
Dynamic Programming Theory

Invented in 1953 by Richard Bellman *1920 �1984

Dynamic programming formulates rules  to be used for  multistage decision 

making processes in which the decisions taken previously limit  the current 

choice. The consequences of each decision taken may be assigned numeric 

values with the aim to maximise or minimise a criterial function related to the 

entire process in question. 



Bellman's Principle of Optimality

Each optimal strategy has the following property:

Whichever the initial state and decision (as part of an optimal strategy) has 

been, the subsequent decision must itself represent a strategy optimal with 

respect to the state resulting from the initial decision.  



Example
Shortest path from node A to node Z in a directed graph with weighted arcs.
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lengths of shortest paths from Ai to Z

Shortest path c from A to Z:

c=min {h1c1 ; h2c2 ; h3c3 ;;hkc k }
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Example

Cut a length L into n pieces for the product P of their lengths li to be maximal.
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Denote by f x , t   the maximum product of x lengths cut from total length t. 

If, initially, we decide to cut off length y, we will have to find a solution to the 

problem f x−1, t− y . If the initial decision has been "the right one", by the 

optimality principle, y⋅f x−1, t− y  will be a solution to the problem. 

Clearly, f 1, t =t , so f 2, t = max
0≤ y≤t

y⋅t− y  . 



Here, y= t
2  may be chosen since it is the maximum of a function of one 

variable. Thus f 2, t = t2

4
. Similarly, f 3, t = max

0≤ y≤t
y⋅t− y2

4
 so we have a 

maximum at y= t
3 . In this way, we can prove that, in an optimal solution, the 

lengths of all the parts must be the same.



DP problems may be classified according to the following aspects

How many different decisions must be made

How many stages the problem involves

Are the situations involved deterministic or stochastic

What types of criterial and decision functions are used



The number of different decisions to be made at each stage can be finite 

(shortest path) or infinite (cutting a length).

Some problems may involve an infinite number of stages. A buyer, for 

example, has a choice of ordering a product or not at any given moment.

With deterministic situations, the result of a decision is known before it is 

taken. With stochatic situations, the probability of any possible outcome is 

known rather than the result of a decision. The function to be optmised in 

this case represents some kind of average.

A criterial function depends on the decision and the number of stages. A 

decision function specifies the decision to be taken to arrive at an optimal 

solution. In the last example, y indicated the decision while t n/nn was the 

criterial function (the product value after all the n – 1 decisions) 



A certain type of problems that occur very often

A resource C is available and should be allotted to n activities to reach the 

maximum profit. The revenue an activity brings depends on the amount of 

resource allotted to it. Revenues from different activities are independent and 

additive.

This can be mathematically formulated as follows:

Maximise ∑
i=1

n

f i x i   subject to the constraint ∑
i=1

n

x i≤C .

This problem is often faced by companies if a number of investments are to be 

made.

 



Let Rk x   be the maximal revenue attainable by dividing a total resource x 

into the first k activities. Clearly, R1 x= f 1x where f 1x  is an increasing 

function. R2 x  is the maximal revenue from the first two activities. Adding 

amount x2 of the resource to the second activity and the rest to the first one, we 

will have a total revenue of  f 1x−x2 f 2 x2 , which is to be maximised 

subject to 0≤x2≤x  so that R2 x= max
0≤ x2≤x

{ f 2x2R1x−x2} . 

Proceding further by the principle of optimality, we finally obtain:

 Rn x= max
0≤xn≤x

{ f nxnRn−1 x−xn}



This iterative procedure can be used to find the optimal strategy provided that 

an analytic or numeric method is given to calculate maxima or minima  of the 

functions f 1x1 .

Here, the values x2, x3, … xn are the decision functions while RnC   is the 

criterial function.



Example 

Suppose that 100 $ are to be spent on six subsequent activities to maximise 

the total revenue.  The revenues fi (x) from the six activities are given as:

x , 2x , 3x , 4x , 5x , 6x .

Find the value of the maximum total revenue.

R1 100=100=10 , R1100− y=100− y  

R2 x= max
0≤ y≤100

{x− y2y }  where y is the amount spent on the second 

activity. The maximum is reached for y= 4
5

x  so that R2 x=5x



Similarly R3x= max
0≤ y≤100

{5x− y3y }with a maximum at y= 9
14

x , so 

that R3x=14 x .

In a similar way, we can calculate R4 x=30 x , R5 x=55 x , and 

R6x=91 x . This means that R6(100)=1091 =953.94 and the maximum 

revenue is 953.94 $.

The amounts to be spent can then be calculated as follows: 

x6=39.56  $ , x5=27.47 $ , x4=17.58 $  

x3=9.89 $ , x2=4.40  $ , x1=1.10 $


