
A connected graph with no circles is called a tree

We will prove a number of statements on graphs. As it is, each of them 

might itself be used to define a tree:    



1. In a tree, there is a unique simple path between every pair of nodes.

Let u and v be two nodes in a tree T=N , E  . 

Let P1u , v be a simple path between the nodes u and v and P2v , w a 

simple path between the nodes v and w, and let the sets of their edges be 

distinct. Then by P1 + P2 we will denote the simple path between u and w 

created by connecting P and Q in a natural way.    

Let P' and P'' be two different paths between u and v. Then we can write: 

P '=P u ,wQ ' w , xR'  x , v  P ' '=P u , wQ ' ' w , x R' '  x , v

where the edges of the paths Q' and Q'' are disjunct sets. Here, the paths P, 

R' and R'' may also be empty, but Q' and Q'' are both non-empty with their 



edges forming disjunct sets. Clearly, Q ' w , x Q' ' ' x , w is a circle 

where Q ' ' '  x , w  has the same set of edges as Q ' ' w , x  . However, 

this is not possible since T is a tree.  

       u                                          w                         x                                 v



2. If there is a unique simple path between every pair of nodes in a graph 

G, then G is a tree.      

Suppose that G is not a tree, then there is a circle with at least two nodes u 

and v and, clearly, between such two nodes, there are at least two distinct 

paths. 

       u                                                               v



3. Every edge in a tree T is a bridge.

Let e be an edge in a tree T between nodes u and v. If, after deleting e, there 

were still a path in the remaining graph between u and v, there would be 

two distinct paths in T between u and v, which is a contradiction since, by 

the above assertion, there would be a circle in T.   



4. If G is a connected graph such that every edge e in G is a bridge, then G 

is a tree.

Suppose that G is not a tree. Then there is a circle C in G. Let e be an edge 

contained in C. By deleting e from G, we obtain graph G'. Since e is a 

bridge, G ' is no longer connected. Let p, q be any two nodes in G. There is 

a path P in G between p and q. If P does not contain e, then P is also a path 

between p and q in the (disconnected) graph G '. If  P does contain e, we 

take the path in G between p and q replacing e by the part of the path along 

circle C that does not contain e. Clearly, we again obtain a path and thus 

also a simple path between p and q. This means that G' is connected, which 

is a contradiction.



5. A tree T with n nodes has n – 1 edges.

      

This is clearly true for a tree T with one node. Let every tree with m nodes, 

1≤mn , has m – 1 edges. Let e be an edge between nodes u and w in a 

tree T with n nodes. Then e is a bridge and, deleting it, we obtain a 

subgraph T ' of T with two components H and H '. These components are 

clearly trees with k and k ' nodes respectively where kk '=n . This 

means that kn , k 'n . By the induction hypothesis, H has k – 1 edges 

and H ' has  k ' – 1 edges. Thus T ' has n – 2 edges and T has n – 1 edges.



6. Any connected graph G with n nodes and  n – 1 edges is a tree.

Suppose that a graph G=N , E  with n nodes and  n – 1 edges is not a 

tree. Then there is an edge e which is not a bridge. By deleting e from G, 

we obtain again a connected graph. Clearly, in this way, after a finite 

number of steps, we arrive at a subgraph H=N , F  in which every edge 

is a bridge. Thus, by 4 and 5 above, H has exactly n – 1 edges. Considering 

that | F || E | , this is a contradiction.



7. Any graph G=N , E  with n nodes and n−1 edges that contains no 

circles is connected and thus a tree.

Suppose that G is not connected. Let its components be G1,G2, ,Gr . 

Being connected and containing no circle, each Gi is a tree and, as such, has 

ni nodes and ni−1 edges by 5 above. Thus the total number of edges in G 

is n1n2⋯nr−r=n−r . But G has exactly n−1 edges, which means 

that G has only one component and is connected.



8a Let T be a tree. If a new edge is added to T creating a graph T ', then T '  

contains exactly one circle.

8b If, adding an edge to a graph G that contains no circle always results in  

a graph G ' that contains exactly one circle, then G is a tree.                 

To prove 8b suppose that G is not a tree. Then it is not connected. This 

means that there is a pair of nodes p, q such that there is no path between 

them and thus the addition of the new edge { p , q } cannot create a circle, 

which is a contradiction.



A subgraph T of a graph G with n nodes is called a spanning tree in G if 

(a) T is a tree and

(b) T has n nodes.

    



Clearly, a graph G is connected if and only if it has a spanning tree.

THEOREM 1

Let G be a simple graph with n nodes. If a subgraph H of G has n nodes 

and has any two of the below properties, then it also has the third property.

(a) H is connected,

(b) H has n−1 eges,

(c) H contains no circle.



THEOREM 2

In a tree T with at least two nodes there are at least two nodes with a 

degree equal to 1.

Denote by P a simple path in T with a maximum number of edges. Since 

the number of edges in is finite, such a path always exists. Denote the two 

distinct end-nodes of P by p and q respectively. It is easy to see that node p 

can only be connected by an edge with the succeeding node in P while q 

can only be connected by an edge with the preceding node in P. If there 

were another edge connecting, say, p with another node, this would mean 

that either P is not maximal or T contains a circle. In both cases, this leads 

to a contradiction. 



THEOREM 3 (Cayley)

Let K n with n≥2 be a complete graph. Then K n has nn−2 spanning 

trees.

Denote by N the set {1,2 , , n} and let the nodes of Kn be labelled by the 

elements of N, that is, 1,2 , , n . Define a set T as follows:

T={k 1, k 2, , k n−2 | k i∈N ,1≤i≤n} . It is not difficult to prove that T has 

exactly nn−2 elements. We will now establish a one-to-one correspondence 

between T and the set of all spanning trees of K n . In the first part of the 

proof, for every spanning tree of K n , we will find a unique n−2-tuple

k 1, k 2, , k n−2  and then, using an arbitrary n−2-tuple

k 1, k 2, , k n−2 , we will construct a unique spanning tree of K n .  



Let S be a spanning tree of K n . Denote by W1 the sequence of distinct 

nodes of  S with degrees equal to 1 arranged in an ascending order by their 

labels. Let w1 be the first element in such a sequence. Let s1 be the unique 

node adjacent in S to the node labelled w1. Denote by S1 the tree obtained 

by deleting w1 from S and find a sequence W2 of distinct nodes of S1 with 

degrees equal to 1 arranged in an ascending order by their labels. Let w2 be 

the first element is such a sequence. Let s2 be the unique node adjacent in 

S1 to the node labelled w2. Continuing this process, we finally get an 

n−2-tuple s1, s2, , sn−2 . Clearly, such an n−2-tuple is unique 

thanks to arranging the sequences W 1,W 2, ,W n−2 in ascending order.

The following example will illustrate this procedure: 



The below spanning tree

will produce the 10-tuple 1,4 ,2,2,4 ,3,3,3,4 ,4
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On the contrary, consider an n−2-tuple T= s1, s2, , sn−2 of labels in 

N. Arrange the nodes of K n in an ascending order by their labels and 

define:

v1=min {vi |v i∉{T }} ,

v2=min {v i | v i∉{T }−{s1}∪{v1}}
⋮

 vn−2=min {vi |v i∉{T }−{s1, s2, , sn−3}∪{v1, v2, , vn−3}}  

 where min defines the node with the smallest label. Now construct a tree 

by taking the nodes of K n and joining by an edge each node labelled by si 

with the node labelled by vi, 1≤i≤n−2 and, finally, joining by an edge 

the two remaining nodes that are not among the nodes v1, v2, , vn−2 .


