
  

Weighted graph

Let                      be a simple graph. If a mapping                  is given, then 

the triple                         is called a weighted graph. Each edge e of G is 

thus assigned a real number          , called the weight of e.

If                           is a subgraph of G, then                               is called the 

weight of G '.       

G=N , E  w : E R

G=N , E , w

G '=N ' , E '  w G ' =∑
u∈E '

wu

w e



  

Minimal spanning tree

Let                         be a simple weighted graph. Let                      be a 

spanning tree of G. We say that S is a minimal spanning tree of G if             

                        for each spanning tree T of G.                   

G=N , E , w S=N , E ' 

w S ≤w T 

Next we will describe two algorithms that can be used to find a minimal 

spanning tree of a simple weighted graph . Why such algorithms work is 

shown by the theorems that follow.



  

Theorem 7

Let                          be a simple weighted graph and let                               
 

be a circle in G. If                                      , then edge e
1
 is contained in no 

minimal spanning tree of G.                   

G=N , E , w
C=v , e1 , u1 , e2 , u2 , , u p−1 , e p , v

ce1c ei , 2≤i≤ p

Proof:

Let                        be a minimal spanning tree of G and suppose             .    

Then we have a fundamental cut              .  By Theorem 5, in addition to e
1
, 

there must be at least one more edge f  that is both in C and              . Since     

                    ,  f  is a chord in M. Thus, we can define             .  By Theorem 6 

                     . Now add f  to M to create M ' . The only circle in M ' is              

              and, deleting e
1
 from this circle, we get a spanning tree M ' ' with a  

total weight smaller than M, which is a contradiction.                                       

                              

M =N , E '  e1∈E '

DM e1

DM e1

f ∈DM e1 C M  f 
e1∈C M  f 

C M  f 



  

Corollary 8

Let                          be a simple weighted graph and let                               
 

be a circle in G. If                                    , then there is at least one 

minimal spanning tree not containing e
1
.                   

G=N , E , c
C=v , e1 , u1 , e2 , u2 , , u p−1 , e p , v

ce1≥c ei , 2≤i≤ p

This corollary affects graphs in which the weights of two different 

edges may be the same. It is not difficult to show that, provided that all 

the edge weights are distinct, there is a unique spanning tree of G.   



  

(a)                                        

(b) If S
i
 is connected, it is a spanning tree and the algorithm stops  

(c) Put                                ,                    if adding edge T
i
(1) to Q

i
 does not 

give rise to a circle in S
i
                                                                   

(d) Put                 ,                     if adding T
i
(1) to Q

i 
does create a circle in S

i
 

Kruskal's algorithm
Let                          be a weighted simple connected  graph with                     

                           . Arrange the edges of E in a sequence                              

so that                                     . In subsequent steps construct graphs              

                                                   Here           will denote the first term of T
i
 

and           the sequence T
i
 without its first term.  

                                                         

G=N , E , w

T 1=t 1, t2, , t k 

w t i≤w t j  for i j

S 1=N ,Q1 , S 2=N ,Q2 ,

E={e1, e2, , ek}

Q1={t1},T 2=T 1−1

T i−1

T i 1

Qi1≝Qi∪{T i 1} T i1≝T i−1

Qi1≝Qi T i1≝T i−1



  

Thus by Kruskal's algorithm, spanning tree is created step by step by  
adding edges from a sequence previously sorted in an ascending order by 
the edge weights. Should a circle be created by adding an edge, it is 
skipped.  

A
B

C D

E

F

1

10
4 8

9

16 15

19

25

w(A,B)=1

w(A,C)=4

w(B,D)=8

w(C,D)=9

w(A,D)=10

w(D,E)=15

w(C,E)=16

w(E,F)=19

w(D,F)=25



  

(a)                             with                 and 

(b) If, for an                     , we have                       , then      is a minimal  

spanning tree and the algorithm stops  

(c) else                                                                 

Prim's algorithm

Let                          be a weighted simple connected graph. For a subgraph    

                   of G not containing a circle, denote by                       the graph 

created by adding a node v to V and and edge e to J such that

a) e is an edge between node v and a node in V 

b) e has the least weight of all such edges.

In subsequent steps, create graphs S
1
, S

2
, ... as follows:          

                                                         

G=N , E , w

S 1={u , v} ,{e}

S i1≝S i
+

S=V , J  S +=V + , J +

w e≤w {u , z}∀ z∈Ne={u , v}
S i=V i , J i | J i |=| N |−1 S i



  

Prim's algorithm starts with any node, always adding edges with 

minimum weights to extend the current graph to a connected graph 

without a circle. 

As compared with Kruskal's algorithm, no previous sort of all the edges 

by their weights is necessary since Kruskal's algorithm mostly does not 

make use of edges with large weights at all.

Prim's algorithm is based on the following theorems: 



  

Theorem 9

Let                          be a simple weighted graph and                  an edge 

such that                                                   . Then            is included in every 

minimal spanning tree of  G   

G=N , E , w

w {u , v}w {u , z}∀ z∈N {u , v}
{u , v}∈E

Corollary 10

Let                         be a simple weighted connected graph and                   

such an edge that                                                 .  Then there is a minimal 

spanning tree of G including                

G=N , E , w {u , v}∈E

w {u , v}≤w {u , z}∀ z∈N

{u , v }

Corollary 11

Let                         be a simple weighted connected graph and                   

a subtree of a minimal spanning tree of G. Then there is a spanning tree 

of G including T as a subgraph and, moreover, including an edge e with 

the least weight such that                     

G=N , E , w

e={u , v} , u∈N ' , v∈N−N '

T=N ' , E ' 



  

Prim's algorith in a matrix form

If the weights of the edges of a graph                     are defined as a matrixG=N , E 

 w11 w1 2  w1 n

w2 1 w22  w2 n

⋮ ⋮ ⋱ ⋮
wn 1 wn 2  wn n


Prim's algorithm may be described as follows:

Step 1: Delete all column 1 entries and mark row 1

Step 2: If the marked rows only include underligned entries, the algorithm  

        stops with the underlined entries indicating the edges of a minimal 

       spanning tree. Else choose a minimal not underlined entry in 

 marked rows.

Step 3: If an entry w
ij 
is chosen , it is underlined, row  j is marked and all 

      the non-underlined entries in column j are deleted. Go to step 2.       



  

Example 1 2 3

4 5 6

1 2

4

1

1
1

4

2 3

3

C1=
- 1 - 4 1 -
- - 2 - 1 -
- 2 - - 2 3
- - - - 4 -
- 1 2 4 - 3
- - 3 - 3 -

 *
C 2=

- 1 - 4 1 -
- - 2 - 1 -
- - - - 2 3
- - - - 4 -
- - 2 4 - 3
- - 3 - 3 -

 C3=
- 1 - 4 1 -
- - 2 - - -
- - - - - 3
- - - - - -
- - - 4 - 3
- - 3 - - -

*

*
*
*

*



  

1 2 3

4 5 6

1 2

4

1

1
1

4

2 3

3

*

C 4=
- 1 - 4 1 -
- - 2 - - -
- - - - - 3
- - - - - -
- - - 4 - 3
- - - - - -

 ***
C5=

- 1 - 4 1 -
- - 2 - - -
- - - - - 3
- - - - - -
- - - 4 - -
- - - - - -

 ****
*

C6=
- 1 - 4 1 -
- - 2 - - -
- - - - - 3
- - - - - -
- - - - - -
- - - - - -


*

*
*

*

*
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