
Tour and its cost

Consider a simple undirected complete graph Kn with a cost assigned to

every edge. With the vertices of Kn labelled 1,2, , n , the cost of the edge

between nodes i and j, will be denoted by ci , j . Since the graph is un-

directed, clearly ci , j=c j ,i , 1≤i , j≤n . A tour in Kn is a sequence of ver-

tices v i1
, vi2

, , v in in Kn with the cost of such a tour defined as

C=∑
k=1

n−1

c ik , i k1
ci n ,i1

. In other words the cost of a tour is the sum of the

costs of all its edges.

In every Kn, there are a total of
n−1!

2 different tours. For the above

graph, for example, there are 2520.

1

2

7

6

5

3

4

8

Travelling Salesman Problem

Given a complete graph Kn, the travelling salesman problem for this graph

is to find a tour with a minimum cost.

Here are some applications of the theoretical problem, the first one giving

the problem its name:

● a salesman is living in an area with n towns. Starting from his home

town, a travelling salesman plans to visit all the n towns returning

home. For some reason, every town must be visited exactly once;

● a predetermined pattern of n holes is to be bored in a printed circuit

board while minimizing the distance travelled by the drilling machine.

Exhaustive search methods

One way of solving this problem is an exhaustive search. This means that

an algorithm goes systematically through a list of all tours calculating their

costs. A tour with the least cost is then chosen. While this method may

seem quite simple and straightforward, it may only be used for small values

of n. Suppose that we have a computer that can check 109 tours per second.

Consider the following table:

Number of towns Computing time
10 0.00018 seconds
15 44 seconds
20 1.9 years
25 9 837 145 years

Branch and bound method

The following method may overcome the difficulty encountered when

solving a TSP by exhaustive search or “rude force” as it is sometimes

called. For some particular problems it may deliver the exact minimum

tour within a reasonable time, but on the whole, the number of nodes

cannot be increased too much. Generally, the computing time may still

grow exponentially.

 A Hamiltonian circle H of a graph G may be defined as a subgraph of G

satisfying the following two conditions:

1. H is connected and contains exactly one circle

2. The degree of each vertex of H is exactly two.

We will denote the set of all the Hamiltonian circles of G by Ham.

A subgraph S complying only with condition 1 above is actually a spanning

tree of G with an extra edge. If ST+1 is the set of all such subgraphs,

clearly, Ham⊆ST1 .

Denoting by H* the Hamiltonian circle with the least cost and by S* the

graph in ST+1 with the least cost, we can observe the following:

If H* does not contain edge e and the cost of e is changed to infinity in

G, H* will still remain the Hamiltonian circle in G with the least cost.

Finding the graph in ST+1 with the least cost is an easy task.

S *≤H *

If S *∈Ham⇒S *=H *

Using the above observations, we can devise the following algorithm:

1. Push to Stack task T : find S* in G. Initialise: MinCost :=∞
MinTour :=∅

2. Remove the top task from Stack, and solve it. Store solution in CurSol
and its price in CurCost.

3. (a) If CurSol∈H and CurCostMinCost , then MinTour := CurSol
and MinCost := CurCost.
(b) otherwise if CurCost < MinCost, push to Stack new tasks T1, T2, ...
Tk created by setting to ∞ the costs of all edges e1, e2, ... ek
respectively incident on all vertices of a degree greater than two of the
task currently being solved.
(c) otherwise do nothing

4.If Stack is not empty go to 2).
Otherwise return MinTour and MinCost as the result.

STEP 0
(1,4) = 1
(1,5) = 3
(2,5) = 5
(3,5) = 6
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=?

MinTour=∅
MinCost=∞

STACK:
T0 ()

T

 1 3

 9 12

 15

 10 6

 5 20

 8

1

54

32

STEP 1
(1,4) = 1
(1,5) = 3
(2,5) = 5
(3,5) = 6
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=23

MinTour=∅
MinCost=∞

STACK:
T1 ((2,5))
T2 ((3,5))
T3 ((1,5))

T

 1 3

 9 12

 15

 10 6

 5 20

 8

1

54

32

STEP 2
(1,4) = 1
(1,5) = 3
(2,5) = ∞
(3,5) = 6
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=27

MinTour=∅
MinCost=∞

STACK:
T2 ((3,5))
T3 ((1,5))
T4 ((2,5)(1,2))
T5 ((2,5)(1,4))
T6 ((2,5)(1,5))

T1

 1 3

 9 12

 15

 10 ∞ 6

 20

 8

1

54

32

STEP 3
(1,4) = 1
(1,5) = 3
(2,5) = 5
(3,5) = ∞
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=26

MinTour=∅
MinCost=∞

STACK:
T3 ((1,5))
T4 ((2,5)(1,2))
T5 ((2,5)(1,4))
T6 ((2,5)(1,5))
T7 ((3,5)(1,4))
T8 ((3,5)(1,2))
T9 ((3,5)(1,5))
T10 ((3,5)(2,5))
T11 ((3,5)(2,3))

T2

 1 3

 9 12

 15

 10 5 ∞

 20

 8

1

54

32

STEP 4
(1,4) = 1
(1,5) = ∞
(2,5) = 5
(3,5) = 6
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=29

MinTour=∅
MinCost=∞

STACK:
T4 ((2,5)(1,2))
T5 ((2,5)(1,4))
T6 ((2,5)(1,5))
T7 ((3,5)(1,4))
T8 ((3,5)(1,2))
T9 ((3,5)(1,5))
T10 ((3,5)(2,5))
T11 ((3,5)(2,3))
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))

T3

 1 ∞

 9 12

 15

 10 5 6

 20

 8

1

54

32

STEP 5
(1,4) = 1
(1,5) =3
(2,5) = ∞
(3,5) = 6
(2,3) = 8
(1,2) = ∞
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=28
MinTour=
 1,5,3,2,4
MinCost=28

STACK:
T5 ((2,5)(1,4))
T6 ((2,5)(1,5))
T7 ((3,5)(1,4))
T8 ((3,5)(1,2))
T9 ((3,5)(1,5))
T10 ((3,5)(2,5))
T11 ((3,5)(2,3))
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))

T4

 1 3

 ∞ 12

 15

 10 ∞ 6

 20

 8

1

54

32

STEP 6
(1,4) = ∞
(1,5) =3
(2,5) = ∞
(3,5) = 6
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=36
MinTour=
 1,5,3,2,4
MinCost=28

STACK:
T6 ((2,5)(1,5))
T7 ((3,5)(1,4))
T8 ((3,5)(1,2))
T9 ((3,5)(1,5))
T10 ((3,5)(2,5))
T11 ((3,5)(2,3))
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))

T5

 ∞ 3

 9 12

 15

 10 ∞ 6

 20

 8

1

54

32

STEP 7
(1,4) =1
(1,5) = ∞
(2,5) = ∞
(3,5) = 6
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=34
MinTour=
 1,5,3,2,4
MinCost=28

STACK:
T7 ((3,5)(1,4))
T8 ((3,5)(1,2))
T9 ((3,5)(1,5))
T10 ((3,5)(2,5))
T11 ((3,5)(2,3))
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))

T6

 1 ∞

 9 12

 15

 10 ∞ 6

 20

 8

1

54

32

STEP 8
(1,4) = ∞
(1,5) =3
(2,5) =5
(3,5) = ∞
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=35
MinTour=
 1,5,3,2,4
MinCost=28

STACK:
T8 ((3,5)(1,2))
T9 ((3,5)(1,5))
T10 ((3,5)(2,5))
T11 ((3,5)(2,3))
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))

T7

 ∞ 3

 9 12

 15

 10 5 ∞

 20

 8

1

54

32

STEP 9
(1,4) =1
(1,5) =3
(2,5) =5
(3,5) = ∞
(2,3) = 8
(1,2) = ∞
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=27
MinTour=
 1,5,3,2,4
MinCost=28

STACK:
T9 ((3,5)(1,5))
T10 ((3,5)(2,5))
T11 ((3,5)(2,3))
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T8

 1 3

 ∞ 12

 15

 10 5 ∞

 20

 8

1

54

32

STEP 10
(1,4) =1
(1,5) = ∞
(2,5) =5
(3,5) = ∞
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=33
MinTour=
 1,5,3,2,4
MinCost=28

STACK:
T10 ((3,5)(2,5))
T11 ((3,5)(2,3))
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T9

 1 ∞

 9 12

 15

 10 5 ∞

 20

 8

1

54

32

STEP 11
(1,4) =1
(1,5) =3
(2,5) = ∞
(3,5) = ∞
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=31
MinTour=
 1,5,3,2,4
MinCost=28

STACK:
T11 ((3,5)(2,3))
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T10

 1 3

 9 12

 15

 10 ∞ ∞

 20

 8

1

54

32

STEP 12
(1,4) =1
(1,5) =3
(2,5) =5
(3,5) = ∞
(2,3) = ∞
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=30
MinTour=
 1,5,3,2,4
MinCost=28

STACK:
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T11

 1 3

 9 12

 15

 10 5 ∞

 20

 ∞

1

54

32

STEP 13
(1,4) =1
(1,5) = ∞
(2,5) =5
(3,5) = 6
(2,3) = 8
(1,2) = ∞
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=32
MinTour=
 1,5,3,2,4
MinCost=28

STACK:
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T12

 1 ∞

 ∞ 12

 15

 10 5 6

 20

 8

1

54

32

STEP 14
(1,4) =1
(1,5) = ∞
(2,5) = ∞
(3,5) = 6
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=34
MinTour=
 1,5,3,2,4
MinCost=28

STACK:
T14 ((1,5)(2,3))
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T13

 1 ∞

 9 12

 15

 10 ∞ 6

 20

 8

1

54

32

STEP 15
(1,4) =1
(1,5) = ∞
(2,5) = 5
(3,5) = 6
(2,3) = ∞
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=31
MinTour=
 1,5,3,2,4
MinCost=28

STACK:
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T14

 1 ∞

 9 12

 15

 10 5 6

 20

 ∞

1

54

32

STEP 16
(1,4) =1
(1,5) =3
(2,5) = 5
(3,5) = ∞
(2,3) = 8
(1,2) = ∞
(2,4) = ∞
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=29
MinTour=
 1,5,3,2,4
MinCost=28

STACK:
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T15

 1 3

 ∞ 12

 15

 ∞ 5 ∞

 20

 8

1

54

32

STEP 17
(1,4) =1
(1,5) =3
(2,5) = ∞
(3,5) = ∞
(2,3) = 8
(1,2) = ∞
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=34
MinTour=
 1,5,3,2,4
MinCost=28

STACK:
T17 ((1,2)(3,5)(2,3))

T16

 1 3

 ∞ 12

 15

 10 ∞ ∞

 20

 8

1

54

32

STEP 18
(1,4) =1
(1,5) =3
(2,5) = 5
(3,5) = ∞
(2,3) = ∞
(1,2) = ∞
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=31
Minimal Tour
 1,5,3,2,4
Cost = 28

STACK: T17

 1 3

 ∞ 12

 15

 10 5 ∞

 20

 ∞

1

54

32

INTEGER-PROGRAMMING APPROACH

Let us consider Kn+1 with the set of nodes {0,1,2, , n} and let

C=c0 0 c0 1 ⋯ c0 n

c1 0 c1 1 ⋯ c1 n

⋮ ⋮ ⋱ ⋱
cn 0 cn 1 ⋯ cn n


be the the cost matrix, that is,

cij is the cost of travelling from

node i to node j.

The problem of finding a tour t=0, i1, i2, , in for a travelling salesman

starting from node 0 such that ∑
k=1

n−1

cik ik1
c0 i1

ci n 0≤∑
k=1

n−1

c j k jk1
c0 j1

c jn 0 for

any tour t= j0, j1, j2, , jn can be formulated in terms of integer-

programming as follows:

Introducing variables xi j , 0≤i≤n , 0≤ j≤n with

xi j={1 if the travelling salesman travels from node i to node j
0 otherwise

we solve the minimization problem

∑
i=0

n

∑
j=0

n

c i j x i j (1)

under the restrictions

∑
i=0

n

x i j=1
j=1, 2,  , n (2)

∑
j=0

n

xi j=1
i=1, 2,  , n (3)

ui−u jn xi j≤n−1 i , j=1, 2,  , n i≠ j (4)

∑
i=0

n

∑
j=0

n

c i j x i j (1)

∑
i=0

n

x i j=1
j=1, 2,  , n (2)

∑
j=0

n

xi j=1
i=1, 2,  , n (3)

ui−u jn xi j≤n−1 i , j=1, 2,  , n i≠ j (4)

Primarily, there are no integer restrictions on the variables ui in (4).

However, it can be shown that, without loss of generality, they may be

thought of as integer variables as well.

It is not difficult to see that such an integer programming problem is

equivalent to the original TSP problem.

Indeed, the objective function ∑
i=0

n

∑
j=0

n

c i j x i j clearly defines the the optimum

tour cost. while the restrictions ∑
i=0

n

x i j=1 j=1, 2,  , n mean that the

travelling salesman leaves every node exactly once (except for node 0) and

the restrictions ∑
j=0

n

xi j=1 i=1, 2,  , n guarantee that he enters every

node exactly once (except for node 0).

The role of the restrictions ui−u jn xi j≤n−1 , i , j=1, 2,  , n i≠ j

is to eliminate routes consisting of two or more disjunct cycles:

which also satisfy restrictions (2) and (3). Let us use the above example to

show how they work.

0
1

4

2

3

7

5

8

9

6

10

For the cycle 5, 6, 7 we have

u5−u610 x5 6≤9

u6−u710 x6 7≤9

u7−u510 x7 5≤9

Since x5 6=x6 7=x75=1 , by adding the above inequalities, we obtain

30≤27 so that such a tour would be eliminated.

On the other hand, for a feasible tour, say 0, 5, 4, 8, 7, 2, 3, 6, 10, 1, 9

we may put u1=9, u2=5, u3=6, u4=2, u5=1, u6=7, u7=4, u8=3, u9=10, u10=8.

For example u6=7 because node 6 occurs as seventh in the tour. In this way,

for example, the inequality u7−u210 x5 4≤9 turns into 4−510⋅1≤9

while, say, the inequality u7−u210 x5 4≤9 turns into 10−110⋅0≤9 .

HEURISTIC METHODS

For larger numbers of nodes, the above algorithms are of little help. In

practical problems, however, we might settle for near-optimum solutions

computed in a reasonable time. Algorithms enabling this are called

heuristics.

A heuristic is an algorithm that solves a particular problem without

guaranteeing an absolute optimum, which, among others, means that it

need not be based on an exact theoretical background. A problem may be

considered solved by a heuristic, for example, if a solution is found that is

known to lie within a pre-set "distance" from an optimum one or at least

this may be assumed with a reasonable probability. Another stopping rule

for such an algorithm may be the solution time exceeding a pre-set limit.

Local changes

When performing the search, instead of just going through a list of objects,

calculating the cost of each one separately to find the shortest one, we

might adopt the following approach: we try to perform a small “local”

change of the object to pass to a “neighbouring” one to see whether this

“local” change has reduced the price. This improvement procedure may be

then iterated until no local change can bring about any reduction in price.

The question is then whether the resulting object is the optimum one that

we set out to search.

For some type of graphs this question may be answered in the positive.

This is, for example, the case with spanning trees.

Find a minimum spanning tree of the following complete graph K5:

 30 31

 2

 40

 25 45 14 5

 8

 12

n1

n2n5

n4 n3

Edge costs:

(n5,n2) = 2
(n2,n3) = 5
(n5,n3) = 8
(n4,n3) = 12
(n4,n2) = 14
(n5,n4) = 25
(n5,n1) = 30
(n1,n2) = 31
(n1,n3) = 40
(n1,n4) = 45

Here, the local change is represented by adding one edge and removing
another in the circle thus created.

 30 31

 2

 40

 25 45 14 5

 8

 12

n1

n2n5

n4 n3

Edge costs:

(n5,n2) = 2
(n2,n3) = 5
(n5,n3) = 8
(n4,n3) = 12
(n4,n2) = 14
(n5,n4) = 25
(n5,n1) = 30
(n1,n2) = 31
(n1,n3) = 40
(n1,n4) = 45

Initial cost = 146

 30 31

 2

 40

 25 45 14 5

 8

 12

n1

n2n5

n4 n3

Edge costs:

(n5,n2) = 2
(n2,n3) = 5
(n5,n3) = 8
(n4,n3) = 12
(n4,n2) = 14
(n5,n4) = 25
(n5,n1) = 30
(n1,n2) = 31
(n1,n3) = 40
(n1,n4) = 45

Next lower cost = 117

 30 31

 2

 40

 25 45 14 5

 8

 12

n1

n2n5

n4 n3

Edge costs:

(n5,n2) = 2
(n2,n3) = 5
(n5,n3) = 8
(n4,n3) = 12
(n4,n2) = 14
(n5,n4) = 25
(n5,n1) = 30
(n1,n2) = 31
(n1,n3) = 40
(n1,n4) = 45

Next lower cost = 82

 30 31

 2

 40

 25 45 14 5

 8

 12

n1

n2n5

n4 n3

Edge costs:

(n5,n2) = 2
(n2,n3) = 5
(n5,n3) = 8
(n4,n3) = 12
(n4,n2) = 14
(n5,n4) = 25
(n5,n1) = 30
(n1,n2) = 31
(n1,n3) = 40
(n1,n4) = 45

Next lower cost = 49

 30 31

 2

 40

 25 45 14 5

 8

 12

n1

n2n5

n4 n3

Edge costs:

(n5,n2) = 2
(n2,n3) = 5
(n5,n3) = 8
(n4,n3) = 12
(n4,n2) = 14
(n5,n4) = 25
(n5,n1) = 30
(n1,n2) = 31
(n1,n3) = 40
(n1,n4) = 45

Minimum cost = 49
No further local
changes will reduce
the cost

The resulting graph is really the minimum spanning tree. This is a

consequence of Theorem 7 of the minimum-spanning-tree lecture.

However, for a TSP, no such guarantee exists as the following example

shows. Here the local change is represented by two neighbouring nodes in a

tour being swapped.

Find a minimum tour of the following complete graph K5:

n1

n2n5

n4 n3

Edge costs:

(n3,n5) = 91
(n4,n5) = 223
(n1,n4) = 255
(n2,n5) = 288
(n1,n2) = 328
(n1,n5) = 446
(n2,n4) = 492
(n2,n3) = 536
(n1,n3) = 589
(n3,n4) = 754

n1

n2n5

n4 n3

Edge costs:

(n3,n5) = 91
(n4,n5) = 223
(n1,n4) = 255
(n2,n5) = 288
(n1,n2) = 328
(n1,n5) = 446
(n2,n4) = 492
(n2,n3) = 536
(n1,n3) = 589
(n3,n4) = 754

Initial cost = 2569

n1

n2n5

n4 n3

Edge costs:

(n3,n5) = 91
(n4,n5) = 223
(n1,n4) = 255
(n2,n5) = 288
(n1,n2) = 328
(n1,n5) = 446
(n2,n4) = 492
(n2,n3) = 536
(n1,n3) = 589
(n3,n4) = 754
Next lower cost = 1715
No further local changes
will reduce the cost

However, here is a tour with an even smaller cost:

n1

n2n5

n4 n3

Edge costs:

(n3,n5) = 91
(n4,n5) = 223
(n1,n4) = 255
(n2,n5) = 288
(n1,n2) = 328
(n1,n5) = 446
(n2,n4) = 492
(n2,n3) = 536
(n1,n3) = 589
(n3,n4) = 754
Minimum cost = 1433

This means that, by subsequently reducing the cost of an initial tour by

local changes, we may get trapped in a local minimum. Therefore this

method will not always find a minimum tour. It may be, however, used as a

basis for a heuristic. Surprisingly, it was inspired by a physical process

used in engineering which is called annealing. Steel is annealed to improve

its quality. The atoms of steel form a crystalline lattice. The lower the

internal energy of steel, the more perfect lattice is formed. By cooling

down hot steel, we may reduce its energy. However, if this process is too

rash, the lattice, assuming a fixed structure, will not continue to be

rearranged. Therefore, the cooling should progress slowly being interrupted

by short increases of temperature. Exactly this is done by a simulated

annealing method used to reduce the cost of a tour.

The method of simulated annealing was first published in 1983 by IBM

researchers as a heuristic to be used to find good approximations of optimal

solutions to combinatorial problems. We will describe a modification of

this method for the travelling salesman problem.

As usual, we start with an initial tour. To each tour T we can define local

changes as described above to obtain new “neighbouring” tours

T 1, T 2, ,T k . Each tour Ti either increases or decreases the cost of T. We

keep performing local changes. If a change will decrease the cost, it is

performed. If it would result in an increase of the tour cost, it may still be

performed with a certain probability to prevent the process from being

locked in a local minimum. This probability is usually defined as P=e−An

where n is the iteration number and A is a suitable constant that may be

determined by experimenting. The cost of every tour is matched against the

best one found and stored if better. The process is usually stopped after a

certain number of iterations have been performed.

