{e}|) =$$
  
=  $\hat{I}^{e}([\hat{\mathbf{L}}^{e}]^{T} [\hat{\mathbf{G}}^{e}]^{T} \hat{p}^{e} \, \hat{\mathbf{G}}^{e} \hat{\mathbf{L}}^{e} |\det \mathbf{J}^{e}|^{-1}),$  (2.172)

$$\mathbf{K}^{e2} = I^e([\mathbf{N}^e]^T q \, \mathbf{N}^e) = \hat{I}^e([\hat{\mathbf{N}}^e]^T \hat{q}^e \, \hat{\mathbf{N}}^e |\det \mathbf{J}^e|), \qquad (2.173)$$

$$\mathbf{F}^{e} = I^{e}([\mathbf{N}^{e}]^{T}f) = \hat{I}^{e}([\hat{\mathbf{N}}^{e}]^{T}\hat{f}^{e} |\det \mathbf{J}^{e}|).$$
(2.174)

Závěrem uved'me, jaké kvadraturní formule  $\hat{I}^e(\cdot)$  je vhodné použít pro výpočet elementárních matic  $\mathbf{K}^{e1}$ ,  $\mathbf{K}^{e2}$  a elementárního vektoru  $\mathbf{F}^e$ . Pro prvek T3 jsme takové formule již uvedli v části a) odstavce 2.7. Zopakujme tedy, že při integraci prvků matice  $\mathbf{K}^{e1}$  užijeme formuli

$$\hat{I}^{e}(\hat{g}) = \frac{1}{2}\hat{g}(\frac{1}{3}, \frac{1}{3}) \tag{2.175}$$

a při integraci prvků matice  $\mathbf{K}^{e2}$ a vektoru  $\mathbf{F}^{e}$  formuli

$$\hat{I}^{e}(\hat{g}) = \frac{1}{6} [\hat{g}(0,0) + \hat{g}(1,0) + \hat{g}(0,1)].$$
(2.176)

Obě formule (2.175) a (2.176) integrují přesně polynomy  $\xi^i \eta^j$  pro  $0 \leq i + j \leq 1$ . Pro zbývající typy prvků doporučíme vždy jen jednu kvadraturní formuli pro výpočet obou matic  $\mathbf{K}^{e_1}$ ,  $\mathbf{K}^{e_2}$  i vektoru  $\mathbf{F}^e$ . Pro prvek T6 je vhodné použít formuli

$$\hat{I}^{e}(\hat{g}) = \frac{1}{6} [\hat{g}(\frac{1}{2}, 0) + \hat{g}(\frac{1}{2}, \frac{1}{2}) + \hat{g}(0, \frac{1}{2})], \qquad (2.177)$$

která integruje přesně polynom<br/>y $\xi^i\eta^j$  pro $0\leq i+j\leq 2.$  Pro prvek Q4 použijeme Gaussovu součinovou formul<br/>i $2{\times}2$ 

$$\hat{I}^{e}(\hat{g}) = \hat{g}(-a, -a) + \hat{g}(a, -a) + \hat{g}(a, a) + \hat{g}(-a, a) \quad \text{pro} \quad a = \frac{\sqrt{3}}{3},$$
(2.178)

která integruje přesně polynom<br/>y $\xi^i\eta^j$  pro $0\le i,j\le 3.$ Konečně pro prvky Q8 a Q9 je vhodné použít<br/> Gaussovu součinovou formuli $3\times 3$ 

$$\hat{I}^{e}(\hat{g}) = \frac{64}{81}\hat{g}(0,0) + \frac{40}{81}[\hat{g}(-a,0) + \hat{g}(0,-a) + \hat{g}(a,0) + \hat{g}(0,a)] + \frac{25}{81}[\hat{g}(-a,-a) + \hat{g}(a,-a) + \hat{g}(a,a) + \hat{g}(-a,a)] \quad \text{pro} \quad a = \sqrt{0,6},$$
(2.179)

která integruje přesně polynom<br/>y $\xi^i\eta^j$  pro $0\leq i,j\leq 5.$ 

Přejděme nyní k odvození elementární matice  $\mathbf{K}^S$ a vektoru  $\mathbf{F}^S$ na straně S. K tomu účelu si označíme

$$\mathbf{N}^{S} = \mathbf{N}^{S}(x, y) = (w_{1}^{S}(x, y), \dots, w_{p_{S}}^{S}(x, y)),$$
  
$$\mathbf{\Delta}^{S} = (\Delta_{1}^{S}, \dots, \Delta_{p_{S}}^{S})^{T}, \text{ kde } \Delta_{i}^{S} = U(x_{i}^{S}, y_{i}^{S}), \quad i = 1, \dots, p_{S},$$
  
$$\mathbf{\Theta}^{S} = (\Theta_{1}^{S}, \dots, \Theta_{p_{S}}^{S})^{T}, \text{ kde } \Theta_{i}^{S} = v(x_{i}^{S}, y_{i}^{S}), \quad i = 1, \dots, p_{S}.$$

Pak slabé řešení U a testovací funkci v lze na straně S vyjádřit ve tvaru

$$U = \mathbf{N}^S \mathbf{\Delta}^S, \quad v = \mathbf{N}^S \mathbf{\Theta}^S.$$

Označme ještě

$$\hat{\mathbf{N}}^S = (\hat{N}_1^S, \dots, \hat{N}_{p_S}^S).$$
Pak ze vztahu (2.51), v němž místo  $\alpha$  píšeme  $\alpha^{I}$ , vztahu (2.52), v němž místo  $\beta$  píšeme  $\beta^{I}$  a ze vztahu (2.158) plyne

$$\mathbf{K}^{S} = I^{S}([\mathbf{N}^{S}]^{T} \alpha^{I} \mathbf{N}^{S}) = \hat{I}^{S}([\hat{\mathbf{N}}^{S}]^{T} \hat{\alpha}^{IS} \hat{\mathbf{N}}^{S} J^{S}), \qquad (2.180)$$

$$\mathbf{F}^{S} = I^{S}([\mathbf{N}^{S}]^{T}\beta^{I}) = \hat{I}^{S}([\hat{\mathbf{N}}^{S}]^{T}\hat{\beta}^{IS}J^{S}).$$
(2.181)

Zbývá dodat, jaké kvadraturní formule  $\hat{I}^{S}(\cdot)$  použijeme pro výpočet elementární matice  $\mathbf{K}^{S}$  a elementárního vektoru  $\mathbf{F}^{S}$ . Pro strany E2 (příslušné prvkům T3 a Q4) užijeme lichoběžníkovou formuli

$$\hat{I}^{S}(\hat{g}) = \frac{1}{2}[\hat{g}(0) + \hat{g}(1)]$$
(2.182)

integrující přesně polynomy prvního stupně a pro strany E3 (příslušné prvkům T6, Q8 a Q9) užijeme buď to Simpsonovu formuli

$$\hat{I}^{S}(\hat{g}) = \frac{1}{6} [\hat{g}(0) + 4\hat{g}(\frac{1}{2}) + \hat{g}(1)]$$
(2.183)

nebo Gaussovu formuli se dvěma uzly

$$\hat{I}^{S}(\hat{g}) = \frac{1}{2} \left[ \hat{g}(\frac{3-\sqrt{3}}{6}) + \hat{g}(\frac{3+\sqrt{3}}{6}) \right].$$
(2.184)

Obě formule (2.183) i (2.184) integrují přesně polynomy stupně třetího.

Globální matici soustavy a globální vektor zatížení sestavíme modifikací algoritmů uvedených v části c) odstavce 2.7. Po vyřešení soustavy rovnic získáme hodnoty  $U(x_i, y_i)$ , i = 1, ..., PU. Na každém prvku proto známe  $\Delta_i^e = U(x_i^e, y_i^e)$ ,  $i = 1, ..., p_e$ , a můžeme spočítat hodnotu konečněprvkového řešení U a jeho gradientu  $\nabla U$  v libovolném bodu  $P^*(x^*, y^*)$  prvku e. Protože bázové funkce  $w_i^e(x, y)$  obecně neumíme explicitně vyjádřit, musíme přejít na referenční element  $\hat{e}$ . Najdeme vzor  $\hat{P}^*(\xi^*, \eta^*)$  bodu  $P^*$  v zobrazení (2.153), tedy rozřešíme obecně nelineární soustavu rovnic

$$x^{\star} = x^{e}(\xi^{\star}, \eta^{\star}), \quad y^{\star} = y^{e}(\xi^{\star}, \eta^{\star}))$$
(2.185)

pro neznámé  $\xi^*, \eta^*$ , a pak určíme

$$U(x^{\star}, y^{\star}) = \hat{U}(\xi^{\star}, \eta^{\star}) = \hat{\mathbf{N}}^{e}(\xi^{\star}, \eta^{\star}) \boldsymbol{\Delta}^{e},$$
$$\nabla U(x^{\star}, y^{\star}) = \widehat{\nabla U}^{e}(\xi^{\star}, \eta^{\star}) = \hat{\mathbf{B}}^{e}(\xi^{\star}, \eta^{\star}) \boldsymbol{\Delta}^{e} = \{ [\det \mathbf{J}^{e}]^{-1} \hat{\mathbf{G}}^{e} \hat{\mathbf{L}}^{e} \} (\xi^{\star}, \eta^{\star}) \boldsymbol{\Delta}^{e}$$

Pokud se spokojíme s hodnotou gradientu  $\nabla U$  v některém z uzlových bodů  $P_i^e(x_i^e, y_i^e)$ , pak pro určení jeho vzoru žádnou soustavu rovnic řešit nemusíme, neboť souřadnice uzlu  $\hat{P}_i^e(\xi_i^e, \eta_i^e)$  známe. Je-li soustava (2.185) lineární, rozřešíme ji snadno, a je-li nelineární, pak k jejímu vyřešení obvykle postačí provést jen několik málo kroků Newtonovy metody.

Za předpokladu dostatečné hladkosti slabého řešení lze ukázat, že pro chybuu-Uslabého řešení a jeho konečněprvkové aproximace platí

$$\max_{\overline{\Omega}_h \cap \overline{\Omega}} |u - U| = O(h^r) \quad \text{a} \quad \max_{\overline{e} \cap \overline{\Omega}} \|\nabla(u - U)\| = O(h^{r-1}) \quad \forall e \in \mathfrak{T},$$
(2.186)

kde r=2 pro prvky T3, Q4 a r=3 pro prvky T6, Q8, Q9. Je-li q=0 a jestliže používáme čtyřúhelníkové prvky, které se málo liší od rovnoběžníků, pak ve speciálních bodech  $\overline{P}^e$ těchto prvků dostáváme přesnější hodnoty  $\nabla U$ :  $[\nabla(u-U)](\overline{P}^e) = O(h^r)$ . Říkáme, že v těchto bodech nastává superkonvergence gradientů. Pro prvek Q4 superkonvergence nastává v bodu, který je obrazem uzlu Gaussovy kvadraturní formule 1×1 na referenčním elementu  $\hat{e}$ , tedy v bodu  $\overline{P}^{e}(x^{e}(0,0), y^{e}(0,0))$ , a pro prvky Q8 a Q9 nastává superkonvergence v bodech, které jsou obrazy uzlů Gaussovy kvadraturní formule  $2 \times 2$  na referenčním elementu  $\hat{e}$ , tedy v bodech  $\overline{P}^e(x^e(\pm a, \pm a), y^e(\pm a, \pm a))$ , kde  $a = \frac{\sqrt{3}}{3}$ . Zajímá-li nás gradient ve vrcholu P triangulace T, pak ho spočteme jako aritmetický průměr z hodnot gradientů v "přiléhajících" Gaussových bodech prvků obsahujících tento vrchol P. Superkonvergence gradientů v Gaussových bodech čtvřúhelníkových elementů se běžně využívá v úloze rovinné napjanosti či deformace. (V bilineární formě  $a(\mathbf{u}, \mathbf{v})$  rovinné úlohy napjatosti či deformace, viz (2.114), se nevyskytuje analog členu quv obsaženého v bilineární formě a(u, v) úlohy (2.1)–(2.4), viz (2.9). Proto odpadá analogie výše uvedeného požadavku q = 0 a k dosažení superkonvergence v Gaussových bodech stačí, abychom používali čtyřúhelníkové prvky tvarově blízké rovnoběžníkům.)

**Poznámka 22.** Prvek Q9 je přibližně stejně přesný jako prvek Q8, ve srovnání s ním však má parametr  $\Delta_9^e = U^e(x_9^e, y_9^e)$  navíc. To ale není zase tak velký nedostatek, neboť rovnici pro parametr  $\Theta_9^e$  můžeme získat hned při zpracovávání elementu e, má totiž tvar  $\sum_{j=1}^{8} k_{9j}^e \Delta_j^e + k_{99}^e \Delta_9^e = F_9^e$ ; odtud lze parametr  $\Delta_9^e$  vyjádřit,  $\Delta_9^e = [F_9^e - \sum_{j=1}^{8} k_{9j}^e \Delta_j^e]/k_{99}^e$ , a dosadit ho do zbývajících rovnic. Také toto dosazení lze provést "lokálně": zvolíme  $\Theta_9^e = [-\sum_{i=1}^{8} k_{i9}^e \Theta_i^e]/k_{99}^e$  a do rovnice  $0 = a_h(U, v) - L_h(v)$  vložíme za element e příspěvek

$$[\boldsymbol{\Theta}^e]^T [\mathbf{K}^e \boldsymbol{\Delta}^e - \mathbf{F}^e] = [\tilde{\boldsymbol{\Theta}}^e]^T [\tilde{\mathbf{K}}^e \tilde{\boldsymbol{\Delta}}^e - \tilde{\mathbf{F}}^e],$$

kde  $\tilde{\Theta}^e = (\Theta_1^e, \ldots, \Theta_8^e)^T$ ,  $\tilde{\Delta}^e = (\Delta_1^e, \ldots, \Delta_8^e)^T$ ,  $\tilde{\mathbf{K}} = \{\tilde{k}_{ij}^e\}_{i,j=1}^8$ ,  $\tilde{\mathbf{F}}^e = (\tilde{F}_1^e, \ldots, \tilde{F}_8^e)^T$ (šikovně zvolený "vázaný" parametr  $\Theta_9^e$  zaručuje symetrii matice  $\tilde{\mathbf{K}}^e$ ). Redukovanou matici  $\tilde{\mathbf{K}}^e$  a redukovaný vektor  $\tilde{\mathbf{F}}^e$  lze získat snadno užitím Gaussovy eliminační metody: v soustavě rovnic  $\mathbf{K}^e \Delta^e = \mathbf{F}^e$  odeliminujeme prvky  $k_{i9}^e$  a  $k_{9i}^e$   $i = 1, \ldots, 8$ , posledního sloupce a řádku a v prvních osmi řádcích a sloupcích upravené matice soustavy najdeme matici  $\tilde{\mathbf{K}}^e$  a v prvních osmi řádcích upraveného vektoru pravé strany najdeme vektor  $\tilde{\mathbf{F}}^e$ . Elementární matici  $\tilde{\mathbf{K}}^e$  a vektor  $\tilde{\mathbf{F}}^e$  rozešleme do globální matice  $\mathbf{K}$  a globálního vektoru  $\mathbf{F}$  obvyklým způsobem. Po vyřešení globální soustavy rovnic na elementu e dopočítáme  $\Delta_9^e = [F_9^e - \sum_{j=1}^8 k_{9j}^e \Delta_j^e]/k_{99}^e$ . Právě popsaná technika eliminace "vnitřních" parametrů elementu (zde jednoho) bývá označována jako metoda kondenzace vnitřních parametrů.

Zobecnění této metody, spočívající v "předeliminaci" parametrů vnitřních vzhledem k celé skupině elementů, bývá označováno jako *statická kondenzace*. Princip je následující: konstrukci rozčleníme na subkonstrukce, vnitřní parametry subkonstrukcí odeliminujeme (částečná eliminace ne příliš rozsáhlých soustav s řídkými maticemi), ze zbytků matic a vektorů subkonstrukcí příslušných "hraničním" parametrům subkonstrukcí sestavíme globální soustavu rovnic (bohužel již s plnou maticí), vyřešíme ji a získáme hraniční parametry a nakonec na subkonstrukcích dopočítáme jejich vnitřní parametry. Předpokladem dosažení očekávaného efektu, tj. snížení celkového objemu výpočtů ve srovnání s případem, kdy řešíme konstrukci jako jeden celek, je kromě promyšlené strukturalizace konstrukce zejména kvalitní implementace zmíněné techniky statické kondenzace.

## 2.14. Nelineární úlohy

Mnohý problém technické praxe vystihneme podstatně realističtěji, když k jeho popisu použijeme nelineární parciální diferenciální rovnici a případně také nelineární okrajové podmínky. Tak například úloha (2.1) - (2.4) je dobrým modelem stacionární úlohy vedení tepla při relativně nízkých teplotách. Při vyšších teplotách je však už třeba předpokládat, že funkce  $p, q, f, \alpha \neq \beta$  závisejí také na teplotě u. V nestacionární úloze vedení tepla (2.63) - (2.66) je třeba při vyšších teplotách uvážit také závislost funkce c na teplotě u. Poznamenejme, že některé praktické problémy nelze vůbec jako lineární formulovat, a to ani za zjednodušujících, avšak stále ještě realistických předpokladů. V dalším budeme předpokládat, že funkce p, q i f mohou záviset také na prvních parciálních derivacích  $u_x$ a  $u_y$ hledaného řešení  $\boldsymbol{u}.$  Diskretizace metodou konečných prvků probíhá u nelineárních úloh formálně stejně jako u úloh lineárních: ve slabé formulaci nahradíme slabé řešení u MKP-slabou aproximací U. Závislost "dat" p, q, f,  $\alpha$ ,  $\beta$ , c na u (nebo i na  $u_x$ ,  $u_y$ ) způsobí, že soustava algebraických rovnic (2.24) případně soustava obyčejných diferenciálních rovnic (2.68) nebo (2.77') je nelineární (vystupují v ní hodnoty funkcí p, q,  $f, \alpha, \beta, c$  závislé na U (nebo i na  $U_x, U_y$ ) a tedy závislé na  $\Delta$  popřípadě  $\Delta(t)$ ). Postupy, kterými se vypořádáváme s nelinearitou v úlohách stacionárních se obvykle liší od postupů používaných ke zvládnutí nelinearity v nestacionárních úlohách.

#### a) Stacionární úloha

Stejně jako v lineární úloze sestavíme elementární matice  $\mathbf{K}^e$  a elementární vektory  $\mathbf{F}^e$  pro  $e \in \mathcal{T}$  a elementární matice  $\mathbf{K}^S$  a elementární vektory  $\mathbf{F}^S$  pro  $S \in S$ . Nyní však  $\mathbf{K}^e$  a  $\mathbf{F}^e$  budou záviset na  $\Delta^e$  a  $\mathbf{K}^S$  a  $\mathbf{F}^S$  na  $\Delta^S$ . Po sestavení globální matice soustavy  $\mathbf{K}(\Delta)$  a globálního vektoru pravé strany  $\mathbf{F}(\Delta)$  dostaneme nelineární soustavu rovnic

$$\mathbf{R}(\mathbf{\Delta}) = \mathbf{K}(\mathbf{\Delta})\mathbf{\Delta} - \mathbf{F}(\mathbf{\Delta}) = \mathbf{0}$$
(2.187)

pro neznámý vektor parametrů  $\Delta$ . Soustavu (2.187) řešíme některou z metod pro řešení nelineárních soustav rovnic. Vyjdeme z počáteční aproximace  $\Delta^{(0)}$  a zvolenou metodou počítáme další aproximace  $\Delta^{(k)}$ , k = 1, ... tak dlouho, až pro k=K lze  $\Delta^{(K)}$  považovat za dostatečně přesnou aproximaci řešení  $\Delta$ . K určíme tak, aby buď to reziduum  $\mathbf{R}(\Delta^{(K)})$  bylo dostatečně malé, nebo aby byl dostatečně malý rozdíl dvou po sobě jdoucích aproximací  $\Delta^{(K)} - \Delta^{(K-1)}$ , případně aby byly dostatečně malé oba dva tyto vektory.

Nejjednodušší metodou řešení soustavy (2.187) je metoda prosté iterace:

$$\mathbf{K}(\mathbf{\Delta}^{(k)})\mathbf{\Delta}^{(k+1)} = \mathbf{F}(\mathbf{\Delta}^{(k)}).$$
(2.188)

Metoda prosté iterace je velmi jednoduchá, konverguje však spíše výjimečně, a proto její použití je omezené. Nejčastěji se soustava (2.187) řeší *Newtonovou metodou*:

$$\mathbf{H}(\mathbf{\Delta}^{(k)})\mathbf{Y}^{(k)} = -\mathbf{R}(\mathbf{\Delta}^{(k)}), \qquad (2.189)$$

$$\mathbf{\Delta}^{(k+1)} = \mathbf{\Delta}^{(k)} + \mathbf{Y}^{(k)},\tag{2.190}$$

kde 
$$\mathbf{H}(\mathbf{\Delta}) = \{\partial R_i(\mathbf{\Delta})/\partial \Delta_j\}_{i,j=1}^{PN}$$
 (2.191)

je Jacobiova matice zobrazení  $\mathbf{R}(\mathbf{\Delta}) = (R_1(\mathbf{\Delta}), \dots, R_{PN}(\mathbf{\Delta}))^T$ . Globální matici  $\mathbf{H}$  a globální vektor  $\mathbf{R}$  sestavujeme z elementárních matic  $\mathbf{H}^e$  a elementárních vektorů  $\mathbf{R}^e$  pro  $e \in \mathcal{T}$ a elementárních matic  $\mathbf{H}^{S}$  a elementárních vektorů  $\mathbf{R}^{S}$  pro  $S \in \mathcal{S}$ . Předpokládejme, že pracujeme s izoparametrickými prvky zavedenými v odstavci 2.13. Označme

$$\mathbf{R}^{e}(\boldsymbol{\Delta}^{e}) = \mathbf{K}^{e}(\boldsymbol{\Delta}^{e})\boldsymbol{\Delta}^{e} - \mathbf{F}^{e}(\boldsymbol{\Delta}^{e})$$
(2.192)

lokální reziduum na prvku $\boldsymbol{e}$ a

$$\mathbf{H}^{e}(\boldsymbol{\Delta}^{e}) = \left\{ \partial R_{i}^{e}(\boldsymbol{\Delta}^{e}) / \partial \Delta_{j}^{e} \right\}_{i,j=1}^{p_{e}}$$
(2.193)

Jacobiovu matici zobrazení  $\mathbf{R}^{e}(\mathbf{\Delta}^{e})$  ( $R_{i}^{e}(\mathbf{\Delta}^{e})$  je i-tý člen vektoru  $\mathbf{R}^{e}(\mathbf{\Delta}^{e})$ ). Užitím (2.33) a (2.172) - (2.174) dostaneme

$$\mathbf{R}^{e}(\mathbf{\Delta}^{e}) = [\hat{I}^{e}(\hat{p}^{e}\hat{\mathbf{K}}^{pe}) + \hat{I}^{e}(\hat{q}^{e}\hat{\mathbf{K}}^{qe})]\mathbf{\Delta}^{e} - \hat{I}^{e}(\hat{f}^{e}\hat{\mathbf{F}}^{fe}), \qquad (2.194)$$

kde

$$\hat{\mathbf{K}}^{pe} = [\hat{\mathbf{L}}^{e}]^{T} [\hat{\mathbf{G}}^{e}]^{T} \hat{\mathbf{G}}^{e} \hat{\mathbf{L}}^{e} |\det \mathbf{J}^{e}|^{-1}, \qquad (2.195)$$
$$\hat{\mathbf{K}}^{qe} = [\hat{\mathbf{N}}^{e}]^{T} \hat{\mathbf{N}}^{e} |\det \mathbf{J}^{e}|, \qquad (2.196)$$

$$\hat{\mathbf{K}}^{qe} = [\hat{\mathbf{N}}^{e}]^{T} \hat{\mathbf{N}}^{e} |\det \mathbf{J}^{e}|, \qquad (2.196)$$

$$\hat{\mathbf{F}}^{fe} = [\hat{\mathbf{N}}^e]^T |\det \mathbf{J}^e|.$$
(2.197)

Pro Jacobiovu matici $\mathbf{H}^{e}$ zobrazení  $\mathbf{R}^{e}(\mathbf{\Delta}^{e})$  platí

$$\mathbf{H}^{e} = \mathbf{H}^{pe} + \mathbf{H}^{qe} - \mathbf{H}^{fe}, \tag{2.198}$$

kde

$$\mathbf{H}^{pe} = \mathbf{K}^{e1} + \hat{I}^{e} (\hat{\mathbf{K}}^{pe} \boldsymbol{\Delta}^{e} [\frac{\partial \hat{p}^{e}}{\partial \Delta_{1}^{e}}, \dots, \frac{\partial \hat{p}^{e}}{\partial \Delta_{p_{e}}^{e}}]), \qquad (2.199)$$

$$\mathbf{H}^{qe} = \mathbf{K}^{e2} + \hat{I}^{e} (\hat{\mathbf{K}}^{qe} \mathbf{\Delta}^{e} [\frac{\partial \hat{q}^{e}}{\partial \Delta_{1}^{e}}, \dots, \frac{\partial \hat{q}^{e}}{\partial \Delta_{p_{e}}^{e}}]), \qquad (2.200)$$

$$\mathbf{H}^{fe} = \hat{I}^e (\hat{\mathbf{F}}^{fe} [\frac{\partial \hat{f}^e}{\partial \Delta_1^e}, \dots, \frac{\partial \hat{f}^e}{\partial \Delta_{p_e}^e}]).$$
(2.201)

Přitom pro funkci  $g(x, y, U, U_x, U_y)$  definovanou na prvku e je

$$\hat{g}^{e} = \hat{g}^{e}(\xi, \eta, \mathbf{\Delta}^{e}) = g(x^{e}(\xi, \eta), y^{e}(\xi, \eta), \hat{U}^{e}(\xi, \eta, \mathbf{\Delta}^{e}), [\widehat{U_{x}}]^{e}(\xi, \eta, \mathbf{\Delta}^{e}), [\widehat{U_{y}}]^{e}(\xi, \eta, \mathbf{\Delta}^{e}))$$
(2.202)

a z (2.167), (2.162) a (2.163) plyne

$$\hat{U}^{e} = \sum_{i=1}^{p_{e}} \hat{N}_{i}^{e} \Delta_{i}^{e}, \qquad (2.203)$$

$$[\widehat{U_x}]^e = [\det \mathbf{J}^e]^{-1} \sum_{i=1}^{p_e} \left( \frac{\partial \hat{N}_i^e}{\partial \xi} \frac{\partial y^e}{\partial \eta} - \frac{\partial \hat{N}_i^e}{\partial \eta} \frac{\partial y^e}{\partial \xi} \right) \Delta_i^e,$$
(2.204)

$$[\widehat{U_y}]^e = [\det \mathbf{J}^e]^{-1} \sum_{i=1}^{p_e} \left( -\frac{\partial \hat{N}_i^e}{\partial \xi} \frac{\partial x^e}{\partial \eta} + \frac{\partial \hat{N}_i^e}{\partial \eta} \frac{\partial x^e}{\partial \xi} \right) \Delta_i^e.$$
(2.205)

Podobně označme

$$\mathbf{R}^{S}(\mathbf{\Delta}^{S}) = \mathbf{K}^{S}(\mathbf{\Delta}^{S})\mathbf{\Delta}^{S} - \mathbf{F}^{S}(\mathbf{\Delta}^{S})$$
(2.206)

lokální reziduum na straně ${\cal S}$ a

$$\mathbf{H}^{S}(\mathbf{\Delta}^{S}) = \left\{ \partial R_{i}^{S}(\mathbf{\Delta}^{S}) / \partial \Delta_{j}^{S} \right\}_{i,j=1}^{p_{S}}$$
(2.207)

Jacobiovu matici zobrazení  $\mathbf{R}^S(\mathbf{\Delta}^S)$  ( $R_i^S(\mathbf{\Delta}^S)$  je i-tý člen vektoru  $\mathbf{R}^S(\mathbf{\Delta}^S)$ ). Užitím (2.180) a (2.181) dostaneme

$$\mathbf{R}^{S}(\mathbf{\Delta}^{S}) = \hat{I}^{S}(\hat{\alpha}^{IS}\hat{\mathbf{K}}^{\alpha S})\mathbf{\Delta}^{S} - \hat{I}^{S}(\hat{\beta}^{IS}\hat{\mathbf{F}}^{\beta S}), \qquad (2.208)$$

kde

$$\hat{\mathbf{K}}^{\alpha S} = [\hat{\mathbf{N}}^S]^T \hat{\mathbf{N}}^S J^S, \qquad (2.209)$$

$$\hat{\mathbf{F}}^{\beta S} = [\hat{\mathbf{N}}^S]^T J^S. \tag{2.210}$$

Pro Jacobiovu matici $\mathbf{H}^{S}$ zobrazení  $\mathbf{R}^{S}(\mathbf{\Delta}^{S})$ platí

$$\mathbf{H}^{S} = \mathbf{H}^{\alpha S} - \mathbf{H}^{\beta S},\tag{2.211}$$

kde

$$\mathbf{H}^{\alpha S} = \mathbf{K}^{S} + \hat{I}^{S} (\hat{\mathbf{K}}^{\alpha S} \boldsymbol{\Delta}^{S} [\frac{\partial \hat{\alpha}^{IS}}{\partial \Delta_{1}^{S}}, \dots, \frac{\partial \hat{\alpha}^{IS}}{\partial \Delta_{p_{S}}^{S}}]), \qquad (2.212)$$

$$\mathbf{H}^{\beta S} = \hat{I}^{S} (\hat{\mathbf{F}}^{\beta S} [\frac{\partial \hat{\beta}^{IS}}{\partial \Delta_{1}^{S}}, \dots, \frac{\partial \hat{\beta}^{IS}}{\partial \Delta_{p_{S}}^{S}}]).$$
(2.213)

Přitom z (2.159) a (2.156) plyne

$$\hat{\alpha}^{IS}(\xi, \mathbf{\Delta}^{S}) = \sum_{i=1}^{p_{S}} \alpha(x_{i}^{S}, y_{i}^{S}, \Delta_{i}^{S}) \hat{N}_{i}^{S}(\xi), \qquad (2.214)$$

$$\hat{\beta}^{IS}(\xi, \mathbf{\Delta}^S) = \sum_{i=1}^{p_S} \beta(x_i^S, y_i^S, \Delta_i^S) \hat{N}_i^S(\xi).$$
(2.215)

Speciálně pro prvek T3 a elementární matice a vektory určené v lineárním případě vztahy (2.40), (2.44), (2.49) a (2.54) jsou matice  $\mathbf{H}^{pe}$ ,  $\mathbf{H}^{qe}$ ,  $\mathbf{H}^{fe}$ ,  $\mathbf{H}^{\alpha S}$  a  $\mathbf{H}^{\beta S}$  tvaru

$$\mathbf{H}^{pe} = \mathbf{K}^{e1} + \mathbf{K}^{pe} \boldsymbol{\Delta}^{e} [\frac{\partial p(P_{T}^{e})}{\partial \Delta_{1}^{e}}, \frac{\partial p(P_{T}^{e})}{\partial \Delta_{2}^{e}}, \frac{\partial p(P_{T}^{e})}{\partial \Delta_{3}^{e}}], \qquad (2.199')$$

kde

$$\mathbf{K}^{pe} = \frac{1}{2|d^e|} \begin{pmatrix} -r^e - s^e & r^e & s^e \\ r^e & -r^e - t^e & t^e \\ s^e & t^e & -s^e - t^e \end{pmatrix}$$

a kde  $p(P_T^e)$  je hodnota funkce p v těžišti  $P_T^e$  prvku e,

$$\mathbf{H}^{qe} = \mathbf{K}^{e2} + \frac{1}{6} \left| d^e \right| \mathbf{\Delta}^e \left\{ \frac{\partial q(P_i^e)}{\partial \Delta_j^e} \right\}_{i,j=1}^3,$$
(2.200')

kde  $q(P_i^e)$  je hodnota funkce q ve vrcholu  $P_i^e$  prvku e,

$$\mathbf{H}^{fe} = \frac{1}{6} \left| d^e \right| \left\{ \frac{\partial f(P_i^e)}{\partial \Delta_j^e} \right\}_{i,j=1}^3, \tag{2.201'}$$

kde  $f(P_i^e)$  je hodnota funkce f ve vrcholu  $P_i^e$  prvku e,

$$\mathbf{H}^{\alpha S} = \mathbf{K}^{S} + \frac{1}{2} d^{S} \boldsymbol{\Delta}^{S} \left\{ \frac{\partial \alpha(P_{i}^{S})}{\partial \Delta_{j}^{S}} \right\}_{i,j=1}^{2}, \qquad (2.212')$$

kde  $\alpha(P_i^S)$  je hodnota funkce  $\alpha$  ve uzlu  $P_i^S$  strany S,

$$\mathbf{H}^{\beta S} = \frac{1}{2} d^{S} \left\{ \frac{\partial \beta(P_{i}^{S})}{\partial \Delta_{j}^{S}} \right\}_{i,j=1}^{2}, \qquad (2.213')$$

kde  $\beta(P_i^S)$  je hodnota funkce  $\beta$  ve uzlu  $P_i^S$  strany S.

V úloze vedení tepla funkce  $p, q, f, \alpha$  a  $\beta$  závisejí na prvku e obvykle pouze na teplotě u. V tom případě

$$\frac{\partial p(P_T^e)}{\partial \Delta_j^e} = \frac{1}{3}p'(\frac{1}{3}[\Delta_1^e + \Delta_2^e + \Delta_3^e]), \quad \frac{\partial q(P_i^e)}{\partial \Delta_j^e} = q'(\Delta_i^e)\delta_{ij},$$
$$\frac{\partial f(P_i^e)}{\partial \Delta_j^e} = f'(\Delta_i^e)\delta_{ij}, \quad \frac{\partial \alpha(P_i^S)}{\partial \Delta_j^S} = \alpha'(\Delta_i^S)\delta_{ij}, \quad \frac{\partial \beta(P_i^S)}{\partial \Delta_j^S} = \beta'(\Delta_i^S)\delta_{ij},$$

kde  $\delta_{ii} = 1$  a  $\delta_{ij} = 0$  pro  $i \neq j$ .

Jacobiovu matici  $\mathbf{H}^{s}(\Delta^{s})$  zobrazení  $\mathbf{R}^{s}(\Delta^{s})$ , s = e, S, lze spočítat také jen přibližně. Užitím jednoduché formule numerického derivování spočteme *i*-tý sloupec matice  $\mathbf{H}^{s}(\Delta^{s})$  například ze vzorce

$$\frac{\partial \mathbf{R}^{s}(\boldsymbol{\Delta}^{s})}{\partial \Delta_{i}^{s}} = \frac{\mathbf{R}^{s}(\Delta_{1}^{s}, \dots, \Delta_{i}^{s} + \varepsilon, \dots, \Delta_{ps}^{s}) - \mathbf{R}^{s}(\Delta_{1}^{s}, \dots, \Delta_{i}^{s}, \dots, \Delta_{ps}^{s})}{\varepsilon},$$

kde $\varepsilon$ je vhodně zvolené malé kladné číslo.

Globální matici  $\mathbf{H}=\mathbf{H}(\mathbf{\Delta}^{(k)})$  a globální vektor  $\mathbf{R}=\mathbf{R}(\mathbf{\Delta}^{(k)})$  sestavíme modifikací eliminačního algoritmu uvedeného v části c) odstavce 2.7. Jediný podstatný rozdíl spočívá v tom, že prvky elementárních matic  $\mathbf{H}^e$  resp.  $\mathbf{H}^S$  přispívají pouze do globální matice. Konkrétně, je-li  $h_{ij}^e$  resp.  $h_{ij}^S$  prvek elementární matice  $\mathbf{H}^e$  resp.  $\mathbf{H}^S$  a jestliže lokálním indexům *i* a *j* příslušejí kódová čísla *I* a *J*, pak je-li *I* < 0 nebo *J* < 0, prvek  $h_{ij}^e$  resp.  $h_{ij}^S$  neovlivní ani globální matici **H** ani globální vektor **R**. Jinými slovy, zpracovávají se jen takové prvky elementárních matic a vektorů, jejimž indexům příslušejí kladná kódová čísla: pro *I* > 0 a *J* > 0 se  $h_{ij}^e$  resp.  $h_{ij}^S$  se přičte k  $h_{IJ}$  a pro *I* > 0 se  $R_i^e$  resp.  $R_i^S$  se přičte k  $R_I$  ( $h_{IJ}$  jsou prvky matice **H** a  $R_I$  jsou prvky vektoru **R**). Poznamenejme, že globální matice **H** je obecně nesymetrická (jak je zřejmé například z tvaru (2.199')).

Je známo, že Newtonova metoda s výjimkou speciálních případů konverguje jen tehdy, je-li počáteční aproximace  $\Delta^{(0)}$  "dostatečně blízká" řešení  $\Delta$ . Abychom překonali tento nedostatek Newtonovy metody, používá se její modifikace založená na strategii *tlumení*. V tzv. *tlumené Newtonově metodě* se místo soustavy (2.189) řeší soustava

$$\mathbf{H}(\mathbf{\Delta}^{(k)})\mathbf{Y}^{(k)} = -\omega\mathbf{R}(\mathbf{\Delta}^{(k)}),\tag{2.216}$$

kde  $\omega < 1$  je vhodně zvolený tlumící faktor zajišťující pokles absolutní hodnoty rezidua:

$$\|\mathbf{R}(\mathbf{\Delta}^{(k+1)})\| < \|\mathbf{R}(\mathbf{\Delta}^{(k)})\|,$$

 $\|\cdot\|$  označuje nějakou vektorovou normu, například délku vektoru. Jednu z možností výběru tlumicího faktoru navrhli Armijo a Goldstein (viz [19], také [12]): za  $\omega$  doporučují vzít největší z čísel 1,  $\frac{1}{2}$ ,  $\frac{1}{4}$ , ..., pro které platí

$$\|\mathbf{R}(\mathbf{\Delta}^{(k+1)})\| < (1 - \frac{\omega}{2}) \|\mathbf{R}(\mathbf{\Delta}^{(k)})\|.$$

$$(2.217)$$

 $\omega$  je tedy zvoleno tak, aby reziduum pokleslo alespoň  $1 - \frac{\omega}{2}$  krát. Významnou vlastností této strategie je ta skutečnost, že pokud  $\Delta^{(k)}$  konverguje k řešení  $\Delta$ , pak  $\omega \to 1$ , a tedy v blízkosti řešení je dosaženo kvadratického řádu konvergence jako u standardní Newtonovy metody. Jestliže však podmínku (2.217) nelze splnit pro  $\omega > \omega_0$ , kde  $\omega_0$  je zvolená "dostatečně malá" konstanta, musíme bohužel konstatovat, že ani tlumená Newtonova metoda nekonverguje – počáteční aproximace  $\Delta^{(0)}$  je prostě příliš špatná. Tento problém lze obvykle překonat metodou parametrizace, kterou popíšeme později.

Lineární soustava rovnic (2.216) se často řeší iterační metodou, neboť zejména při menší nelinearitě je řešení  $\mathbf{Y}^{(k)}$  této soustavy blízké **0**, takže známe dobrou počáteční aproximaci pro iterační výpočet. Zvláště výhodné je použití zobecněné Richardsonovy metody (zkráceně GR-metody) eventuálně urychlené například pomocí zobecněné metody sdružených gradientů, viz [13]. V tomto textu se omezíme na použití "čisté" GR-metody. Pro lineární soustavu rovnic  $\mathbf{Ay} = \mathbf{b}$  lze GR-metodu popsat takto:

- 1)  $\mathbf{y}^{(0)}$  je počáteční aproximace,  $\mathbf{r}^{(0)} = \mathbf{b} \mathbf{A}\mathbf{y}^{(0)};$
- 2) pro j=1,...,J počítej:  $\mathbf{Md}^{(j)} = \mathbf{r}^{(j-1)},$   $\mathbf{y}^{(j)} = \mathbf{y}^{(j-1)} + \mathbf{d}^{(j)},$  $\mathbf{r}^{(j)} = \mathbf{r}^{(j-1)} - \mathbf{Ad}^{(j)},$

kde  $\mathbf{M}$  je vhodná iterační matice splňující tyto 2 požadavky:

- 1) M je dobrá aproximace matice A,
- 2) řešení soustavy rovnic s maticí M je "laciné".

Všimněte si, že pro  $\mathbf{M} = \mathbf{A}$  je  $\mathbf{y}^{(1)}$  řešením soustavy  $\mathbf{A}\mathbf{y} = \mathbf{b}$ .

Ukažme si nyní, jak lze vhodně aplikovat GR-metodu na řešení rovnice (2.216). Nechť  $\mathcal{H}^{(k)}$  je nějaká aproximace matice  $\mathbf{H}(\mathbf{\Delta}^{(k)})$  a  $\mathcal{L}^{(k)}\mathcal{U}^{(k)} = \mathcal{H}^{(k)}$  je její LU-rozklad na dolní trojúhelníkovou matici  $\mathcal{L}^{(k)}$  a horní trojúhelníkovou matici  $\mathcal{U}^{(k)}$ . Obvykle se volí

$$\mathfrak{H}^{(k)} = \mathbf{H}(\mathbf{\Delta}^{(l)}) \quad \text{pro vhodné } l = l(k) \le k.$$
(2.218)

Doporučený způsob výběru parametru l(k) uvedeme později.  $\mathbf{Y}^{(k)}$  počítáme GR-metodou takto:

$$\mathbf{y}^{(0)} = \mathbf{0}, \quad \mathbf{r}^{(0)} = -\omega \mathbf{R}(\mathbf{\Delta}^{(k)}), \\
 \mathbf{L}^{(k)} \mathbf{U}^{(k)} \mathbf{d}^{(j)} = \mathbf{r}^{(j-1)}, \\
 \mathbf{y}^{(j)} = \mathbf{y}^{(j-1)} + \mathbf{d}^{(j)}, \\
 \mathbf{r}^{(j)} = \mathbf{r}^{(j-1)} - \mathbf{H}(\mathbf{\Delta}^{(k)}) \mathbf{d}^{(j)}
 \right\} \quad j = 1, \dots, J,$$

$$(2.219)$$

$$\mathbf{Y}^{(k)} = \mathbf{y}^{(J)}.$$

Počet kroků J volíme malý. V dalším předpokládejme, že matice  $\mathbf{\mathcal{H}}^{(k)}$  je určena vztahem (2.218). Pak pro J=1 dostáváme známou modifikaci Newtonovy metody, v níž je  $\mathbf{Y}^{(k)}$  určeno vztahem

$$\mathbf{H}(\mathbf{\Delta}^{(l)})\mathbf{Y}^{(k)} = -\omega\mathbf{R}(\mathbf{\Delta}^{(k)}).$$

Věnujme se nyní volbě l(k). Pro l(k) = 0 je zřejmě  $\mathcal{H}^{(k)} = \mathbf{H}(\mathbf{\Delta}^{(0)})$  pro všechna k. V tom případě stačí v průběhu celého řešení rovnice (2.187) provést jen jediný LU-rozklad, a to právě matice  $\mathbf{H}(\mathbf{\Delta}^{(0)})$ . Pro k > 0 pak už provádíme jen "laciné" řešení soustav rovnic se stále stejnou dolní a horní trojúhelníkovou maticí. U této modifikace Newtonovy metody však lze očekávat jen pomalou nebo dokonce vůbec žádnou konvergenci. Proto se obvykle postupuje tak, že LU-rozklad provádíme častěji, například pro  $k = 0, m, 2m, \ldots$ , kde mje zvolené přirozené číslo. Pak  $l(k) = m[k \div m]$ , kde symbol  $\div$  značí celočíselné dělení. Tak například pro m = 1 je l(k) = k, pro m = 2 je l(0) = 0, l(1) = 0, l(2) = 2, l(3) = 2, l(4) = 4, l(5) = 4 atd.

Jak metodu prosté iterace tak i tlumenou Newtonovu metodu je vhodné, a v zájmu dosažení konvergence často dokonce nutné, kombinovat s metodou parametrizace, viz [?]. K úloze  $\mathbf{R}(\mathbf{\Delta}) = \mathbf{0}$  přiřadíme třídu parametrických úloh  $\mathcal{R}(\mathbf{\Delta}, s) = \mathbf{0}$  spojitě závislých na parametru  $s \in \langle 0, 1 \rangle$  tak, aby  $\mathcal{R}(\mathbf{\Delta}, 1) = \mathbf{R}(\mathbf{\Delta})$  a aby úloha  $\mathcal{R}(\mathbf{\Delta}, 0) = \mathbf{0}$  byla jen slabě nelineární nebo dokonce lineární. Zvolíme přiměřeně jemné dělení  $0 = s_0 < s_1 < \cdots < s_Q = 1$  a řešíme postupně úlohy  $\mathcal{R}(\mathbf{\Delta}, s_q) = \mathbf{0}$  pro  $q = 0, \ldots, Q$ . Řešení těchto úloh označme  $\mathbf{\Delta}^{(q)}$ . Řešení  $\mathbf{\Delta}^{(0)}$  slabě nelineární úlohy získáme snadno. Pro q > 0 jsou již sice příslušné úlohy silněji nelineární, při jejich řešení však můžeme vyjít z velmi dobrých počátečních aproximací  $\mathbf{\Delta}^{(q,0)} = \mathbf{\Delta}^{(q-1)}$ .

Speciálním případem metody parametrizace je tzv. *přírustková metoda*, běžně používaná například při řešení úloh nelineární pružnosti a plasticity. Ve standardní přírustkové metodě se předpokládá, že "zatížení"  $\mathbf{F}(\mathbf{\Delta}) \equiv \mathbf{F}$  na řešení  $\mathbf{\Delta}$  nezávisí, a že "míra nelinearity" matice  $\mathbf{K}(\mathbf{\Delta})$  závisí na "velikosti"  $\|\mathbf{F}\|$  zatížení  $\mathbf{F}$ . Parametrickou úlohu  $\Re(\mathbf{\Delta}, s_q) = \mathbf{0}$  proto volíme ve tvaru

$$\mathbf{K}(\mathbf{\Delta})\mathbf{\Delta} = \mathbf{F}^{(q)}, \quad \text{kde} \quad \mathbf{F}^{(q)} = \mathbf{F}^{(0)} + s_q(\mathbf{F} - \mathbf{F}^{(0)}), \tag{2.220}$$

a stejně jako dříve předpokládáme, že úlohu  $\Re(\Delta, 0) = \mathbf{0}$  příslušnou "zatížení"  $\mathbf{F}^{(0)}$  umíme snadno vyřešit. Metodu označujeme jako přírustkovou proto, že řešení  $\Delta^{(q)}$  dostaneme z předchozího řešení  $\Delta^{(q-1)}$  "přítížením" o přírustek zatížení  $\Delta \mathbf{F}^{(q)} = \mathbf{F}^{(q)} - \mathbf{F}^{(q-1)}$ .

### b) Nestacionární úloha

Omezíme se na nelineární nestacionární úlohu vedení tepla. Pak matice **C**, **K** a vektor **F** v úloze (2.68) jsou závislé na řešení  $\Delta(t)$ . Užitím  $\theta$ -metody opět dostaneme soustavu rovnic (2.69). Ta je však nyní nelineární, neboť matice  $\mathbf{C}^{i+\theta}$ ,  $\mathbf{K}^{i+\theta}$  a vektor  $\mathbf{F}^{i+\theta}$  závisejí na  $\Delta^{i+\theta} = \Delta^i + \theta(\Delta^{i+1} - \Delta^i)$ :

$$\mathbf{C}^{i+\theta} = \mathbf{C}(t_{i+\theta}, \mathbf{\Delta}^{i+\theta}), \quad \mathbf{K}^{i+\theta} = \mathbf{K}(t_{i+\theta}, \mathbf{\Delta}^{i+\theta}), \quad \mathbf{F}^{i+\theta} = \mathbf{F}(t_{i+\theta}, \mathbf{\Delta}^{i+\theta}).$$
(2.69f')

 $\Delta^{i+1}$  je tedy řešením nelineární soustavy rovnic

$$\mathbf{R}^{i+1} \equiv \mathbf{R}(\mathbf{\Delta}^{i+\theta}, \mathbf{\Delta}^{i+1}) = \mathbf{0}, \tag{2.221}$$

kde

$$\mathbf{R}(\mathbf{w}, \boldsymbol{\Delta}) = [\mathbf{C}(t_{i+\theta}, \mathbf{w}) + \Delta t_i \theta \mathbf{K}(t_{i+\theta}, \mathbf{w})] \boldsymbol{\Delta} - \\ - [\mathbf{C}(t_{i+\theta}, \mathbf{w}) - \Delta t_i (1-\theta) \mathbf{K}(t_{i+\theta}, \mathbf{w})] \boldsymbol{\Delta}^i - \Delta t_i \mathbf{F}(t_{i+\theta}, \mathbf{w}).$$
(2.222)

Nelineární rovnici (2.221) lze *linearizovat*: z lineární soustavy rovnic  $\mathbf{R}(\mathbf{w}, \mathbf{Y}) = \mathbf{0}$ , kde

$$\mathbf{w} = \begin{cases} \mathbf{\Delta}^{i} \quad \text{pro } \theta \neq \frac{1}{2} \text{ nebo } i = 0, \\ \frac{3}{2} \mathbf{\Delta}^{i} - \frac{1}{2} \mathbf{\Delta}^{i-1} \quad \text{pro } \theta = \frac{1}{2} \text{ a } i > 0, \end{cases}$$
(2.223)

spočteme **Y** a položíme  $\Delta^{i+1} = \mathbf{Y}$ . Linearizované řešení lze případně vylepšit provedením několika kroků metody prosté iterace: zvolíme  $\mathbf{Y}^{(0)} = \mathbf{Y}$ , z lineárních soustav rovnic

$$\mathbf{R}(\mathbf{\Delta}^{i} + \theta(\mathbf{Y}^{(j)} - \mathbf{\Delta}^{i}), \mathbf{Y}^{(j+1)}) = \mathbf{0}$$
(2.224)

počítáme postupně  $\mathbf{Y}^{(j+1)}$ ,  $j = 0, \ldots, J-1$ , a nakonec položíme  $\Delta^{i+1} = \mathbf{Y}^{(J)}$ . Uvedená stategie bude úspěšná, je-li nelinearita poměrně slabá a časový krok  $\Delta t_i$  dosti krátký. Při silné nelinearitě, která je typická například u úloh se změnou fáze, nezbude než řešit rovnici (2.221) Newtonovou metodou, případně některou z jejích modifikací uvedených v části a) tohoto odstavce. Globální rezidum  $\mathbf{R}^{i+1}$  a jeho Jacobiovu matici  $\mathbf{H}^{i+1}$  opět sestavujeme z lokálních reziduí  $\mathbf{R}^{i+1,e}$  a jejich Jacobiových matic  $\mathbf{H}^{i+1,e}$  pro  $e \in \mathcal{T}$  a z lokálních reziduí  $\mathbf{R}^{i+1,S}$  a jejich Jacobiových matic  $\mathbf{H}^{i+1,S}$  pro  $S \in S$ . Jedním ze sčítanců vytvářejících matici  $\mathbf{H}^{i+1,e}$  je také matice  $\mathbf{H}^{i+1,ce}$  příslušná funkci c,

$$\mathbf{H}^{i+1,ce} = \left\{ \frac{\partial [\mathbf{C}^{i+\theta,e} \mathbf{\Delta}^{i+1,e}]_r}{\partial \Delta_s^{i+1,e}} \right\}_{r,s=1}^{p_e}$$

kde  $\mathbf{C}^{i+\theta,e} = \mathbf{C}^{e}(t_{i+\theta}, \mathbf{\Delta}^{i+\theta,e})$ , přičemž  $\mathbf{\Delta}^{i+\theta,e} = \mathbf{\Delta}^{i,e} + \theta(\mathbf{\Delta}^{i+1,e} - \mathbf{\Delta}^{i,e})$  a  $\mathbf{\Delta}^{j,e}$  jsou aproximace teplot  $\mathbf{\Delta}^{e}(t_{j})$  v uzlech prvku e v čase  $t_{j}, j = i, i+1$ . V lineárním případě pro prvek T3 je matice  $\mathbf{C}^{e}$  uvedena v odstavci 2.10 a pro izoparametrické prvky snadno odvodíme

$$\mathbf{C}^e = I^e([\mathbf{N}^e]^T c \, \mathbf{N}^e) = \hat{I}^e([\hat{\mathbf{N}}^e]^T \hat{c}^e \, \hat{\mathbf{N}}^e |\det \mathbf{J}^e|).$$

Proto

$$\mathbf{H}^{i+1,ce} = \mathbf{C}^{i+\theta,e} + \hat{I}^e (\hat{\mathbf{C}}^{ce} \mathbf{\Delta}^{i+1,e} [\frac{\partial \hat{c}^{i+\theta,e}}{\partial \Delta_1^{i+1,e}}, \dots, \frac{\partial \hat{c}^{i+\theta,e}}{\partial \Delta_{p_e}^{i+1,e}}]),$$

kde matice  $\hat{\mathbf{C}}^{ce} = \hat{\mathbf{K}}^{qe}$  je určena vztahem (2.196) a  $\hat{c}^{i+\theta,e}$  je hodnota funkce c(x, y, t, u) pro  $x = x^e(\xi, \eta), \ y = y^e(\xi, \eta), \ t = t_{i+\theta}$  a  $u = \sum_{r=1}^{p_e} \Delta_r^{i+\theta,e} \hat{N}_r^e(\xi, \eta)$ , přičemž  $\Delta_r^{i+\theta,e}$  jsou složky vektoru  $\mathbf{\Delta}^{i+\theta,e}$ . Pro prvek T3 je

$$\mathbf{H}^{i+1,ce} = \frac{1}{6} \left| d^e \right| \left\{ \frac{\partial [c_r^{i+\theta,e} \Delta_r^{i+1,e}]}{\partial \Delta_s^{i+1,e}} \right\}_{r,s=1}^3$$

kde  $c_r^{i+\theta,e} = c(x_r^e, y_r^e, t_{i+\theta}, \Delta_r^{i+\theta,e})$ . Matice  $\mathbf{H}^{i+1,ce}$  je diagonální a jestliže funkce c závisí na prvku e pouze na teplotě u, pak její diagonální prvky jsou

$$h_{rr}^{i+1,ce} = \frac{1}{6} |d^e| \left[ c(\Delta_r^{i+\theta,e}) + \theta \Delta_r^{i+1,e} c'(\Delta_r^{i+\theta,e}) \right], \quad r = 1, 2, 3.$$

### 2.15. Konvektivně-difúzní úlohy s dominantní konvekcí

Konvektivně-difúzní úlohy s dominantní konvekcí (stručně KDÚsDK) samy o sobě, nebo jako podstatná součást úloh složitějších, jsou předmětem trvalého zájmu inženýrů i matematiků. Byla vymyšlena celá řada nejdříve jednoduchých a postupně značně rafinovaných metod a nové metody stále vznikají. Jde evidentně o živou problematiku, která je stále ve vývoji. Řešení KDÚsDK je věnováno nesmírné množství odborných prací, z nichž mnohé lze najít například v knize [16]. My se v tomto textu omezíme na dvě základní techniky používané při řešení KDÚsDK: pro stacionární úlohu uvedeme upwind metodu a pro nestacionární úlohu metodu charakteristik. Při řešení KDÚsDK se jako základní diskretizační technika stále značně používá diferenční metoda nebo metoda konečných objemů na pravidelných sítích. Metoda konečných prvků se prosazovala poměrně obtížně, neboť specifické techniky typu upwind nebo charakteristiky se "roubují" na metodu konečných prvků obtížněji a nezřídka také méně efektivně. My však v duchu tohoto učebního textu zůstaneme věrni metodě konečných prvků, jen při upwind technice si vypomůžeme metodou konečných objemů. Obě techniky, tj. upwind a charakteristiky, vyložíme v nejjednodušší formě tak, aby vynikly jejich podstatné rysy. Základní myšlenky obou metod lze řadou důmyslných postupů výrazně zefektivnit. Jejich rozmanitá vylepšení zde však úmyslně popisovat nebudeme, neboť chceme udržet přiměřený rozsah tohoto odstavce a také nechceme čtenáře mást těžko sledovatelnými technickými detaily.

#### a) Stacionární úloha, upwind metoda

Hledejme funkci u(x, y) splňující podmínky (2.1), vyhovující diferenciální rovnici

$$\nabla \cdot [\mathbf{r}u] - \nabla \cdot [p \,\nabla u] + qu = f \qquad \forall \,\Omega$$
(2.225)

a splňující okrajové podmínky (2.3) a (2.4).

Uloha popisuje například *transport látky* (chemické příměsi) v proudovém poli (tekutině). V tom případě je u(x, y) hmotnost příměsi v jednotkovém objemu tekutiny,  $\mathbf{r} = \rho \mathbf{v}$  je součin hustoty  $\rho(x, y)$  a rychlosti  $\mathbf{v} = (v_1, v_2)$  tekutiny s x-ovou složkou  $v_1(x, y)$  a y-ovou složkou  $v_2(x, y)$ , takže  $r_1 = \rho v_1$  je x-ová a  $r_2 = \rho v_2 y$ -ová složka vektoru **r** měrné objemové hybnosti, p(x, y) je koeficient difúze a f(x, y) - q(x, y)u(x, y) je objemový zdroj příměsi. Tatáž úloha popisuje také *transport entalpie* v tekutině. Pak u(x, y) je entalpie (entalpie u a teplota T jsou svázány vztahem du = c dT, kde c je tepelná kapacita), **r** je opět roven součinu hustoty  $\rho$  a rychlosti **v**,  $p(x, y) = \lambda/c$  je podíl tepelné vodivosti  $\lambda$  a tepelné kapacity c a f(x, y) - q(x, y)u(x, y) je objemový výkon zdrojů energie. Obecně lze úlohu (2.1), (2.225), (2.3) a (2.4) považovat za matematický popis zachování jisté fyzikální veličiny, která je ovlivňována difúzí, reprezentovanou difúzním členem  $-\nabla \cdot [p \nabla u]$ , konvekcí, reprezentovanou konvektivním členem  $\nabla \cdot [\mathbf{r}u]$  a generací případně absorpcí, reprezentovanou zdrojovým členem f - qu.

Dále budeme předpokládat, že vektor  $\mathbf{r} = \rho \mathbf{v}$  splňuje tzv. rovnici kontinuity

$$\nabla \cdot \mathbf{r} \equiv \frac{\partial r_1}{\partial x} + \frac{\partial r_2}{\partial y} = \frac{\partial (\varrho v_1)}{\partial x} + \frac{\partial (\varrho v_2)}{\partial y} = 0.$$
(2.226)

Pak  $\nabla \cdot [\mathbf{r}u] = \mathbf{r} \cdot \nabla u = r_1 u_x + r_2 u_y$  a rovnici (2.225) lze zapsat v ekvivalentním tvaru

$$-\nabla \cdot [p\,\nabla u] + r_1 \frac{\partial u}{\partial x} + r_2 \frac{\partial u}{\partial y} + qu = f \qquad \text{v} \ \Omega.$$
(2.225')

Abychom zaručili jednoznačnou existenci klasického řešení konvektivně-difúzní úlohy, doplňme soubor podmínek (2.5a) - (2.5d) o podmínku

$$\Gamma_{-} = \{ (x, y) \in \partial\Omega \,|\, \mathbf{n}(x, y) \cdot \mathbf{r}(x, y) < 0 \} \subset \Gamma_{1}$$
(2.5e)

zajišťující, aby na části  $\Gamma_{-}$  hranice, kterou do oblasti  $\Omega$  tekutina vtéká, byla zkoumaná veličina u známa. Navíc předpokládejme  $r_1, r_2 \in C^1(\overline{\Omega})$ .

Míru vlivu konvekce a difúze na transport zkoumané veličiny vyjadřuje tzv. globální Reynoldsovo číslo  $R = ||\mathbf{r}||\ell/p$ , kde  $||\mathbf{r}||$  je délka vektoru měrné objemové hybnosti  $\mathbf{r}$ ,  $\ell$  je charakteristický rozměr oblasti  $\Omega$  a p je koeficient difúze. Pro "velká" Reynoldova čísla R (ve skutečnosti jde o hodnoty funkce R(x, y)) hovoříme o konvektivně-difúzních úlohách s dominantní konvekcí: transport je rozhodujícím způsobem ovlivňován konvekcí, vliv difúze je okrajový.

Slabou formulaci odvodíme obvyklým způsobem a obdržíme úlohu

najít 
$$u \in W$$
 splňující  $a(u, v) + b(u, v) = L(v) \quad \forall v \in V,$ 

$$(2.227)$$

kde a(u, v) je určeno vztahem (2.9), L(v) vztahem (2.10) a b(u, v) je bilineární forma

$$b(u,v) = \int_{\Omega} \nabla \cdot [\mathbf{r}u] v \, \mathrm{d}x \, \mathrm{d}y.$$
(2.228)

Diskretizaci proveď me užitím prvku T3, takže a(u, v) aproximujeme pomocí  $a_h(u, v)$ , viz (2.19), a L(v) pomocí  $L_h(v)$ , viz (2.20). Aproximaci konvektivního členu musíme provést obezřetně. Označme

$$R_e = \frac{\|\mathbf{r}\|h}{p}\Big|_e \tag{2.229}$$

tzv. lokální Reynoldsovo číslo. V (2.229) je  $h=h_e$  charakteristický rozměr prvku e. Pro jednoduchost předpokládejme, že  $h_e$  je nejdelší strana trojúhelníka e. Způsob diskretizace b(u, v) závisí na velikosti  $R_e$ .

Abychom si ozřejmili úskalí, která mohou nevhodnou diskretizací členu b(u, v) vzniknout, zabývejme se jednorozměrnou modelovou konvektivně-difúzní úlohou

$$-pu'' + ru' = 0 \quad \text{pro} \quad x \in (0, 1), \quad u(0) = \alpha, \ u(1) = \beta,$$
(2.230)

kde  $p > 0, r \neq 0, \alpha$  a  $\beta$  jsou konstanty. Přesné řešení je

$$u(x) = \alpha + (\beta - \alpha) \frac{1 - \exp[\frac{r}{p}x]}{1 - \exp[\frac{r}{p}]}.$$
(2.231)

Interval (0,1) rozdělíme na N stejných dílků délky h=1/N a úlohu (2.230) diskretizujeme. Metoda konečných prvků aproximující klasické řešení u pomocí funkce U po částech lineární vede na soustavu rovnic

$$p \frac{-U_{i+1} + 2U_i - U_{i-1}}{h^2} + r \frac{U_{i+1} - U_{i-1}}{2h} = 0, \quad U_0 = \alpha, \ U_N = \beta.$$
(2.232)

Tutéž soustavu rovnic obdržíme, když úlohu (2.230) diskretizujeme diferenční metodou, v níž difúzní člen-pu''aproximujeme standardně vztahem

$$-pu''|_{x=x_i} \approx p \, \frac{-U_{i+1} + 2U_i - U_{i-1}}{h^2}$$

a konvektivní člen ru' aproximujeme rovněž standardně užitím centrální diference

$$ru'|_{x=x_i} \approx r \, \frac{U_{i+1} - U_{i-1}}{2h}.$$
 (2.233)

Jak se snadno přesvědčíme, řešení úlohy (2.232) pro  $R_e = rh/p \neq 2$  je

$$U_i = A + B \left[ \frac{1 + \frac{1}{2}R_e}{1 - \frac{1}{2}R_e} \right]^i,$$
(2.234)

kde konstanty A a B jsou určeny okrajovými podmínkami. Pro  $|R_e| > 2$  zřejmě  $U_i$  osciluje, což je v rozporu s monotónností přesného řešení u, viz (2.231), přičemž "velikost" oscilací je přímo úměrná  $|\beta - \alpha|$  a  $|R_e|$ . Nežádoucí oscilace nenastanou, když konvektivní člen aproximujeme pomocí jednostranné diference:

$$\begin{aligned} ru|_{x=x_{i}} &\approx r \, \frac{U_{i} - U_{i-1}}{h} = |r| \, \frac{U_{i} - U_{i-1}}{h} \quad \text{pro } r \ge 0, \\ ru|_{x=x_{i}} &\approx r \, \frac{U_{i+1} - U_{i}}{h} = |r| \, \frac{U_{i} - U_{i+1}}{h} \quad \text{pro } r < 0. \end{aligned}$$

$$(2.235)$$

Pro diskrétní řešení pak platí

$$U_{i} = A^{+} + B^{+} (1 + R_{e})^{i} \text{ pro } r \ge 0,$$
  

$$U_{i} = A^{-} + B^{-} (1 - R_{e})^{N-i} \text{ pro } r < 0,$$
(2.236)

přičemž konstanty  $A^+$ ,  $B^+$ ,  $A^-$  a  $B^-$  určíme z okrajových podmínek. Aproximace pomocí jednostranné diference je z fyzikálního hlediska přirozená: informaci o řešení v uzlu  $x_i$  čerpáme ze znalosti řešení proti "proudu", proti "větru". Proto takovou jednostrannou aproximaci konvektivního člene nazýváme *upwind aproximací* a hovoříme o *upwind schématu (upwind metodě)*. Řešení (2.236) je monotónní funkcí parametru *i* a je tedy "fyzikálně" realistické rovněž pro velká  $R_e$ .

Vraťme se nyní k diskretizaci konvektivního členu b(u, v). Je-li  $R_e$  na elementech e malé, aproximujeme b(u, v) pomocí  $b_h(U, v)$  standardním způsobem:

$$b_{h}(U,v) = \sum_{e \in \mathcal{T}} I^{e}([r_{1}U_{x} + r_{2}U_{y}]v) = \sum_{e \in \mathcal{T}} [\Theta^{e}]^{T} \mathbf{K}^{e3} \Delta^{e},$$
kde  $\mathbf{K}^{e3} = \frac{1}{6} |d^{e}| \left\{ a_{j}^{e} r_{1}(x_{i}^{e}, y_{i}^{e}) + b_{j}^{e} r_{2}(x_{i}^{e}, y_{i}^{e}) \right\}_{i,j=1}^{3}$ 
(2.237)

(index i je řádkový, j sloupcový,  $a_j^e$ ,  $b_j^e$  viz (2.37)). Poznamenejme, že prvky  $k_{ij}^{e3}$  elementární matice  $\mathbf{K}^{e3}$  jsme získali numerickou integrací členů

$$w_i^e \left[ r_1 \frac{\partial w_j^e}{\partial x} + r_2 \frac{\partial w_j^e}{\partial y} \right]$$

užitím formule (2.43). Matice  $\mathbf{K}^{e3}$  je nesymetrická. Nesymetrická je proto také lokální matice  $\mathbf{K}^e = \mathbf{K}^{e1} + \mathbf{K}^{e2} + \mathbf{K}^{e3}$  a globální matice  $\mathbf{K}$ . Matice  $\mathbf{K}$  je pro dostatečně malé hregulární. Pro velká lokální Reynoldsova čísla  $R_e$  však řešením soustavy rovnic (2.24) většinou obdržíme neuspokojivé výsledky vyznačující se fyzikálně neopodstatněným a nesprávným oscilatorickým průběhem konečněprvkového řešení U.



Obr. 17.  $D_{ijk}=D_i \cap e$ 

Diskretizaci konvektivního členu je proto třeba provést jinak. Postupovat budeme podobně jako v práci [6], tj. užijeme kombinaci metody konečných prvků, metody konečných objemů a upwind techniky. Ke každému uzlu  $P_i$  přiřadíme tzv. duální element  $D_i$  (označovaný také jako konečný objem nebo stručněji box). Popišme si jeho konstrukci. Nechť e je jeden z elementů, které mají uzel  $P_i$ za vrchol. Označme zbývající vrcholy elementu e jako  $P_j$ ,  $P_k$  a dále označme střed strany  $P_iP_j$  jako  $P_{ij}$ , střed strany  $P_iP_k$  jako  $P_{ik}$  a těžiště elementu e jako  $P_{ijk}$ . Pak průnik duálního elementu  $D_i$  se zvoleným elementem e je roven čtyřúhelníku  $D_{ijk}$ s vrcholy  $P_i$ ,  $P_{ij}$ ,  $P_{ijk}$ ,  $P_{ik}$ , viz obrázek 17.

Duální element  $D_i$  je tedy sjednocením čtyřúhelníků  $D_{ijk}$  příslušných všem trojúhelníkům  $e=P_iP_jP_k$  obsahujícím vrchol  $P_i$ . Nechť S(i) označuje množinu všech uzlů sousedících s uzlem  $P_i$  (dva uzly jsou sousední, pokud jsou vrcholy téhož elementu). Ke každé straně  $P_iP_j$ ,  $j \in S(i)$ , přísluší dva přímé úseky  $\Gamma_{ij}^{\alpha}$ ,  $\alpha=1,2$ , hranice  $\partial D_i$  duálního elementu  $D_i$ : leží-li alespoň jeden z uzlů  $P_i$  nebo  $P_j$  uvnitř  $\Omega$ , pak jeden z těchto přímých úseků je úsečkou spojující body  $P_{ij}$  a  $P_{ijk}$  a druhý je úsečkou spojující body  $P_i$  a  $P_j$  leží na hranici  $\partial \Omega$ , je jeden z těchto přímých úseků úseků úseků úsečkou spojující body  $P_i$  a  $P_j$  leží na hranici  $\partial \Omega$ , je jeden z těchto přímých úseků úseků úsečkou spojující body  $P_{ij}$  a  $P_{ijk}$  a druhý

je úsečkou spojující body  $P_{ij}$  a  $P_i$ , viz obrázek 19. Označme  $d_{ij}^{\alpha}$  délku úsečky  $\Gamma_{ij}^{\alpha}$  a  $\mathbf{n}_{ij}^{\alpha}$  jednotkový vektor vnější normály hranice  $\partial D_i$  na  $\Gamma_{ij}^{\alpha}$ .



Obr. 18. $D_i$  a  $D_j$  pro vnitřní stranu $P_i P_j$ 

Přistupme nyní k vlastní aproximaci členu b(u, v). Užitím Greenovy formule (2.6) a rovnice kontinuity (2.226) postupně dostaneme

$$b(U,v) = \sum_{i=1}^{PU} \int_{D_i} \nabla \cdot [\mathbf{r} \, U] v \, dx \, dy \approx \sum_{i=1}^{PU} v(P_i) \int_{D_i} \nabla \cdot [\mathbf{r} \, U] \, dx \, dy =$$

$$= \sum_{i=1}^{PU} v(P_i) \int_{D_i} \nabla \cdot [\mathbf{r} \{U - U(P_i)\}] \, dx \, dy =$$

$$= \sum_{i=1}^{PU} v(P_i) \int_{\partial D_i} (\mathbf{r} \cdot \mathbf{n}) [U - U(P_i)] \, ds =$$

$$= \sum_{i=1}^{PU} v(P_i) \sum_{j \in S(i)} \sum_{\alpha=1}^{2} \int_{\Gamma_{ij}^{\alpha}} (\mathbf{r} \cdot \mathbf{n}_{ij}^{\alpha}) [U - U(P_i)] \, ds \approx$$

$$\approx \sum_{i=1}^{PU} v(P_i) \sum_{j \in S(i)} \sum_{\alpha=1}^{2} d_{ij}^{\alpha} \mathcal{B}_{ij}^{\alpha} \equiv b_h(U, v),$$
(2.238)

kde **n** je jednotkový vektor vnější normály  $\partial \Omega$  a  $d_{ij}^{\alpha} \mathcal{B}_{ij}^{\alpha}$  je vhodně zvolená aproximace  $\int_{\Gamma_{ij}^{\alpha}} (\mathbf{r} \cdot \mathbf{n}_{ij}^{\alpha}) [U - U(P_i)] \, \mathrm{d}s$ . Tak například "přirozená" aproximace

$$\mathcal{B}_{ij}^{\alpha} = [\mathbf{r}(P_{ij}) \cdot \mathbf{n}_{ij}^{\alpha}][U(P_{ij}) - U(P_i)]$$
(2.239)

pro  $U(P_{ij}) = [U(P_i) + U(P_j)]/2$  není pro velká  $R_e$  vhodná a dává podobně neuspokojivé výsledky jako aproximace (2.237).

Proto postupujeme jinak. Rozlišíme dva případy.

1) Pokud úsečka  $\Gamma_{ij}^{\alpha}$  neleží na hranici, užijeme "upwind" aproximaci členu  $\mathcal{B}_{ij}^{\alpha}$ , která ve vztahu (2.239) místo  $U(P_{ij})$  bere  $U(P_i)$  pro  $\mathbf{r}(P_{ij}) \cdot \mathbf{n}_{ij}^{\alpha} \ge 0$  nebo  $U(P_j)$  pro  $\mathbf{r}(P_{ij}) \cdot \mathbf{n}_{ij}^{\alpha} < 0$ , takže

$$\mathcal{B}_{ij}^{\alpha} = \min\{0, \mathbf{r}(P_{ij}) \cdot \mathbf{n}_{ij}^{\alpha}\}[U(P_j) - U(P_i)] \quad \text{pro } \Gamma_{ij}^{\alpha} \notin \partial\Omega.$$
(2.240)

2) Leží-li úsečka  $\Gamma^{\alpha}_{ij}$ na hranici, klademe

$$\mathcal{B}_{ii}^{\alpha} = 0 \quad \text{pro } \Gamma_{ii}^{\alpha} \in \partial \Omega.$$
 (2.241)

*Zdůvodnění.* Podíváme-li se na obrázek 19 vidíme, že k hraničnímu uzlu  $P_i$  přísluší dvě hraniční úsečky  $\Gamma_{ij}^2$  a  $\Gamma_{il}^2$  a jim odpovídající členy  $\mathcal{B}_{ij}^2$  a  $\mathcal{B}_{il}^2$ . Z (2.238) plyne

$$d_{ij}^2 \mathcal{B}_{ij}^2 + d_{il}^2 \mathcal{B}_{il}^2 \approx \int_{P_{ij}}^{P_{il}} (\mathbf{r} \cdot \mathbf{n}) [U - U(P_i)] \, \mathrm{d}s$$

Integrál je však přirozené aproximovat nulou, což je formálně totéž jako položit  $\mathcal{B}_{ij}^2 = 0$ ,  $\mathcal{B}_{il}^2 = 0$ .  $\Box$ 





Obr. 20. Lokální značení

Obr. 19.  $D_i$  pro  $P_i P_j \in \partial \Omega$ 

Člen  $b_h(U, v)$  definovaný vztahy (2.238) a (2.240) vyjádříme pomocí elementárních matic  $\mathbf{K}^{e_3}$  pro  $e \in \mathcal{T}$  a  $\mathbf{K}^{S_3}$  pro  $S \in S$ :

$$b_h(U,v) = \sum_{e \in \mathcal{T}} [\mathbf{\Theta}^e]^T \mathbf{K}^{e3} \mathbf{\Delta}^e.$$
(2.242)

Věnujme se dále vyjádření elementární matice  $\mathbf{K}^{e3}$ . Na trojúhelníku *e* užijeme lokální značení, viz obrázek 20. Vrcholy označíme  $P_1^e$ ,  $P_2^e$ ,  $P_3^e$ , střed strany  $P_1^e P_2^e$  označíme  $P_{12}^e$  nebo  $P_{21}^e$  a podobně střed strany  $P_2^e P_3^e$  označíme  $P_{23}^e$  nebo  $P_{32}^e$  a střed strany  $P_3^e P_1^e$  označíme  $P_{31}^e$  nebo  $P_{13}^e$ . Těžiště trojúhelníka označíme  $P_{123}^e$ . Nechť  $\mathbf{n}_{ij}^e$  je jednotkový vektor vnější normály trojúhelníka  $P_i^e P_{ij}^e P_{123}^e$  na straně  $P_{ij}^e P_{123}^e$ . Označíme-li délku úsečky  $P_{ij}^e P_{123}^e$  jako  $d_{ij}^e$ , platí

$$\mathbf{n}_{ij}^{e} = -\mathbf{n}_{ji}^{e} = \pm (y_{123}^{e} - y_{ij}^{e}, x_{ij}^{e} - x_{123}^{e})/d_{ij}^{e}, \qquad (2.243)$$

kde znaménko zvolíme tak, aby vektory  $\mathbf{n}_{ij}^e$  a  $\overrightarrow{P_i^e P_j^e}$  svíraly úhel menší nebo roven  $\frac{\pi}{2}$ , tedy aby  $\mathbf{n}_{ij}^e \cdot \overrightarrow{P_i^e P_j^e} \ge 0$ . Dále označíme

$$m_{ij}^{e} = \min\{0, d_{ij}^{e} \mathbf{r}(P_{ij}^{e}) \cdot \mathbf{n}_{ij}^{e}\}.$$
(2.244)

Pak z (2.238), (2.240) – (2.244) odvodíme, že elementární matice  $\mathbf{K}^{e3}$  je tvaru

$$\mathbf{K}^{e3} = \begin{pmatrix} -m_{12}^e - m_{13}^e & m_{12}^e & m_{13}^e \\ m_{21}^e & -m_{21}^e - m_{23}^e & m_{23}^e \\ m_{31}^e & m_{32}^e & -m_{31}^e - m_{32}^e \end{pmatrix}.$$
 (2.245)

Všimněte si, že součet prvků v každém řádku matice  $\mathbf{K}^{e3}$  je roven nule a dále, že na hlavní diagonále matice  $\mathbf{K}^{e3}$  jsou prvky nezáporné a mimo ni prvky nekladné. Jestliže označíme  $\mathbf{K}^3$  globální matici sestavenou z elementárních matic  $\mathbf{K}^{e3}$ , pak i tato matice má obě výše zmíněné vlastnosti: součet prvků v každém jejím řádku je roven nule, prvky na hlavní diagonále jsou nezáporné a zbývající prvky jsou nekladné. Proto platí  $\mathbf{K}^{e3}(\mathbf{\Delta}+\mathbf{c})=\mathbf{K}^{e3}\mathbf{\Delta}$ , kde  $\mathbf{c}$  je vektor stejných prvků c, což je diskrétní analog vztahu  $\nabla \cdot [\mathbf{r}(u+c)] = \nabla \cdot [\mathbf{r}u]$ .

Elementární matice  $\mathbf{K}^e$  je nyní součtem tří matic,  $\mathbf{K}^e = \mathbf{K}^{e1} + \mathbf{K}^{e2} + \mathbf{K}^{e3}$ . Protože matice  $\mathbf{K}^{e3}$  je nesymetrická, matice  $\mathbf{K}^e$  a globální matice  $\mathbf{K}$  je rovněž nesymetrická. Lze ukázat, že pro dostatečně malé h je matice  $\mathbf{K}$  regulární. Použijeme-li trojúhelníkové prvky s netupými vnitřními úhly, matice  $\mathbf{K}^{e2}$  volíme ve tvaru (2.44) a matice příslušné Newtonově okrajové podmínce volíme ve tvaru (2.54), pak podobně jako v poznámce 16 (odstavec 2.8) můžeme konstatovat, že matice  $\mathbf{K}$  má kladné prvky na hlavní diagonále a nekladné mimo ni, že  $\mathbf{K}$  je IDDM, tedy že  $\mathbf{K}$  je M-matice, tedy že  $\mathbf{K}$  je regulární nezávisle na velikosti h.

Za předpokladu dostatečné hladkosti slabého řešení lze ukázat, že pro chybu u - U slabého řešení a jeho konečněprvkové po částech lineární aproximace, získané upwind aproximací konvektivního členu podle (2.238), (2.240) a (2.241), platí

$$\max_{\overline{\Omega}} |u - U| = O(h).$$

Poznamenejme, že pro malá  $R_e$  je použitelná standardní aproximace podle (2.237) a v tom případě pro chybu u-U platí stejný odhad, jako kdybychom řešili úlohu bez konvektivního členu, viz poznámka 14 (odstavec 2.8).

#### b) Nestacionární úloha, metoda charakteristik

Hledejme funkci  $u(x, y, t), (x, y) \in \overline{\Omega}, t \in \langle 0, T \rangle$ , vyhovující diferenciální rovnici

$$\frac{\partial[\varrho u]}{\partial t} + \nabla \cdot [\mathbf{r}u] - \nabla \cdot [p\,\nabla u] + qu = f \quad \text{pro} \ (x,y) \in \Omega, \ t \in (0,T),$$
(2.246)

splňující okrajové podmínky (2.64), (2.65) a počáteční podmínku (2.66). Nestacionární rovnice (2.246) opět charakterizuje zachování fyzikální veličiny u, při němž se kromě difúzního toku, konvektivního toku a objemové generace případně absorpce uvažuje také časová změna  $u_t$ . Rovnice (2.246) je dobrým modelem nestacionárního šíření chemické příměsi nebo entalpie v proudovém poli.

Stejně jako ve stacionárním případě budeme předpokládat platnost podmínky (2.5e). Rovnice kontinuity nabývá pro nestacionární úlohu tvaru

$$\frac{\partial \varrho}{\partial t} + \nabla \cdot \mathbf{r} = \frac{\partial \varrho}{\partial t} + \frac{\partial r_1}{\partial x} + \frac{\partial r_2}{\partial y} = \frac{\partial \varrho}{\partial t} + \frac{\partial (\varrho v_1)}{\partial x} + \frac{\partial (\varrho v_2)}{\partial y} = 0.$$
(2.226')

Pokud data  $\varrho$ ,  $\mathbf{r}$ , p, q, f, g,  $\alpha$  a  $\beta$  nezávisejí na čase t, pak ustálené řešení nestacionární úlohy, pro které  $u_t = 0$ , vyhovuje rovnici (2.225). To umožňuje řešit stacionární úlohy technikami vyvinutými pro řešení úloh nestacionárních, tedy například metodou charakteristik, kterou nyní popíšeme. Postupovat budeme podobně jako v práci [3] a [20]. Ke každému bodu  $\mathbf{x} = (x, y) \in \Omega$  a času  $t \in (0, T)$  přiřadíme tzv. charakteristiku  $\mathbf{X}(\tau) \equiv \mathbf{X}(\mathbf{x}, t; \tau)$  určenou jako řešení dvou obyčejných diferenciálních rovnic

$$\dot{\mathbf{X}}(\tau) = \begin{cases} \mathbf{r}(\mathbf{X}(\tau), \tau) & \text{pro } \mathbf{X}(\tau) \in \Omega, \\ \mathbf{0} & \text{pro } \mathbf{X}(\tau) \in \partial\Omega, \end{cases} \text{ s počáteční podmínkou } \mathbf{X}(t) = \mathbf{x}. \quad (2.247)$$

Rovnici (2.247) řešíme "pozpátku", tj. pro  $\tau < t$ . Pro  $r_1, r_2 \in PC^1(\Omega)$  je charakteristika určena jednoznačně. Všimněte si, že díky podmínce  $\dot{\mathbf{X}}(\tau) = \mathbf{0}$  charakteristika nikdy neopustí  $\overline{\Omega}$ . Charakteristika  $\mathbf{X}(\mathbf{x}, t; \tau)$  je tedy rovnicí křivky (trajektorií), po níž se pohybuje pomyslný hmotný bod, který je unášen spolu s tekutinou "rychlostí" **r** (ve skutečnosti je **r** součinem rychlosti **v** a hustoty  $\varrho$ ), a který v čase t dorazí do bodu **x**. V technické mluvě lze charakteristikou  $\mathbf{X}(\mathbf{x}, t; \tau)$  označit proudnici, která v čase t prochází bodem **x**. Pro časovou derivaci složené funkce  $u(\mathbf{X}(t), t)$  platí

$$\frac{\mathrm{D}u}{\mathrm{D}t}(\mathbf{x},t) \equiv \frac{\mathrm{d}u(\mathbf{X}(t),t)}{\mathrm{d}t} \equiv \left.\frac{\mathrm{d}u(\mathbf{X}(\tau),\tau)}{\mathrm{d}\tau}\right|_{\tau=t} = \frac{\partial u(\mathbf{x},t)}{\partial t} + \mathbf{r}(\mathbf{x},t) \cdot \nabla u(\mathbf{x},t). \quad (2.248)$$

Odtud a z (2.226') plyne, že rovnici (2.246) lze přepsat do tvaru

$$\varrho \frac{\mathrm{D}u}{\mathrm{D}t} - \nabla \cdot [p \,\nabla u] + qu = f, \quad \mathbf{x} \in \Omega, \quad t \in (0, T).$$
(2.249)

Tuto rovnici diskretizujeme  $\theta$ -metodou, tj. užijeme formuli typu

$$\frac{\mathrm{D}\Phi}{\mathrm{D}t} + Q \Big|_{t_{i+1}} \approx \frac{\Phi(t_{i+1}) - \Phi(t_i)}{\Delta t_i} + (1 - \theta)Q(t_i) + \theta Q(t_{i+1})$$
(2.250)

pro  $\theta \in \langle 0, 1 \rangle$ . (2.248) aproximujeme takto:

$$\frac{\mathrm{D}u}{\mathrm{D}t}(\mathbf{x}, t_{i+1}) \approx [u(\mathbf{X}(\mathbf{x}, t_{i+1}; t_{i+1}), t_{i+1}) - u(\mathbf{X}(\mathbf{x}, t_{i+1}; t_i), t_i)]/\Delta t_i,$$

a protože z (2.247) plyne  $\mathbf{X}(\mathbf{x}, t_{i+1}; t_{i+1}) = \mathbf{x}$ , dostáváme

$$\frac{\mathrm{D}u}{\mathrm{D}t}(\mathbf{x}, t_{i+1}) \approx [u^{i+1}(\mathbf{x}) - u^i(\mathbf{X}^i(\mathbf{x}))] / \Delta t_i, \qquad (2.251)$$

kde  $\mathbf{X}^{i}(\mathbf{x}) = \mathbf{X}(\mathbf{x}, t_{i+1}; t_{i})$  a kde  $u^{j}(\boldsymbol{\xi}) = u(\boldsymbol{\xi}, t_{j})$  pro  $\boldsymbol{\xi} = \mathbf{x}, \mathbf{X}^{i}(\mathbf{x}), j = i, i + 1$ . Proto z (2.249) užítím (2.250) a (2.251) dostaneme

$$\frac{u^{i+1} - \tilde{u}^i}{\Delta t_i} + (1 - \theta)Q^i + \theta Q^{i+1} = 0, \qquad (2.252)$$

kde  $u^{i+1} \approx u(\mathbf{x}, t_{i+1}), \ \tilde{u}^i \approx u(\mathbf{X}^i(\mathbf{x}), t_i), \ Q^j = [\varrho^j]^{-1} \{ -\nabla \cdot [p^j \nabla u^j] + q^j u^j - f^j \}$  pro j = i, i+1,a kde  $\varrho^j, \ p^j, \ q^j$  a  $f^j$  označují hodnoty těchto funkcí v  $(\mathbf{x}, t_j), \ u^i \approx u(\mathbf{x}, t_i).$ Zdůrazněme, že zatímco ve vztahu (2.251)  $u^j(\boldsymbol{\xi}) = u(\boldsymbol{\xi}, t_j),$ v rovnici (2.252) jsme tímtéž symbolem  $u^j(\boldsymbol{\xi})$  označili už jen aproximaci  $u(\boldsymbol{\xi}, t_j).$ 

Další aproximací  $(1 - \theta)Q^i + \theta Q^{i+1} \approx Q^{i+\theta}$ , kde  $\varrho^{i+\theta}$ ,  $p^{i+\theta}$ ,  $q^{i+\theta}$  a  $f^{i+\theta}$  jsou hodnoty těchto funkcí v  $(\mathbf{x}, t_{i+\theta}), t_{i+\theta} = t_i + \theta \Delta t_i$ , a  $u^{i+\theta} = (1 - \theta)u^i + \theta u^{i+1}$ , dostaneme

$$\rho^{i+\theta} \frac{u^{i+1} - \tilde{u}^i}{\Delta t_i} - \nabla \cdot [p^{i+\theta} \nabla u^{i+\theta}] + q^{i+\theta} u^{i+\theta} = f^{i+\theta} \quad \text{pro } \mathbf{x} \in \Omega.$$
(2.253)

Rovnici (2.253) doplníme okrajovými podmínkami

$$u^j = g^j, \quad \text{pro } \mathbf{x} \in \Gamma_1, \, j = i, i+1,$$

$$(2.254)$$

$$-p^{i+\theta}\frac{\partial u^{i+\theta}}{\partial n} = \alpha^{i+\theta}u^{i+\theta} - \beta^{i+\theta} \quad \text{pro } \mathbf{x} \in \Gamma_2,$$
(2.255)

kde  $\alpha^{i+\theta}$  a  $\beta^{i+\theta}$  jsou hodnoty funkcí  $\alpha$  a  $\beta$  v  $(\mathbf{x}, t_{i+\theta})$  a kde  $i = 0, \ldots, Q-1$  (Q zde označuje počet časových kroků). Úlohu (2.253)–(2.255) diskretizujeme v proměnné  $\mathbf{x}$  metodou konečných prvků užitím elementu T3. Vypustíme slabou formulaci a zapíšeme přímo diskrétní slabou formulaci. Aproximujeme  $u^i \approx U^i = \sum_{i=1}^{PU} \Delta_j^i w_j$ , kde  $\Delta_j^i = U_j^i$  je hledaná aproximace  $u(x_j, y_j, t_i)$  (pro i = 0 klademe  $U_j^0 = \varphi(x_j, y_j)$ ), a dostáváme úlohu

najít 
$$U^{i+1}$$
 splňující  $(\varrho^{i+\theta} \frac{U^{i+1} - \tilde{U}^i}{\Delta t_i}, v)_h + a_h(U^{i+\theta}, v) = L_h(v) \quad \forall v \in V_h \quad (2.256)$ 

kde

$$\tilde{U}^{i}(\mathbf{x}) = \sum_{i=1}^{PU} U_{j}^{i} w_{j}(\mathbf{X}_{h}^{i}(\mathbf{x})), \qquad (2.257)$$

přičemž  $\mathbf{X}_{h}^{i}(\mathbf{x})$  je přesné nebo jen přibližné, numericky spočtené, řešení  $\mathbf{X}^{i}(\mathbf{x}) = \mathbf{X}(\mathbf{x}, t_{i+1}; t_{i})$ úlohy (2.247), a kde dále

$$(w,v)_h = \sum_{e \in \mathfrak{T}} I^e(wv), \qquad (2.258)$$

$$U^{i+\theta} = (1-\theta)U^{i} + \theta U^{i+1}, \qquad (2.259)$$

$$a_h(w,v) = \sum_{e \in \mathfrak{T}} I^e(p^{i+\theta} \nabla w \cdot \nabla v + q^{i+\theta} wv) + \sum_{S \in \mathfrak{S}} I^S(\alpha^{i+\theta} wv), \qquad (2.260)$$

$$L_h(v) = \sum_{e \in \mathfrak{T}} I^e(f^{i+\theta}v) + \sum_{S \in \mathfrak{S}} I^S(\beta^{i+\theta}v).$$
(2.261)

Dosadíme-li do rovnice (2.256) za  $U^{i+\theta}$  z<br/> (2.259) a převedeme členy obsahující hledanou funkci $U^{i+1}$ na levou stranu, dostaneme

$$(\varrho^{i+\theta}U^{i+1}, v)_h + \Delta t_i \theta a_h(U^{i+1}, v) = (\varrho^{i+\theta}\tilde{U}^i, v)_h - \Delta t_i(1-\theta)a_h(U^i, v) + \Delta t_i L_h(v).$$

S metodou charakteristik souvisí pouze první člen na pravé straně této rovnice, zbývající členy jsou (až na jeden formální rozdíl) stejné jako v nestacionární úloze vedení tepla studované v odstavci 2.10 (funkci  $\rho$  zde odpovídá funkce c v odstavci 2.10). Je proto přirozené použít stejné formule numerické integrace jako v odstavci 2.10 a při výpočtu  $I^e(\rho^{i+\theta}\tilde{U}^i v)$  užít formuli (2.43). Tedy  $I^e(p^{i+\theta}\nabla w \cdot \nabla v)$  počítáme formulí (2.34), všechny zbývající integrály na elementu e počítáme formulí (2.43) a integrály na straně S počítáme formulí (2.53). Snadno odvodíme

$$I^{e}(\varrho^{i+\theta}\tilde{U}^{i}v) = [\Theta^{e}]^{T}\tilde{\mathbf{C}}^{e,i+\theta}, \quad \text{kde} \quad \tilde{\mathbf{C}}^{e,i+\theta} = \frac{|d^{e}|}{6} \begin{pmatrix} \varrho_{1}^{e,i+\theta}\tilde{U}_{h,1}^{e,i}\\ \varrho_{2}^{e,i+\theta}\tilde{U}_{h,2}^{e,i}\\ \varrho_{3}^{e,i+\theta}\tilde{U}_{h,3}^{e,i} \end{pmatrix}.$$

Přitom  $\varrho_j^{e,i+\theta} = \varrho(x_j^e, y_j^e, t_{i+\theta})$  a  $\tilde{U}_{h,j}^{e,i} = U^i(\mathbf{X}_{h,j}^{e,i})$ , kde  $\mathbf{X}_{h,j}^{e,i} = \mathbf{X}_h^i(\mathbf{x}_j^e)$  a  $\mathbf{x}_j^e = (x_j^e, y_j^e)$  jsou souřadnice bodu  $P_j^e$ , j = 1, 2, 3.  $\mathbf{X}_{h,j}^{e,i}$  lze spočítat pomocí  $n \ge 1$  kroků vhodné Rungovy-Kuttovy formule: pro  $\theta \neq \frac{1}{2}$  stačí metoda řádu 1 a pro  $\theta = \frac{1}{2}$  je vhodné užít metodu řádu 2. Určení  $\tilde{U}_{h,j}^{e,i}$  je algoritmicky poměrně složitá operace vyžadující obecně nemalý objem výpočtů. Proto je účelné pro každý uzel  $P_\ell$  o souřadnicích  $\mathbf{x}_\ell = (x_\ell, y_\ell)$  spočítat  $\mathbf{X}_{h,\ell}^i = \mathbf{X}_h^i(\mathbf{x}_\ell)$  a pak  $\tilde{U}_{h,\ell}^i = U^i(\mathbf{X}_{h,\ell}^i)$  a na elementu e pro uzel  $P_j^e \equiv P_\ell$  položit  $\tilde{U}_{h,j}^{e,i} = \tilde{U}_{h,\ell}^i$ . Protože rovnice sestavujeme jen pro uzly neležící na  $\overline{\Gamma}_1$ ,  $\tilde{U}_{h,\ell}^i$  stačí určit jen pro  $P_\ell \notin \overline{\Gamma}_1$ .

Uveď me si nyní podrobně postup výpočtu  $\tilde{U}_{h,\ell}^i$ . Označ me  $\Delta \tau = \Delta t_i/n$  a polož me  $\tau_s = s \Delta \tau, s = 0, \ldots, n$ . Dále nechť  $\mathbf{Y}_{\ell}^0 = \mathbf{x}_{\ell}$  pro zvolený uzel  $P_{\ell} \notin \overline{\Gamma}_1$ . Pak postupně pro  $s = 1, \ldots, n$  počítej me:

a) pro  $\theta \neq \frac{1}{2}$  explicitní Eulerovou metodou (stručně EEM) řádu 1

$$\mathbf{Y}_{\ell}^{s} = \mathbf{Y}_{\ell}^{s-1} - \Delta \tau \mathbf{k}_{\ell}^{s1}, \quad \text{kde} \quad \mathbf{k}_{\ell}^{s1} = \mathbf{r}(\mathbf{Y}_{\ell}^{s-1}, t_{i+1} - \tau_{s-1});$$

b) pro  $\theta = \frac{1}{2}$  Heunovou metodou (stručně HM) řádu 2

$$\begin{aligned} \mathbf{Y}_{\ell}^{s} &= \mathbf{Y}_{\ell}^{s-1} - \frac{1}{2} \Delta \tau (\mathbf{k}_{\ell}^{s1} + \mathbf{k}_{\ell}^{s2}), \quad \text{kde} \\ \mathbf{k}_{\ell}^{s1} &= \mathbf{r} (\mathbf{Y}_{\ell}^{s-1}, t_{i+1} - \tau_{s-1}), \quad \mathbf{k}_{\ell}^{s2} &= \mathbf{r} (\mathbf{Y}_{\ell}^{s-1} - \Delta \tau \mathbf{k}_{\ell}^{s1}, t_{i+1} - \tau_{s}). \end{aligned}$$

Nakonec položíme  $\mathbf{X}_{h,\ell}^i = \mathbf{Y}_{\ell}^n$  a vypočteme  $\tilde{U}_{k,\ell}^i = U^i(\mathbf{X}_{h,\ell}^i)$ .

Funkce **r** bývá často známa jen v uzlech  $P_j$  a v časech  $t_i$ . To nám umožňuje předpokládat, že **r** je pro  $(x, y) \in \overline{e}$  a  $t \in \langle t_i, t_{i+1} \rangle$  tvaru

$$\mathbf{r}(x,y,t) = \sum_{j=1}^{3} \mathbf{r}_{j}^{e}(t) w_{j}^{e}(x,y), \text{ kde } \mathbf{r}_{j}^{e}(t) = \frac{t_{i+1}-t}{\Delta t_{i}} \mathbf{r}(x_{j}^{e}, y_{j}^{e}, t_{i}) + \frac{t-t_{i}}{\Delta t_{i}} \mathbf{r}(x_{j}^{e}, y_{j}^{e}, t_{i+1}).$$

Při výpočtu  $\mathbf{Y}_{\ell}^{s}$  je třeba vyčíslovat funkci **r** jednou nebo dvakrát podle toho, zda používáme EEM nebo HM. Abychom mohli  $\mathbf{k}_{\ell}^{s1}$  případně  $\mathbf{k}_{\ell}^{s2}$  spočítat, potřebujeme vědět, v jakém elementu e se bod  $\mathbf{Y}_{\ell 0}^{s} \equiv \mathbf{Y}_{\ell}^{s-1}$  případně  $\mathbf{Y}_{\ell 1}^{s} \equiv \mathbf{Y}_{\ell}^{s-1} - \Delta \tau \mathbf{k}_{\ell}^{s1}$  nachází, a pak spočítat  $\mathbf{r}(\mathbf{Y}_{\ell\delta}^{s}, \tau_{s\delta}) = \sum_{j=1}^{3} \mathbf{r}_{j}^{e}(t_{s\delta}) w_{j}^{e}(\mathbf{Y}_{\ell\delta}^{s})$  pro  $\delta = 0, 1$  a pro  $t_{s0} = t_{i+1} - \tau_{s-1}, t_{s1} = t_{i+1} - \tau_{s}.$ Podobně, chceme-li vyčíslit  $\tilde{U}_{h\ell}^{i} = U^{i}(\mathbf{X}_{h,\ell}^{i})$ , potřebujeme znát element e, v němž bod  $\mathbf{X}_{h,\ell}^{i}$ leží, a pak spočítat  $U^{i}(\mathbf{X}_{h,\ell}^{i}) = \sum_{j=1}^{3} U^{i}(x_{j}^{e}, y_{j}^{e}) w_{j}^{e}(\mathbf{X}_{h,\ell}^{i})$ . Efektivní stanovení bodů  $\mathbf{Y}_{\ell\delta}^{s}$ a výpočet hodnoty  $U^{i}(\mathbf{X}_{h,\ell}^{i})$  je základem úspěšné implementace metody charakteristik.

Určení  $\tilde{U}_{h\ell}^i$ lze výrazně urychlit, když volíme  $\Delta t_i$  tak, aby byla splněna tzv. Courantova-Friedrichsova-Lewyova podmínka (stručně CFL podmínka)

$$\max_{\overline{\Omega} \times \langle 0, T \rangle} \|\mathbf{r}\| \Delta t_i \le \min_{\mathcal{T}} h,$$

a když  $\mathbf{X}_{h\ell}^{i}$  určíme v jednom kroku EEM. Pak  $\mathbf{X}_{h\ell}^{i} = \mathbf{x}_{\ell} - \Delta t_{i}\mathbf{r}(\mathbf{x}_{\ell}, t_{i+1})$  a tento bod leží v jednom z trojúhelníků s vrcholem  $P_{\ell}$ .

Výslednou soustavu rovnic pro výpočet neznámých parametrů  $\Delta^{i+1}$ lze zapsat ve tvaru

$$[\mathbf{C}^{i+\theta} + \Delta t_i \theta \mathbf{K}^{i+\theta}] \mathbf{\Delta}^{i+1} = \tilde{\mathbf{C}}^{i+\theta} - \Delta t_i (1-\theta) \mathbf{K}^{i+\theta} \mathbf{\Delta}^i + \Delta t_i \mathbf{F}^{i+\theta}, \qquad (2.262)$$

přičemž globální matici  $\mathbf{K}^{i+\theta}$  a globální vektor  $\mathbf{F}^{i+\theta}$  sestavíme pomocí elementárních matic  $\mathbf{K}^{e,i+\theta} = \mathbf{K}^{e1,i+\theta} + \mathbf{K}^{e2,i+\theta}$ , z nichž  $\mathbf{K}^{e1,i+\theta}$  přísluší členu  $I^e(p^{i+\theta}\nabla w \cdot \nabla v)$  a  $\mathbf{K}^{e2,i+\theta}$  členu  $I^e(q^{i+\theta}wv)$ , elementárních matic  $\mathbf{K}^{S,i+\theta}$  příslušných členům  $I^S(\alpha^{i+\theta}wv)$ , elementárních vektorů  $\mathbf{F}^{e,i+\theta}$  příslušných členům  $I^e(f^{i+\theta}v)$  a elementárních vektorů  $\mathbf{F}^{S,i+\theta}$  příslušných členům  $I^S(\beta^{i+\theta}v)$ , a dále globální matici  $\mathbf{C}^{i+\theta}$  sestavíme z elementárních matic  $\mathbf{C}^{e,i+\theta}$ příslušných členům  $I^e(\varrho^{i+\theta}wv)$  a globální vektor  $\tilde{\mathbf{C}}^{i+\theta}$  sestavíme z elementárních vektorů  $\tilde{\mathbf{C}}^{e,i+\theta}$  příslušných členům  $I^e(\varrho^{i+\theta}\tilde{U}^iv)$ .

Matice soustavy (2.262) je symetrická, pro dostatečně malé h pozitivně definitní, a jsou-li vnitřní úhly triangulace netupé, je pozitivně definitní pro každé h. Pozitivní definitnost matice soustavy (2.262) je velkou předností metody charakteristik, srovnávámeli ji s metodami založenými na upwind aproximacích konvektivního členu, neboť ty vždy vedou k maticím nesymetrickým.

Za předpokladu dostatečně hladkého slabého řešení u lze ukázat, že platí

$$\max_{i,j} |u(x_j, y_j, t_i) - U_j^i| = O(h + \Delta t^q + h^2 / \Delta t),$$

kde q = 1 pro  $\theta \neq \frac{1}{2}$  a q = 2 pro  $\theta = \frac{1}{2}$ .

Pro  $\theta = 0$  je matice soustavy (2.262) diagonální a tedy výpočet  $\Delta^{i+1}$  je "laciný". I když je EEM jen podmíněně stabilní, pro "malý" difúzní člen není podmínka omezující délku časového kroku nijak zvlásť přísná (pro  $p \ll 1$  jde prakticky o CFL podmínku), a proto se pro řešení KDÚsDK někdy EEM používá.

Diskretizujeme-li rovnici (2.246) standardně pomocí EEM, dostaneme rovnici

$$\left(\varrho^i \frac{U^{i+1} - U^i}{\Delta t_i}, v\right)_h + a_h(U^i, v) + b_h(U^i, v) = L_h(v),$$

v níž lze konvektivní člen  $b_h(U^i, v)$  aproximovat upwind technikou, viz (2.242), a dostat tak zhruba "stejně kvalitní" výpočetní algoritmus jako je metoda charakteristik spojená s EEM. Proto je také tento postup někdy při řešení KDÚsDK používán.

## 3. Prostorové úlohy

Použití metody konečných prvků při řešení úloh ve trojrozměrném prostoru (stručně ve 3D) si budeme demonstrovat na problému popsaném stejně jako v kapitole 2 diferenciální rovnicí (2.2) a okrajovými podmínkami (2.3), (2.4). Nyní však je  $\Omega$  oblast ve 3D a u,  $p, \, q, \, f, \, g, \, \alpha$  a  $\beta$ jsou funkce tří prostorových proměnných  $x, \, y$  a z. Také operátor $\nabla$ a vektor vnější normály **n** je třísložkový,  $\nabla = (\partial/\partial x, \partial/\partial y, \partial/\partial z)^T$  a **n** =  $(n_x, n_y, n_z)^T$ . Pro odvození slabé formulace potřebujeme Greenovu formuli. Ta má i ve 3D tvar (2.6), jen f a g jsou funkce tří proměnných  $x_1, x_2, x_3, dx = dx_1 dx_2 dx_3$  a ds je diferenciál plochy Γ. Vynásobíme-li diferenciální rovnici (2.2) testovací funkcí  $v \in C^1(\Omega), v = 0$  na  $\Gamma_1$ , integrujeme přes  $\Omega$ , použijeme Greenovu formuli a přirozenou okrajovou podmínku (2.4), dostaneme rovnici a(u, v) = L(v), kde bilineární forma a(u, v) a lineární funkcionál L(v) je určen vzorci (2.9) a (2.10), v nichž místo dx dy píšeme dx dy dz. Slabá formulace je tvaru (2.12), jednoznačná existence slabého řešení je zaručena podmínkami (2.5a') a 3D analogií podmínek (2.5b), (2.5c) ( $q \ge \alpha$  jsou funkcemi 3 nezávislých proměnných) a (2.5d') ( $\Omega$  je mnohostěn s rovinnými stěnami, tedy polyedr, nebo obecněji "nedegenerovaný" mnohostěn se zakřivenými hladkými stěnami (tj. plochami se spojitě se měnící tečnou rovinou)).

V MKP se při řešení 3D úloh obvykle používají izoparametrické prvky. Tvarově jde nejčastěji o šestistěny (speciálně o čtyřboké hranoly nebo dokonce o kvádry). Někdy je však k vykrytí oblasti nutné použít také pětistěny (speciálně trojboké hranoly) nebo dokonce čtyřstěny (speciálně trojboké jehlany). Protože šestistěn lze rozdělit na dva pětistěn zase na tři čtyřstěny, stačí pracovat jen s nejjednoduššími čtyřstěnnými prvky. Přesto se pětistěny a zejména šestistěny hojně používají. Na obrázku 21 je čtyřstěnný prvek T4 se čtyřmi uzly a s přímými hranami, na obrázku 22 je čtyřstěnný prvek T10 s deseti uzly a s křivými hranami: každá hrana je určena třemi uzly. (Označení čtyřstěnných prvků písmenem T je odvozeno od prvního písmene anglického slova "tetrahedron".)



Obr. 21. Prvek T4

Obr. 22. Prvek T10

Na obrázku 23 je pětistěnný prvek P6 se šesti uzly, na obrázku 24 je pětistěnný prvek P15 s patnácti uzly, (písmeno P od prvního písmene anglického slova "pentahedron") na obrázku 25 je šestistěnný prvek H8 s osmi uzly a na obrázku 26 je šestistěnný prvek H20

s dvaceti uzly (písmeno H od prvního písmene anglického slova "hexahedron"). Referenční prvek  $\hat{e}$  je pro prvky T4 a T10 uveden na obrázku 27, pro prvky P6 a P15 na obrázku 28 a pro prvky H8 a H20 na obrázku 29.



Obr. 25. Prvek H8

Obr. 26. Prvek H20

Na referenčním prvku  $\hat{e}$  definujeme bázové funkce $\hat{N}^e_i(\xi,\eta,\zeta)$ s vlastnostmi

$$\hat{N}_i^e(\xi_j, \eta_j, \zeta_j) = \begin{cases} 1 \text{ pro } i = j \\ 0 \text{ pro } i \neq j \end{cases} \text{ a pro } i, j = 1, \dots, p_e,$$

kde $p_e\,=\,4$  pro prvek T4,  $p_e\,=\,10$  pro prvek T10,  $p_e\,=\,6$  pro prvek P6,  $p_e\,=\,15$  pro

prvek P15,  $p_e=8$ pro prvek H8 <br/>a $p_e=20$ pro prvek H20 a kde $(\xi_j,\eta_j,\zeta_j)$ jsou souřadnice uzl<br/>u $\hat{P}_j.$  Pro prvek T4 je



Obr. 27. Čtyřstěnný referenční prvek pro prvek T10 je



| $P_1^e = (0, 0, -1)$                             | $P_2^e = (1, 0, -$                           | -1) |
|--------------------------------------------------|----------------------------------------------|-----|
| $\hat{P}_{3}^{e}=(0,1,-1)$                       | $\hat{P}_4^e = (0, 0,$                       | 1)  |
| $\hat{P}_5^e = (1, 0, 1)$                        | $\hat{P}_6^e = (0, 1,$                       | 1)  |
| $\hat{P}_7^e = (\frac{1}{2}, 0, -1)$             | $\hat{P}_8^e = (\frac{1}{2}, \frac{1}{2}, -$ | -1) |
| $\hat{P}_{9}^{e} = (0, \frac{1}{2}, -1)$         | $\hat{P}^{e}_{10} = (\frac{1}{2}, 0,$        | 1)  |
| $\hat{P}_{11}^e = (\frac{1}{2}, \frac{1}{2}, 1)$ | $\hat{P}^e_{12} = (0, \tfrac{1}{2},$         | 1)  |
| $\hat{P}^e_{13} = (0,0, \ 0)$                    | $\hat{P}^{e}_{14} = (1, 0,$                  | 0)  |
| $\hat{P}^e_{15} = (0, 1, 0)$                     |                                              |     |

Obr. 28. Pětistěnný referenční prvek

pro prvek P6 je

$$\begin{split} \hat{N}_1^e &= \frac{1}{2}(1-\xi-\eta)(1-\zeta), \quad \hat{N}_2^e &= \frac{1}{2}\xi(1-\zeta), \\ \hat{N}_3^e &= \frac{1}{2}\eta(1-\zeta), \qquad \qquad \hat{N}_4^e &= \frac{1}{2}(1-\xi-\eta)(1+\zeta), \\ \hat{N}_5^e &= \frac{1}{2}\xi(1+\zeta), \qquad \qquad \hat{N}_6^e &= \frac{1}{2}\eta(1+\zeta), \end{split}$$

pro prvek P15 je

$$\begin{split} \hat{N}_{1}^{e} &= (1-\xi-\eta)(-\xi-\eta-\frac{1}{2}\zeta)(1-\zeta), & \hat{N}_{2}^{e} &= \xi(\xi-\frac{1}{2}\zeta-1)(1-\zeta), \\ \hat{N}_{3}^{e} &= \eta(\eta-\frac{1}{2}\zeta-1)(1-\zeta), & \hat{N}_{4}^{e} &= (1-\xi-\eta)(-\xi-\eta+\frac{1}{2}\zeta)(1+\zeta), \\ \hat{N}_{5}^{e} &= \xi(\xi+\frac{1}{2}\zeta-1)(1+\zeta), & \hat{N}_{6}^{e} &= \eta(\eta+\frac{1}{2}\zeta-1)(1+\zeta), \\ \hat{N}_{7}^{e} &= 2\xi(1-\xi-\eta)(1-\zeta), & \hat{N}_{8}^{e} &= 2\xi\eta(1-\zeta), \\ \hat{N}_{9}^{e} &= 2\eta(1-\xi-\eta)(1-\zeta), & \hat{N}_{10}^{e} &= 2\xi(1-\xi-\eta)(1+\zeta), \\ \hat{N}_{11}^{e} &= 2\xi\eta(1+\zeta), & \hat{N}_{12}^{e} &= 2\eta(1-\xi-\eta)(1+\zeta), \\ \hat{N}_{13}^{e} &= (1-\xi-\eta)(1-\zeta^{2}), & \hat{N}_{14}^{e} &= \xi(1-\zeta^{2}), \\ \hat{N}_{15}^{e} &= \eta(1-\zeta^{2}), \end{split}$$



$$\begin{split} \hat{P}_1^e &= (-1,-1,-1) & \hat{P}_2^e = ( \ 1,-1,-1) \\ \hat{P}_3^e &= ( \ 1,\ 1,-1) & \hat{P}_4^e = (-1,\ 1,-1) \\ \hat{P}_5^e &= (-1,-1,\ 1) & \hat{P}_6^e = ( \ 1,-1,\ 1) \\ \hat{P}_7^e &= ( \ 1,\ 1,\ 1) & \hat{P}_8^e = (-1,\ 1,\ 1) \\ \hat{P}_9^e &= ( \ 0,-1,-1) & \hat{P}_{10}^e = ( \ 1,\ 0,-1) \\ \hat{P}_{11}^e &= ( \ 0,\ 1,-1) & \hat{P}_{12}^e = (-1,\ 0,\ -1) \\ \hat{P}_{13}^e &= ( \ 0,-1,\ 1) & \hat{P}_{14}^e = ( \ 1,\ 0,\ 1) \\ \hat{P}_{15}^e &= ( \ 0,\ 1,\ 1) & \hat{P}_{16}^e = (-1,\ 0,\ 1) \\ \hat{P}_{17}^e &= (-1,-1,\ 0) & \hat{P}_{18}^e = ( \ 1,-1,\ 0) \\ \hat{P}_{19}^e &= ( \ 1,\ 1,\ 0) & \hat{P}_{20}^e = (-1,\ 1,\ 0) \end{split}$$

Obr. 29. Šestistěnný referenční prvek

pro prvek H8 je

$$\begin{split} \hat{N}_1^e &= \frac{1}{8}(1-\xi)(1-\eta)(1-\zeta), \quad \hat{N}_2^e &= \frac{1}{8}(1+\xi)(1-\eta)(1-\zeta), \\ \hat{N}_3^e &= \frac{1}{8}(1+\xi)(1+\eta)(1-\zeta), \quad \hat{N}_4^e &= \frac{1}{8}(1-\xi)(1+\eta)(1-\zeta), \\ \hat{N}_5^e &= \frac{1}{8}(1-\xi)(1-\eta)(1+\zeta), \quad \hat{N}_6^e &= \frac{1}{8}(1+\xi)(1-\eta)(1+\zeta), \\ \hat{N}_7^e &= \frac{1}{8}(1+\xi)(1+\eta)(1+\zeta), \quad \hat{N}_8^e &= \frac{1}{8}(1-\xi)(1+\eta)(1+\zeta) \end{split}$$

a pro prvek H20 je

$$\begin{split} \hat{N}_{1}^{e} &= \frac{1}{8}(1-\xi)(1-\eta)(1-\zeta)(-\xi-\eta-\zeta-2), \\ \hat{N}_{2}^{e} &= \frac{1}{8}(1+\xi)(1-\eta)(1-\zeta)(\xi-\eta-\zeta-2), \\ \hat{N}_{3}^{e} &= \frac{1}{8}(1+\xi)(1+\eta)(1-\zeta)(-\xi+\eta-\zeta-2), \\ \hat{N}_{4}^{e} &= \frac{1}{8}(1-\xi)(1-\eta)(1+\zeta)(-\xi-\eta+\zeta-2), \\ \hat{N}_{5}^{e} &= \frac{1}{8}(1-\xi)(1-\eta)(1+\zeta)(\xi-\eta+\zeta-2), \\ \hat{N}_{6}^{e} &= \frac{1}{8}(1+\xi)(1-\eta)(1+\zeta)(\xi+\eta+\zeta-2), \\ \hat{N}_{7}^{e} &= \frac{1}{8}(1-\xi)(1+\eta)(1+\zeta)(-\xi+\eta+\zeta-2), \\ \hat{N}_{8}^{e} &= \frac{1}{4}(1-\xi^{2})(1-\eta)(1-\zeta), \\ \hat{N}_{11}^{e} &= \frac{1}{4}(1-\xi^{2})(1-\eta)(1-\zeta), \\ \hat{N}_{15}^{e} &= \frac{1}{4}(1-\xi^{2})(1-\eta)(1+\zeta), \\ \hat{N}_{15}^{e} &= \frac{1}{4}(1-\xi^{2})(1-\eta)(1+\zeta), \\ \hat{N}_{15}^{e} &= \frac{1}{4}(1-\xi^{2})(1-\eta)(1+\zeta), \\ \hat{N}_{15}^{e} &= \frac{1}{4}(1-\xi^{2})(1+\eta)(1-\zeta^{2}), \\ \hat{N}_{19}^{e} &= \frac{1}{4}(1-\xi)(1-\eta^{2})(1-\eta^{2}), \\ \hat{N}_{19}^{e} &= \frac{1}{4}(1-\xi)(1-\eta)(1-\zeta^{2}), \\ \hat{N}_{19}^{e} &= \frac{1}{4}(1-\xi)(1+\eta)(1-\zeta^{2}), \\ \hat{N}_{20}^{e} &= \frac{1}{4}(1-\xi)(1+\eta)(1-\zeta^{2}). \end{split}$$

"Reálný" prveke je obrazem referenčního prvku $\hat{e}$ v zobrazení

$$x = x^{e}(\xi, \eta, \zeta) = \sum_{i=1}^{p_{e}} x_{i}^{e} \hat{N}_{i}^{e}(\xi, \eta, \zeta),$$
  

$$y = y^{e}(\xi, \eta, \zeta) = \sum_{i=1}^{p_{e}} y_{i}^{e} \hat{N}_{i}^{e}(\xi, \eta, \zeta), \quad \text{pro} \ (\xi, \eta, \zeta) \in \hat{e},$$
  

$$z = z^{e}(\xi, \eta, \zeta) = \sum_{i=1}^{p_{e}} z_{i}^{e} \hat{N}_{i}^{e}(\xi, \eta, \zeta)$$
(3.1)

kde  $(x_i^e, y_i^e, z_i^e)$  jsou souřadnice uzlu  $P_i^e, i = 1, \ldots, p_e$ . Za přirozených, v praktických situacích vždy splněných předpokladů je Jacobiova matice

$$\mathbf{J}^{e}(\xi,\eta,\zeta) = \begin{pmatrix} \frac{\partial x^{e}(\xi,\eta,\zeta)}{\partial\xi} & \frac{\partial x^{e}(\xi,\eta,\zeta)}{\partial\eta} & \frac{\partial x^{e}(\xi,\eta,\zeta)}{\partial\zeta} \\ \frac{\partial y^{e}(\xi,\eta,\zeta)}{\partial\xi} & \frac{\partial y^{e}(\xi,\eta,\zeta)}{\partial\eta} & \frac{\partial y^{e}(\xi,\eta,\zeta)}{\partial\zeta} \\ \frac{\partial z^{e}(\xi,\eta,\zeta)}{\partial\xi} & \frac{\partial z^{e}(\xi,\eta,\zeta)}{\partial\eta} & \frac{\partial z^{e}(\xi,\eta,\zeta)}{\partial\zeta} \end{pmatrix}$$
(3.2)

zobrazení (3.1) je regulární pro každé  $(\xi,\eta,\zeta)\in \hat{e}$ a tedy existuje inverzní zobrazení

$$\xi = \xi^e(x, y, z), \quad \eta = \eta^e(x, y, z), \quad \zeta = \zeta^e(x, y, z) \quad \text{pro} \ (x, y, z) \in e \tag{3.3}$$

přiřazující ke každému bodu  $(x, y, z) \in e$  bod  $(\xi, \eta, \zeta)$  elementu  $\hat{e}$ . Bázové funkce na prvku e definujeme předpisem

$$w_i^e(x, y, z) = \hat{N}_i^e(\xi^e(x, y, z), \eta^e(x, y, z), \zeta^e(x, y, z)), \quad i = 1, \dots, p_e,$$
(3.4)

a násadu vyjádříme ve tvaru

$$v = v^{e}(x, y, z) = \sum_{i=1}^{p_{e}} v_{i}^{e} w_{i}^{e}(x, y, z), \text{ kde } v_{i}^{e} = v(x_{i}^{e}, y_{i}^{e}, z_{i}^{e}), i = 1, \dots, p_{e}.$$
(3.5)

V dalším budeme pro libovolnou funkci g(x, y, z) definovanou na prvku e užívat označení

$$\hat{g}^e = \hat{g}^e(\xi, \eta, \zeta) = g(x^e(\xi, \eta, \zeta), y^e(\xi, \eta, \zeta), y^e(\xi, \eta, \zeta)) \quad \text{pro} \ (\xi, \eta, \zeta) \in \hat{e}.$$

Protože

$$\hat{v}^e(\xi,\eta,\zeta) = \sum_{i=1}^{p_e} v_i^e \hat{N}_i^e(\xi,\eta,\zeta) \quad \text{pro} \ (\xi,\eta,\zeta) \in \hat{e}_i$$

je násada  $\hat{v}^e$  vyjádřena formálně stejně jako souřadnice  $x^e$ ,  $y^e$  a  $z^e$  popisující geometrii, viz (3.1), tedy máme izoparametrický prvek. Oblast  $\Omega$  vykryjeme konečnými prvky (tj. triangulujeme ji). Použijeme buďto prvky T4, P6 a H8 (s uzly jen ve vrcholech) nebo prvky T10, P15 a H20 (s uzly také na hranách). Množinu  $\mathcal{T}$  všech prvků nazveme triangulací, sjednocení všech prvků triangulace označíme  $\overline{\Omega}_h$ . Hranici oblasti  $\Omega_h$  značíme  $\Gamma_h$ . Částem  $\Gamma_1$  a  $\Gamma_2$  hranice  $\Gamma$  vhodným způsobem přiřadíme jejich aproximace  $\Gamma_{1h}$  a  $\Gamma_{2h}$ . V moderních programech MKP je triangulace generována automaticky: uživatel specifikuje oblast, materiálové vlastnosti, okrajové podmínky a typ prvků, zbytek "zařídí program". Konečněprvkový prostor  $X_h$  definujeme jako prostor funkcí v(x, y, z) definovaných na  $\overline{\Omega}_h$  takových, že jejich restrikce na element e je tvaru (3.5).

Stěny prvků budeme značit S, množinu všech stěn ležících na hranici  $\Gamma_{2h}$  označíme S. Prvky T4, P6, H8 s přímými hranami mají dva typy stěn, trojúhelníkové F3 a čtyřúhelníkové F4, viz obrázky 30 a 31,



Obr. 30. Stěna F3

Obr. 31. Stěna F4

prvky T10, P15 a H20 s křivými hranami mají rovněž dva typy stěn, trojúhelníkové F6 a čtyřúhelníkové F8, viz obrázky 32 a 33. (Stěny značíme F podle prvního písmene anglického překladu "face" českého slova stěna.)



Obr. 32. Stěna F6

Obr. 33. Stěna F8

Referenční prvek  $\hat{S}$  příslušný trojúhelníkovým stěnám F3, F6 a čtyřúhelníkovým stěnám F4, F8 je zakreslen na obrázku 34 a 35.



Obr. 34. Referenční prvek stěn F3 a F6

Obr. 35. Referenční prvek stěn F4 a F8

Na referenčních prvcích definujeme bázové funkce: pro stěnu F3

$$N_1^S = 1 - \xi - \eta,$$
  $N_2^S = \xi,$   $N_3^S = \eta_2$ 

pro stěnu F6 $\,$ 

$$\begin{split} \hat{N}_1^S &= 2(1-\xi-\eta)(\frac{1}{2}-\xi-\eta), \quad \hat{N}_4^S &= 4\xi(1-\xi-\eta), \\ \hat{N}_2^S &= 2\xi(\xi-\frac{1}{2}), \qquad \qquad \hat{N}_5^S &= 4\xi\eta, \\ \hat{N}_3^S &= 2\eta(\eta-\frac{1}{2}), \qquad \qquad \hat{N}_6^S &= 4\eta(1-\xi-\eta), \end{split}$$

pro stěnu F4

$$\hat{N}_1^S = \frac{1}{4}(1-\xi)(1-\eta), \quad \hat{N}_3^S = \frac{1}{4}(1+\xi)(1+\eta), \\
\hat{N}_2^S = \frac{1}{4}(1+\xi)(1-\eta), \quad \hat{N}_4^S = \frac{1}{4}(1-\xi)(1+\eta),$$

a pro stěnu F8

$$\begin{split} \hat{N}_1^S &= \frac{1}{4}(1-\xi)(1-\eta)(-\xi-\eta-1), \quad \hat{N}_5^S &= \frac{1}{2}(1-\xi^2)(1-\eta), \\ \hat{N}_2^S &= \frac{1}{4}(1+\xi)(1-\eta)(\xi-\eta-1), \qquad \hat{N}_6^S &= \frac{1}{2}(1+\xi)(1-\eta^2), \\ \hat{N}_3^S &= \frac{1}{4}(1+\xi)(1+\eta)(\xi+\eta-1), \qquad \hat{N}_7^S &= \frac{1}{2}(1-\xi^2)(1+\eta), \\ \hat{N}_4^S &= \frac{1}{4}(1-\xi)(1+\eta)(-\xi+\eta-1), \quad \hat{N}_8^S &= \frac{1}{2}(1-\xi)(1-\eta^2). \end{split}$$

Geometrii stěny S určuje zobrazení

$$x = x^{S}(\xi, \eta) = \sum_{i=1}^{p_{S}} x_{i}^{S} \hat{N}_{i}^{S}(\xi, \eta),$$
  

$$y = y^{S}(\xi, \eta) = \sum_{i=1}^{p_{S}} y_{i}^{S} \hat{N}_{i}^{S}(\xi, \eta), \quad \text{pro} \ (\xi, \eta) \in \hat{S},$$
  

$$z = z^{S}(\xi, \eta) = \sum_{i=1}^{p_{S}} z_{i}^{S} \hat{N}_{i}^{S}(\xi, \eta)$$
  
(3.6)

kde  $(x_i^S, y_i^S, z_i^S)$  jsou souřadnice uzlu  $P_i^S$ ,  $i = 1, \ldots, p_S$ ,  $p_S = 3$  pro stěnu F3,  $p_S = 4$  pro stěnu F4,  $p_S = 6$  pro stěnu F6,  $p_S = 8$  pro stěnu F8. Na stěně S definujeme bázové funkce

$$w_i^S(x, y, z) = \hat{N}_i^S(\xi, \eta), \quad i = 1, \dots, p_S,$$
(3.7)

kde  $(\xi,\eta)\in \hat{S}$ je vzorem bodu  $(x,y,z)\in S$ v zobrazení (3.6). Bázová funkce  $w_i^S(x,y,z)$ je zřejmě restrikcí bázové funkce  $w_j^e(x,y,z)$  pro $P_j^e\equiv P_i^S$ na stěnuS. Restrikci konečněprvkové funkce vz prostoru $X_h$ na stranuSlze vyjádřit ve tvaru

$$v = v^{S}(x, y, z) = \sum_{i=1}^{p_{S}} v_{i}^{S} w_{i}^{S}(x, y, z), \text{ kde } v_{i}^{S} = v(x_{i}^{S}, y_{i}^{S}, z_{i}^{S}), i = 1, \dots, p_{S},$$
(3.8)

pro  $(x, y, z) \in S$  a ve tvaru

$$\hat{v}^{S}(\xi,\eta) = \sum_{i=1}^{p_{S}} v_{i}^{S} \hat{N}_{i}^{S}(\xi,\eta)$$
(3.9)

pro $(\xi,\eta)\in \hat{S}.$ Pro funkcig(x,y,z) definovanou na stěně Soznačme

$$\hat{g}^{S} = \hat{g}^{S}(\xi, \eta) = g(x^{S}(\xi, \eta), y^{S}(\xi, \eta), z^{S}(\xi, \eta)) \text{ pro } (\xi, \eta) \in \hat{S}$$

K funkcím $\alpha$  a  $\beta$  přiřadíme interpolanty  $\alpha^I$  a  $\beta^I,$  jejichž restrikce  $\alpha^{IS}$  a  $\beta^{IS}$ na stěnách  $S\in \mathbb{S}$ jsou tvaru

$$\alpha^{IS}(x, y, z) = \sum_{i=1}^{p_S} \alpha(x_i^S, y_i^S, z_i^S) w_i^S(x, y, z),$$

$$\beta^{IS}(x, y, z) = \sum_{i=1}^{p_S} \beta(x_i^S, y_i^S, z_i^S) w_i^S(x, y, z).$$
(3.10)

Protože

$$\int_{e} g(x, y, z) \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_{\hat{e}} \hat{g}(\xi, \eta, \zeta) |\det \mathbf{J}^{e}| \, \mathrm{d}\xi \, \mathrm{d}\eta \, \mathrm{d}\zeta,$$

přibližnou hodnotu integrálu na elementu e počítáme užitím kvadraturní formule  $\hat{I}^e(\cdot)$  na referenčním elementu  $\hat{e}$ ,

$$I^{e}(g) = \hat{I}^{e}(\hat{g}^{e}|\det \mathbf{J}^{e}|).$$
(3.11)

Podobně postupujeme při přibližném výpočtu integrálu na stěně S. Využijeme vztahu

$$\int_{S} g(x, y, z) \, \mathrm{d}s = \int_{\hat{S}} \hat{g}(\xi, \eta) J^{S}(\xi, \eta) \, \mathrm{d}\xi \, \mathrm{d}\eta,$$

kde

$$J^{S} = \sqrt{EG - F^{2}},$$

$$E = \left(\frac{\partial x^{S}}{\partial \xi}\right)^{2} + \left(\frac{\partial y^{S}}{\partial \xi}\right)^{2} + \left(\frac{\partial z^{S}}{\partial \xi}\right)^{2},$$

$$F = \frac{\partial x^{S}}{\partial \xi}\frac{\partial x^{S}}{\partial \eta} + \frac{\partial y^{S}}{\partial \xi}\frac{\partial y^{S}}{\partial \eta} + \frac{\partial z^{S}}{\partial \xi}\frac{\partial z^{S}}{\partial \eta},$$

$$G = \left(\frac{\partial x^{S}}{\partial \eta}\right)^{2} + \left(\frac{\partial y^{S}}{\partial \eta}\right)^{2} + \left(\frac{\partial z^{S}}{\partial \eta}\right)^{2},$$
(3.12)

a počítáme

$$I^{S}(g) = \hat{I}^{S}(\hat{g}^{S}J^{S}), \tag{3.13}$$

kde  $\hat{I}^{S}(\cdot)$  je kvadraturní formule na referenčním elementu  $\hat{S}$ .

Diskrétní slabá formulace má tvar (2.18), množina přípustných řešení  $W_h$  a prostor testovacích funkcí  $V_h$  viz (2.15) a (2.14), bilineární forma  $a_h(U, v)$  a lineární funkcionál  $L_h(v)$  viz (2.160) a (2.161). Elementární matice a vektory se získají zcela analogicky jako ve 2D případě,

$$\mathbf{K}^{e1} = \hat{I}^{e}([\hat{\mathbf{L}}^{e}]^{T}[\hat{\mathbf{J}}^{e}]^{-1}\hat{p}^{e}[\hat{\mathbf{J}}^{e}]^{-T}\hat{\mathbf{L}}^{e}|\det\mathbf{J}^{e}|), \qquad (3.14)$$

$$\mathbf{K}^{e2} = \hat{I}^{e}([\hat{\mathbf{N}}^{e}]^{T} \hat{q}^{e} \, \hat{\mathbf{N}}^{e} |\det \mathbf{J}^{e}|), \tag{3.15}$$

$$\mathbf{F}^{e} = \hat{I}^{e}([\hat{\mathbf{N}}^{e}]^{T} \hat{f}^{e} |\det \mathbf{J}^{e}|), \qquad (3.16)$$

$$\mathbf{K}^{S} = \hat{I}^{S}([\hat{\mathbf{N}}^{S}]^{T}\hat{\alpha}^{IS}\,\hat{\mathbf{N}}^{S}J^{S}),\tag{3.17}$$

$$\mathbf{F}^{S} = \hat{I}^{S}([\hat{\mathbf{N}}^{S}]^{T}\hat{\beta}^{IS}J^{S}), \qquad (3.18)$$

kde  $\hat{\mathbf{N}}^e = (\hat{N}_1^e, \dots, \hat{N}_{p_e}^e), \ \hat{\mathbf{L}}^e = (\hat{\nabla}\hat{N}_1^e, \dots, \hat{\nabla}\hat{N}_{p_e}^e)$  přičemž  $\hat{\nabla} = (\partial/\partial\xi, \partial/\partial\eta, \partial/\partial\zeta)^T,$  $[\mathbf{J}^e]^{-T} = \{[\mathbf{J}^e]^T\}^{-1}$  je matice inverzní k matici  $[\mathbf{J}^e]^T$  a  $\hat{\mathbf{N}}^S = (\hat{N}_1^S, \dots, \hat{N}_{p_S}^S).$ 

Zbývá uvést vhodné formule numerické integrace. Pro prvek T4 lze užít formuli

$$\hat{I}^{e}(\hat{g}) = \frac{1}{6}\hat{g}(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \tag{3.19}$$

nebo formuli

$$\hat{I}^{e}(\hat{g}) = \frac{1}{24} [\hat{g}(0,0,0) + \hat{g}(1,0,0) + \hat{g}(0,1,0) + \hat{g}(0,0,1)].$$
(3.20)

Obě formule (3.19) i (3.20) integrují přesně polynomy  $\xi^i \eta^j \zeta^k$  pro  $0 \le i + j + k \le 1$ . Při výpočtu matice  $\mathbf{K}^{e_2}$  dáme přednost formuli (3.20), neboť v tom případě je matice  $\mathbf{K}^{e_2}$  diagonální. Pro prvek T10 je vhodná formule

$$\hat{I}^{e}(\hat{g}) = \frac{1}{24} [\hat{g}(a, a, a) + \hat{g}(b, a, a) + \hat{g}(a, b, a) + \hat{g}(a, a, b)]$$
  
pro  $a = 0, 25 - \sqrt{0,0125}, \quad b = 1 - 3a,$ 
(3.21)

která integruje přesně polynom<br/>y $\xi^i \eta^j \zeta^k$  pro $0 \le i + j + k \le 2$ . Prvky P6, P15, H8 a H20 integrujeme užitím Gaussových součinových formulí (pro prvky P6 a P15 modifikovaných pro hranol s trojúhelníkovou podstavou, viz například [32]). Pro prvek P6 užijeme formuli

$$\hat{I}^{e}(\hat{g}) = \frac{1}{8} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} A_{i} B_{j} B_{k} \hat{g} \left( \frac{1}{2} (1-u_{i}), \frac{1}{4} (1+u_{i}) (1-v_{j}), v_{k} \right),$$
(3.22)

přičemž

$$u_{1} = -0,2898\,9794\,8556\,6356, \quad v_{1} = -\frac{\sqrt{3}}{3},$$

$$u_{2} = 0,6898\,9794\,8556\,6357, \quad v_{2} = \frac{\sqrt{3}}{3},$$

$$A_{1} = 0,7278\,3447\,3024\,0913, \quad B_{1} = 1,$$

$$A_{2} = 1,2721\,6552\,6975\,9087, \quad B_{2} = 1.$$
(3.23)

Formule (3.22) integruje přesně polynom<br/>y $\xi^i\eta^j\zeta^k$  pro $0\le i+j\le 3,\,0\le k\ \le 3.$ Pro prvek P15 užijeme formuli

$$\hat{I}^{e}(\hat{g}) = \frac{1}{8} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} A_{i}B_{j}B_{k}\hat{g}\left(\frac{1}{2}(1-u_{i}), \frac{1}{4}(1+u_{i})(1-v_{j}), v_{k}\right),$$
(3.24)

přičemž

$$u_{1} = -0,5753\,1892\,3521\,6941, \quad v_{1} = -\sqrt{0,6},$$

$$u_{2} = 0,1810\,6627\,1118\,5306, \quad v_{2} = 0,$$

$$u_{3} = 0,8228\,2408\,0974\,5921, \quad v_{3} = \sqrt{0,6},$$

$$A_{1} = 0,2793\,0791\,9605\,8165, \quad B_{1} = \frac{5}{9},$$

$$A_{2} = 0,9169\,6442\,5438\,3450, \quad B_{2} = \frac{8}{9},$$

$$A_{3} = 0,8037\,2765\,4955\,8385, \quad B_{3} = \frac{5}{9}.$$
(3.25)

Formule (3.24) integruje přesně polynom<br/>y $\xi^i\eta^j\zeta^k$  pro $0\le i+j\le 5,\,0\le k\ \le 5.$ Pro prvek H8 užijeme formuli

$$\hat{I}^{e}(\hat{g}) = \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} B_{i} B_{j} B_{k} \hat{g}\left(v_{i}, v_{j}, v_{k}\right), \qquad (3.26)$$

kde  $B_i$  a  $v_i$  jsou určeny podle (3.23). Formule (3.26) integruje přesně polynomy  $\xi^i \eta^j \zeta^k$  pro  $0 \le i, j, k \le 3$ . Pro prvek H20 užijeme formuli

$$\hat{I}^{e}(\hat{g}) = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} B_{i} B_{j} B_{k} \hat{g} \left( v_{i}, v_{j}, v_{k} \right), \qquad (3.27)$$

kde  $B_i$  a  $v_i$  jsou určeny podle (3.25). Formule (3.27) integruje přesně polynomy  $\xi^i \eta^j \zeta^k$  pro  $0 \le i, j, k \le 5$ .

Při integraci na plošných prvcích F3, F6, F4 a F8 použijeme stejné formule jako při integraci 2D prvků T3, T6, Q4 a Q8, viz formule (2.176) - (2.179). Tedy pro prvek F3 užijeme formuli

$$\hat{I}^{S}(\hat{g}) = \frac{1}{6} [\hat{g}(0,0) + \hat{g}(1,0) + \hat{g}(0,1)], \qquad (3.28)$$

která integruje přesně polynomy  $\xi^i \eta^j$  pro  $0 \le i + j \le 1$ , pro prvek F6 formuli

$$\hat{I}^{S}(\hat{g}) = \frac{1}{6} [\hat{g}(\frac{1}{2}, 0) + \hat{g}(\frac{1}{2}, \frac{1}{2}) + \hat{g}(0, \frac{1}{2})],$$
(3.29)

která integruje přesně polynomy  $\xi^i \eta^j$  pro  $0 \le i + j \le 2$ , pro prvek F4 formuli

$$\hat{I}^{S}(\hat{g}) = \sum_{i=1}^{2} \sum_{j=1}^{2} B_{i} B_{j} \hat{g}(v_{i}, v_{j}), \qquad (3.30)$$

 $B_i, v_i$ viz (3.23), která integruje přesně polynom<br/>y $\xi^i \eta^j$  pro $0 \le i,j \le 3,$ a pro prvek F8 formuli

$$\hat{I}^{S}(\hat{g}) = \sum_{i=1}^{3} \sum_{j=1}^{3} B_{i} B_{j} \hat{g}(v_{i}, v_{j}), \qquad (3.31)$$

 $B_i$ ,  $v_i$  viz (3.25), která integruje přesně polynomy  $\xi^i \eta^j$  pro  $0 \le i, j \le 5$ .

Sestavení soustavy rovnic a zpracování výsledků je podobné jako ve 2D případě, viz odstavec 2.13. Pro chybu u - Uplatí vztah (2.186), kde r = 2 pro prvky T10, P15, H20 a r = 1 pro prvky T4, P6, H8.

# Literatura

- ANSYS: Users manual I-IV (Procedures, Commands, Elements, Theory) and App. Substructuring, Version 5.0, Swanson Analysis Systems, Inc., Houston, Pensylvania, USA, 1992-1993.
- [2] K. J. Bathe: *Finite Elements Procedures*, Prentice-Hall, Upper Saddle River, NJ, 1996.
- [3] M. Bercovier, O. Pironneau, V. Sastri: Finite Elements and characteristics for some parabolic-hyperbolic problems, Appl. Math. Modelling, vol 7, 1983, strany 89-96.
- [4] Z. Bittnar, J. Šejnoha: Numerické metody mechaniky, vydavatelství ČVUT, Praha, 1992.
- [5] L. Čermák: Numerické metody II, skripta FS VUT Brno, Akademické nakladatelství CERM, Brno, 2004.
- [6] M. Feistauer, J. Felcman, M. Lukáčová-Medvid'ová: On the convergence of a combined finite volume-finite element method for nonlinear convection-diffusion problems, Numer. Methods Partial Differ. Equations, 13, strany 163-190, 1997.
- [7] M. Feistauer, J. Felcman, I. Straškraba: Mathematical and Computational Methods for Compressible Flow, Clarendon Press, Oxford, 2003.
- [8] M. Fiedler: Speciální matice a jejich použití v numerické matematice, SNTL, Praha, 1981.
- [9] C. Johnson: Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987.
- [10] V. Kolář, J. Kratochvíl, F. Leitner, A. Ženíšek: Výpočet plošných a prostorových konstrukcí metodou konečných prvků, SNTL, Praha, 1979.
- [11] V. Kolář, I. Němec, V. Kanický: FEM. Principy a praxe metody konečných prvků, Computer Press, Brno, 1997.
- [12] MATLAB: Partial Differential Equation Toolbox User's Guide, verze 6, The MathWorks, Inc., Massachusetts, USA, 2000.
- [13] G. Meurant: Computer Solution of Large Linear Systems, Elsevier, Amsterodam, 1999.
- [14] S. Míka, P. Přikryl: Numerické řešení parciálních diferenciálních rovnic, skripta ZCU Plzeň, vydavatelstvi ZČU, Plzeň, 1995.
- [15] S. Míka, P. Přikryl: Numerické řešení parciálních diferenciálních rovnic, evoluční rovnice, skripta ZČU Plzeň, vydavatelstvi ZČU, Plzeň, 1996.
- [16] K.W. Morton: Numerical Solution of Convection-Diffusion Problems, Chapman & Hall, London, 1996.
- [17] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction, Elsevier Scientific Publishing Company, Amsterdam, 1981.
- [18] NEXIS: Programový systém NEXX3.XX pro výpočet konstrukcí metodou konečných prvků, http://www.fem.cz/ProduktyNEXIS.htm.

- [19] J.M. Ortega, W.C. Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
- [20] O. Pironneau: On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numerische Mathematik 38, 1982, strany 309-332.
- [21] J. Polák: Variační principy a metody teorie elektromagnetického pole, Academia, Praha, 1988.
- [22] M. Práger: Variační metody numerického řešení úloh s okrajovými podmínkami pro diferenciální rovnice. Metoda konečných prvků. Metoda hraničních prvků., in: K. Rektorys a spolupracovníci: Přehled užité matematiky, Prometheus, Praha, 1995.
- [23] J. Ravinger: Programy. Statika, stabilita a dynamika stavebných konštrukcií, Alfa, Bratislava, 1990.
- [24] Y. Saad: Variations on Arnoldi's Method for Computing Eigenelements of Large Unsymmetric Matrices, Linear Algebra and its Applications, Vol 34, 1980, strany 269-295.
- [25] R. Servít, E. Doležalová, M. Crha: Teorie pružnosti a plasticity, SNTL, Praha, 1981.
- [26] L.F. Shampine: Numerical Solution of ordinary differential equations, Chapman & Hall, New York, 1994.
- [27] J. Valenta, J. Němec, E. Ulrych: Novodobé metody výpočtů tuhosti a pevnosti ve strojírenství, SNTL, Praha, 1975.
- [28] J. Valchářová: Soudobé numerické metody v mechanice kontinua, SNTL, Praha, 1986.
- [29] O. C. Zienkiewicz, R. L. Taylor: The Finite Element Method, Volume I: The Basis, Butterworth-Heinemann, Oxford, 2000.
- [30] A. Żeníšek: Matematické základy metody konečných prvků, skripta FS VUT Brno, PC-DIR, Brno, 1997.
- [31] A. Żeníšek: Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations, Academic Press, London, 1990.
- [32] A. Zeníšek: Numerická integrace na trojúhelníkových prvcích, Vodohosp. Cas. 25, č. 6, strany 586-593, 1977.