
Node Colouring  (simple graphs without loops)

A graph is said to be coloured if each vertex is assigned a colour in such a 

way that any two adjacent nodes are assigned different colours.

If, in a graph, such an assignment is possible using at most k colours, we 

call the graph k-colourable.

The smallest value of k for which a graph G is k-colourable is the 

chromatic number of G, formally denoted by G  .

                                                                             2-colourable graph

     



Let Kn denote a complete graph with n nodes, Dn graph with n nodes and no 

edges, and Km,n a bipartite graph with m+n nodes. 

The following assertions can be proved easily:

(a) G=1⇔G=Dn

(b) K n=n

(c) K m ,n=2  



The following assertion is also easy to see:

A circle is 2-colourable iff it has an even number of nodes  

Consequently, a graph containing no odd circle is 2-colourable and one 

containing an odd cycle is not 2-colourable. A tree, which is known to 

contain no circle at all, is thus 2-colourable. 



Graph planarity

A graph G (not necessarily simple) is called planar, if it can be drawn in a 

plane so that any two of its edges may only intersect at a node. A planar 

graph drawn in this way is called a plane graph. The two-dimensional 

region bounded by edges in a plane graph is called a face and the nodes and 

edges around a face are its boundaries.
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THEOREM 1 (Euler 1750)

If a connected plane graph has n nodes and m edges and forms p faces, then

n−m p=2    

Proof:

Let G be a plane, connected graph. We will proceed by induction on the 

number of edges. If m = 0, then n = 1 since G is connected and p = 1 so that 

the equation holds. Let the equation hold for any m=k−1 . Let G be a 

graph with n nodes and k edges. If G is a tree, the equation clearly holds 

(every tree with n nodes has exactly n−1 edges and encloses no face). If it 

is not a tree, it contains a circle C. Let e be an edge of C and let us delete it 

forming graph G'. G' is still be connected, has n nodes and k−1  edges. 



Thus , it has 2−nk−1=1−nk faces. However, removing an edge 

from a circle causes the face enclosed by it to merge with the other face 

having e as its boundary. Thus the number of faces of G is by one greater 

than that of G' and G has 2−nk faces.         
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THEOREM 2

Let G be a  simple connected planar graph with n nodes and m edges. Then 

m≤3 n−6 .

Proof: If n=3 , then the assertion is clear. Let us draw G so that it has 

faces F 1, F 2,F p . Let ri be the number of edges that define face Fi. Since 

G is simple, ri is at least three. This means 3 p≤r1r2⋯r p . Now, in 

counting the total number of edges in the boundaries, each edge is counted 

at most twice. Thus the right side of the inequality is at most 2m. By 

Theorem 1, we have 3 2−nm=3 p≤2 m , which proves the theorem.

 



We will use the above theorem to prove the non-planarity of the following 

graphs:

                         K5 K3,3



The non-planarity of K5 follows directly from Theorem 2 since it has 10 

edges but a planar graph with such a number of edges cannot have more 

than 9 edges.

The non-planarity of K3,3 can be proved by contradiction. Suppose that it is 

planar. Then it can be established that it has exactly 5 faces using Theorem 

1 with n = 6 and m =  9. Recall that a bipartite graph has no odd circles. 

Therefore there must be at least 20 edges to define the boundaries  of those 

5 faces. Each edge is counted at most twice so that K3,3 must have at least 

10 edges. This is a contradiction since it only has 9 edges. 



Thus, any graph that has K5 or K3,3 as a subgraph is non-planar.       

Two graphs G1 and G2 are said to be homeomorphic (or identical up to 

nodes of degree 2) if both G1 and G2 can be obtained from a graph G3 by 

introducing new nodes of degree 2 on its edges.
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THEOREM 3

A graph is planar if and only if it contains no subgraph homeomorphic to 

K5 or K3,3.

   

This theorem was proved by Kuratowski in 1930. 

For a proof, see, for example 

BONDY, J. A., and MURTY, U. S. R. Graph Theory with Applications, 

Elsevier, New York, 1976.

   



THEOREM 4:

A planar graph G is 5-colourable.

Proof:

We will proceed by induction on the number of nodes of G. Let every 

graph with less than n nodes be 5 colourable. Consider a graph G= N , E   

with n nodes and construct its colouring using 5 colours. Let u∈N  and 

denote by Gu the graph created from G by removing the node u along with 

the edges incident on it. As Gu has n−1 nodes, it can be coloured using 5 

colours. If there are fewer than 5 nodes adjacent to u in G, u can be 

coloured with the colour not assigned to any of its adjacent nodes. Suppose 

that there are at least 5 adjacent nodes  u1, u2, u3, u4, u5  to u in G.



Let node ui be assigned colour ci. If the colours c1, c2, c3, c4, c5  are not 

distinct, node u can be assigned the colour that is not included in 

c1, c2, c3, c4, c5  which provides the desired colouring of G. Suppose now that 

ci≠c j ,1≤i j≤5 and let the node u be assigned, say, colour c5.   
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Denote by H13 the subgraph of G induced by nodes with colours c1 and c3. 

Similarly, H24 will denote the subgraph of G induced by nodes with colours 

c2 and c4 . We will now prove that it is not possible for nodes u1 and u3 to be 

in the same component of H13 if nodes u2 and u4 are in the same component 

of H24.
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Suppose that nodes u1 and u3 are in the same component of H13, then there 

is in G a path between them containing only nodes with colours c1 and c3. 

Since nodes u2 and u4 are in the same component of H24, there is in G a path 

between them containing only the nodes assigned colours c2 and c4. 

However, this is not possible since G is planar and the colour of the blue 

node would have to be both in {c1, c3} and {c2, c4} .
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Let then nodes u1 and u3 be in different components of H13 with u1 being, 

say, in a component K1. We may swap in K1 the assignment of colours to 

nodes, that is, assign colour c3 to nodes originally assigned colour c1 and 

vice versa. Clearly, this new assignment with both u1 and  u3 being assigned 

the same colour c3 and node u being assigned colour c1 is a colouring of G.



THEOREM 5

A planar graph G is 4-colourable.

This theorem had been known as the four-colour hypothesis for over 150 

years until 1976, when it was proved by Appel and Haken.

Given a geographical map, we can construct a planar graph as follows. 

Each country is represented by a node. Two nodes are joined by an edge if 

the two countries have a common border. The minimum number of colours 

required to colour the map is the chromatic number of the graph thus 

constructed. Every map gives rise to a planar graph and vice versa.


