A connected graph with no circles 1s called a tree
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We will prove a number of statements on graphs. As it is, each of them

might itself be used to define a tree:



1. In a tree, there is a unique simple path between every pair of nodes.

Let u and v be two nodesinatree 7=(N,E) .

Let P,(u,v) be a simple path between the nodes # and vand P,(v,w) a

simple path between the nodes v and w and let the sets of their edges be

distinct. Then by P; + P, we will denote the simple path between u and w

created by connecting P and QO 1n a natural way.

Let P'and P' be two different paths between u and v. Then we can write:
P'=P(u,w)+Q'(w,x)+R'(x,v) P''=P(u,w)+Q"'(w,x)+R""'(x,v)

where the edges of the paths Q' and Q" are disjunct sets. Here, the paths P,

R' and R" may also be empty, but O' and Q" are both non-empty with their



edges forming disjunct sets. Clearly, Q'(w,x)+Q""'(x,w) is a circle
where Q'''(x,w) has the same set of edges as Q''(w, x) . However,

this 1s not possible since 7T'1s a tree.
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2. If there is a unique simple path between every pair of nodes in a graph

G, then G is a tree.

Suppose that G 1s not a tree, then there 1s a circle with at least two nodes u

and v and, clearly, between such two nodes, there are at least two distinct

paths.
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3. Every edge in a tree T is a bridge.

Let e be an edge 1n a tree T between nodes u and v. If, after deleting e, there
were still a path in the remaining graph between u and v, there would be
two distinct paths in 7"between u and v, which is a contradiction since, by

the above assertion, there would be a circle in 7.



4. If G is a connected graph such that every edge e in G is a bridge, then G

IS a tree.

Suppose that G 1s not a tree. Then there 1s a circle C in G. Let e be an edge
contained in C. By deleting e from G, we obtain graph G'. Since e 1s a
bridge, G '1s no longer connected. Let p, g be any two nodes in G. There 1s
a path P in G between p and ¢q. If P does not contain e, then P is also a path
between p and ¢ 1n the (disconnected) graph G '. If P does contain e, we
take the path in G between p and g replacing e by the part of the path along
circle C that does not contain e. Clearly, we again obtain a path and thus
also a simple path between p and g. This means that G' is connected, which

1s a contradiction.



5. A tree T with n nodes has n — 1 edges.

This 1s clearly true for a tree T with one node. Let every tree with m nodes,
l<m<n ,has m— 1 edges. Let e be an edge between nodes # and win a
tree 7 with n nodes. Then e 1s a bridge and, deleting it, we obtain a
subgraph 7' of 7"'with two components /7 and H '. These components are
clearly trees with £ and k£ ' nodes respectively where k+4k '=n . This
means that k<n, k'<n . By the induction hypothesis, H has k — I edges
and H "has k'— 1 edges. Thus 7" "has n — 2 edges and T has n — I edges.



6. Any connected graph G with n nodes and n — 1 edges is a tree.

Suppose that a graph G=(N, E) with n nodes and »n — I edges is not a
tree. Then there is an edge e which 1s not a bridge. By deleting e from G,
we obtain again a connected graph. Clearly, in this way, after a finite
number of steps, we arrive at a subgraph H =(N, F') in which every edge
1s a bridge. Thus, by 4 and 5 above, H has exactly n — I edges. Considering

that | F'|<|E| , this is a contradiction.



7. Any graph G=(N , E) with n nodes and n—1 edges that contains no

circles is connected and thus a tree.

Suppose that G is not connected. Let its components be G, G, ..., G, .
Being connected and containing no circle, each G; is a tree and, as such, has
n;nodes and 7,—1 edges by 5 above. Thus the total number of edges in G
is n,+n,+---+n.—r=n—r  But G has exactly n—1 edges, which means

that G has only one component and is connected.



S8a Let T be a tree. If a new edge is added to T creating a graph T ', then T’
contains exactly one circle.
8b If, adding an edge to a graph G that contains no circle always results in

a graph G 'that contains exactly one circle, then G is a tree.

To prove 8b suppose that G 1s not a tree. Then it 1s not connected. This

means that there 1s a pair of nodes p, g such that there 1s no path between
them and thus the addition of the new edge |2, q| cannot create a circle,

which 1s a contradiction.



A subgraph T of a graph G with n nodes 1s called a spanning tree in G 1f
(a) T'1s a tree and

(b) T has n nodes.
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Clearly, a graph G 1s connected 1f and only if it has a spanning tree.

THEOREM 1

Let G be a simple graph with n nodes. If a subgraph H of G has n nodes
and has any two of the below properties, then it also has the third property.
(a) H is connected,

(b) H has n—1 eges,

(c) H contains no circle.



THEOREM 2

In a tree T with at least two nodes there are at least two nodes with a
degree equal to 1.

Denote by P a simple path in 7" with a maximum number of edges. Since
the number of edges in 1s finite, such a path always exists. Denote the two
distinct end-nodes of P by p and g respectively. It is easy to see that node p
can only be connected by an edge with the succeeding node in P while g
can only be connected by an edge with the preceding node in P. If there
were another edge connecting, say, p with another node, this would mean
that either P 1s not maximal or 7 contains a circle. In both cases, this leads

to a contradiction.



THEOREM 3 (Cayley)

Let K, with n=2 be a complete graph. Then K, has n"~" spanning
rees.

Denote by Nthe set [1,2,...,n| and let the nodes of K, be labelled by the
elements of NV, that is, 1,2,...,n . Define a set T as follows:

T={(k1,k2,---, k. _,)|k, €N, léién] .1t is not difficult to prove that T has
exactly n"~* elements. We will now establish a one-to-one correspondence
between T and the set of all spanning trees of K, . In the first part of the
proof, for every spanning tree of K, , we will find a unique (n—2)-tuple

(ki k,....,k,_,) and then, using an arbitrary (n—2)-tuple

(ki ky....k,_,) , we will construct a unique spanning tree of K, .



Let S be a spanning tree of K, . Denote by W, the sequence of distinct
nodes of S with degrees equal to 1 arranged in an ascending order by their
labels. Let w; be the first element 1n such a sequence. Let s, be the unique
node adjacent in S to the node labelled w;. Denote by S| the tree obtained
by deleting w, from § and find a sequence 7, of distinct nodes of .S; with
degrees equal to 1 arranged in an ascending order by their labels. Let w; be
the first element 1s such a sequence. Let s, be the unique node adjacent in

S, to the node labelled w,. Continuing this process, we finally get an
(n—2)-tuple (s, 5,...,s, ,) . Clearly, such an (n—2)-tuple is unique

thanks to arranging the sequences W, W, ..., W, in ascending order.

The following example will illustrate this procedure:



The below spanning tree

will produce the 10-tuple (1,4,2,2,4,3,3,3,4,4)



On the contrary, consider an (n—2)-tuple T=(s,s,...,s,_,) of labels in
N. Arrange the nodes of K, in an ascending order by their labels and
define:

v1=min[vi|vi§E{T}] ,

v2=min[vi|vi§é({T}—{S1}U{vl})}

vn_2=min[vi|vi§2({T}—{S1’S2,. S, UV v, vn_3})]
where min defines the node with the smallest label. Now construct a tree
by taking the nodes of K, and joining by an edge each node labelled by s;
with the node labelled by vi, 1<i<n—2 and, finally, joining by an edge

the two remaining nodes that are not among the nodes v, Vv,...,V,_, .



