
Tour and its cost

Consider a simple undirected complete graph  Kn with a cost assigned to 

every edge. With the vertices of  Kn labelled 1,2, , n , the cost of the edge 

between nodes  i and  j,  will be denoted by  ci , j .  Since the graph is un-

directed, clearly ci , j=c j ,i , 1≤i , j≤n . A tour in Kn is a sequence of ver-

tices  v i1
, vi2

, , v in in  Kn with  the  cost  of  such  a  tour defined  as 

C=∑
k=1

n−1

c ik , i k1
ci n ,i1

.  In other words the cost of a tour is the sum of the 

costs of all its edges.



In every  Kn,  there are a total  of  
n−1!

2 different  tours.  For the above 

graph, for example, there are 2520. 
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Travelling Salesman Problem

Given a complete graph Kn, the travelling salesman problem for this graph 

is to find a tour with a minimum cost.

Here are some applications of the theoretical problem, the first one giving 

the problem its name:

● a salesman is living in an area with  n towns. Starting from his home 

town,  a  travelling  salesman  plans  to  visit  all  the  n towns  returning 

home. For some reason, every town must be visited exactly once;

● a  predetermined pattern of n holes is to be bored in a printed  circuit 

board while minimizing the distance travelled by the drilling machine. 



Exhaustive search methods 

One way of solving this problem is an exhaustive search. This means that 

an algorithm goes systematically through a list of all tours calculating their 

costs. A tour with the least cost is then chosen. While this method may 

seem quite simple and straightforward, it may only be used for small values 

of n. Suppose that we have a computer that can check 109 tours per second. 

Consider the following table:

Number of towns Computing time
10    0.00018     seconds
15    44              seconds
20    1.9             years
25    9 837 145  years



Branch and bound method

The  following  method  may  overcome  the  difficulty  encountered  when 

solving a  TSP by exhaustive  search or  “rude  force”  as  it  is  sometimes 

called.  For some particular  problems it  may deliver  the exact  minimum 

tour  within  a  reasonable  time,  but  on  the  whole,  the  number  of  nodes 

cannot  be  increased too much.  Generally,  the  computing time  may still 

grow exponentially. 



 A Hamiltonian circle H of a graph G may be defined as a subgraph of G 

satisfying the following two conditions:

1. H is connected and contains exactly one circle

2. The degree of each vertex of H is exactly two.

We will denote the set of all the Hamiltonian circles of G by Ham.

A subgraph S complying only with condition 1 above is actually a spanning 

tree of G with an extra edge. If ST+1 is the set of all such subgraphs, 

clearly, Ham⊆ST1 .    



Denoting by H* the Hamiltonian circle with the least cost and by S* the 

graph in ST+1 with the least cost, we can observe the following:   

If H* does not contain edge e and the cost of e is changed to infinity in 

G,  H* will still remain the Hamiltonian circle in G with the least cost. 

Finding the graph in ST+1 with the least cost is an easy task.

S *≤H *

If S *∈Ham⇒S *=H *   

 



Using the above observations, we can devise the following algorithm:

1. Push to Stack task T : find S* in G. Initialise: MinCost :=∞
MinTour :=∅

2. Remove the top task from Stack, and solve it. Store solution in CurSol 
and its price in CurCost. 

3. (a) If CurSol∈H and CurCostMinCost , then MinTour := CurSol 
and MinCost := CurCost.
(b) otherwise if CurCost < MinCost, push to Stack new tasks T1, T2, ... 
Tk created by setting to ∞  the costs of all edges e1, e2, ... ek 
respectively incident on all vertices of a degree greater than two of the 
task currently being solved.
(c) otherwise do nothing  

4.If Stack is not empty go to 2).
Otherwise return MinTour and MinCost as the result. 



STEP 0
(1,4) = 1 
(1,5) = 3 
(2,5) = 5 
(3,5) = 6
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=?

MinTour=∅
MinCost=∞

STACK:
T0 ()

  

T

             1                         3

                      9             12

                             15

   10                                                 6

                     5               20  
                            
                       
                               8

1

54

32



STEP 1
(1,4) = 1 
(1,5) = 3 
(2,5) = 5 
(3,5) = 6
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=23

MinTour=∅
MinCost=∞

STACK:
T1 ((2,5))
T2 ((3,5))
T3 ((1,5))

  

T

             1                         3

                      9             12

                             15

   10                                                 6

                     5               20  
                            
                       
                               8

1

54

32



STEP 2
(1,4) = 1 
(1,5) = 3 
(2,5) = ∞  
(3,5) = 6
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=27

MinTour=∅
MinCost=∞

STACK:
T2 ((3,5))
T3 ((1,5))
T4 ((2,5)(1,2))
T5 ((2,5)(1,4))
T6 ((2,5)(1,5))
  

T1

             1                         3

                      9             12

                             15

   10                        ∞                     6

                                      20  
                            
                       
                               8

1

54

32



STEP 3
(1,4) = 1 
(1,5) = 3 
(2,5) = 5 
(3,5) = ∞
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=26

MinTour=∅
MinCost=∞

STACK:
T3 ((1,5))
T4 ((2,5)(1,2))
T5 ((2,5)(1,4))
T6 ((2,5)(1,5))
T7 ((3,5)(1,4))
T8 ((3,5)(1,2)) 
T9 ((3,5)(1,5))
T10 ((3,5)(2,5)) 
T11 ((3,5)(2,3)) 

T2

             1                         3

                      9             12

                             15

   10                           5                    ∞
                         
                                        
                                 20   
                       
                               8

1

54

32



STEP 4
(1,4) = 1 
(1,5) = ∞  
(2,5) = 5 
(3,5) = 6
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=29

MinTour=∅
MinCost=∞

STACK:
T4 ((2,5)(1,2))
T5 ((2,5)(1,4))
T6 ((2,5)(1,5))
T7 ((3,5)(1,4))
T8 ((3,5)(1,2)) 
T9 ((3,5)(1,5))
T10 ((3,5)(2,5)) 
T11 ((3,5)(2,3)) 
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))

T3

             1                         ∞

                      9             12

                             15

   10                           5                    6
                         
                                        
                                 20   
                       
                               8

1

54

32



STEP 5
(1,4) = 1 
(1,5) =3 
(2,5) = ∞  
(3,5) = 6
(2,3) = 8
(1,2) = ∞
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=28
MinTour=
  1,5,3,2,4
MinCost=28

STACK:
T5 ((2,5)(1,4))
T6 ((2,5)(1,5))
T7 ((3,5)(1,4))
T8 ((3,5)(1,2)) 
T9 ((3,5)(1,5))
T10 ((3,5)(2,5)) 
T11 ((3,5)(2,3)) 
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))

T4

             1                         3

                    ∞             12

                             15

   10                        ∞                     6
                         
                                        
                                 20   
                       
                               8

1

54

32



STEP 6
(1,4) = ∞  
(1,5) =3 
(2,5) = ∞  
(3,5) = 6
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=36
MinTour=
  1,5,3,2,4
MinCost=28

STACK:
T6 ((2,5)(1,5))
T7 ((3,5)(1,4))
T8 ((3,5)(1,2)) 
T9 ((3,5)(1,5))
T10 ((3,5)(2,5)) 
T11 ((3,5)(2,3)) 
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))

T5

          ∞                          3

                     9              12

                             15

   10                        ∞                     6
                         
                                        
                                 20   
                       
                               8

1

54

32



STEP 7
(1,4) =1 
(1,5) = ∞  
(2,5) = ∞  
(3,5) = 6
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=34
MinTour=
  1,5,3,2,4
MinCost=28

STACK:
T7 ((3,5)(1,4))
T8 ((3,5)(1,2)) 
T9 ((3,5)(1,5))
T10 ((3,5)(2,5)) 
T11 ((3,5)(2,3)) 
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))

T6

              1                        ∞

                     9              12

                             15

   10                        ∞                     6
                         
                                        
                                 20   
                       
                               8

1

54

32



STEP 8
(1,4) = ∞  
(1,5) =3 
(2,5) =5 
(3,5) = ∞
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=35
MinTour=
  1,5,3,2,4
MinCost=28

STACK:
T8 ((3,5)(1,2)) 
T9 ((3,5)(1,5))
T10 ((3,5)(2,5)) 
T11 ((3,5)(2,3)) 
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))

T7

            ∞                        3

                     9              12

                             15

   10                           5                    ∞
                         
                                        
                                 20   
                       
                               8

1

54

32



STEP 9
(1,4) =1 
(1,5) =3 
(2,5) =5 
(3,5) = ∞
(2,3) = 8
(1,2) = ∞
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=27
MinTour=
  1,5,3,2,4
MinCost=28

STACK:
T9 ((3,5)(1,5))
T10 ((3,5)(2,5)) 
T11 ((3,5)(2,3)) 
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T8

              1                        3

                    ∞             12

                                                                15

   10                           5                    ∞
                         
                                        
                                 20   
                       
                               8

1

54

32



STEP 10
(1,4) =1 
(1,5) = ∞  
(2,5) =5 
(3,5) = ∞
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=33
MinTour=
  1,5,3,2,4
MinCost=28

STACK:
T10 ((3,5)(2,5)) 
T11 ((3,5)(2,3)) 
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T9

              1                        ∞

                       9           12

                                                                15

   10                           5                    ∞
                         
                                        
                                 20   
                       
                               8

1

54

32



STEP 11
(1,4) =1 
(1,5) =3 
(2,5) = ∞  
(3,5) = ∞
(2,3) = 8
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=31
MinTour=
  1,5,3,2,4
MinCost=28

STACK:
T11 ((3,5)(2,3)) 
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T10

              1                        3

                       9           12

                                                                15

   10                        ∞                     ∞
                         
                                        
                                 20   
                       
                               8

1

54

32



STEP 12
(1,4) =1 
(1,5) =3 
(2,5) =5 
(3,5) = ∞
(2,3) = ∞
(1,2) = 9
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=30
MinTour=
  1,5,3,2,4
MinCost=28

STACK:
T12 ((1,5)(1,2))
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T11

              1                        3

                       9           12

                                                                15

   10                          5              ∞
                         
                                        
                                 20   
                       
                               ∞

1

54

32



STEP 13
(1,4) =1 
(1,5) = ∞  
(2,5) =5 
(3,5) = 6
(2,3) = 8
(1,2) = ∞
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=32
MinTour=
  1,5,3,2,4
MinCost=28

STACK:
T13 ((1,5)(2,5))
T14 ((1,5)(2,3))
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T12

              1                        ∞

                    ∞             12

                                                                15

   10                          5                6
                         
                                        
                                 20   
                       
                               8

1

54

32



STEP 14
(1,4) =1 
(1,5) = ∞  
(2,5) = ∞  
(3,5) = 6
(2,3) = 8
(1,2) = 9 
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=34
MinTour=
  1,5,3,2,4
MinCost=28

STACK:
T14 ((1,5)(2,3))
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T13

              1                        ∞

                      9              12

                                                                15

   10                         ∞                    6
                         
                                        
                                 20   
                       
                               8

1

54

32



STEP 15
(1,4) =1 
(1,5) = ∞  
(2,5) = 5 
(3,5) = 6
(2,3) = ∞
(1,2) = 9 
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=31
MinTour=
  1,5,3,2,4
MinCost=28

STACK:
T15 ((1,2)(3,5)(2,4))
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T14

              1                        ∞

                     9              12

                                                                15

   10                           5                    6
                         
                                        
                                 20   
                       
                               ∞

1

54

32



STEP 16
(1,4) =1 
(1,5) =3 
(2,5) = 5 
(3,5) = ∞
(2,3) = 8
(1,2) = ∞  
(2,4) = ∞
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=29
MinTour=
  1,5,3,2,4
MinCost=28

STACK:
T16((1,2)(3,5)(2,5))
T17 ((1,2)(3,5)(2,3))

T15

              1                        3
                    

                    ∞             12

                                                                15

   ∞                          5                    ∞
                         
                                        
                                 20   
                       
                               8

1

54

32



STEP 17
(1,4) =1 
(1,5) =3 
(2,5) = ∞  
(3,5) = ∞
(2,3) = 8
(1,2) = ∞  
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=34
MinTour=
  1,5,3,2,4
MinCost=28

STACK:
T17 ((1,2)(3,5)(2,3))

T16

              1                        3
                    

                    ∞             12

                                                                15

          10                  ∞                    ∞
                         
                                        
                                 20   
                       
                               8

1

54

32



STEP 18
(1,4) =1 
(1,5) =3 
(2,5) = 5 
(3,5) = ∞
(2,3) = ∞
(1,2) = ∞  
(2,4) = 10
(1,3) = 12
(4,5) = 15
(3,4) = 20
CurCost=31
Minimal Tour
  1,5,3,2,4
Cost = 28

STACK: T17

              1                        3
                    

                    ∞             12

                                                                15

          10                    5             ∞
                         
                                        
                                 20   
                       
                               ∞

1

54

32



INTEGER-PROGRAMMING APPROACH

Let us consider Kn+1 with the set of nodes {0,1,2, , n} and let

C=c0 0 c0 1 ⋯ c0 n

c1 0 c1 1 ⋯ c1 n

⋮ ⋮ ⋱ ⋱
cn 0 cn 1 ⋯ cn n


be the the cost matrix, that is, 

cij is the cost of travelling from 

node i to node j.

The problem of finding a tour t=0, i1, i2, , in  for a travelling salesman 

starting from node 0 such that ∑
k=1

n−1

cik ik1
c0 i1

ci n 0≤∑
k=1

n−1

c j k jk1
c0 j1

c jn 0 for 

any tour t= j0, j1, j2, , jn can be formulated in terms of integer-

programming as follows:



Introducing  variables xi j , 0≤i≤n , 0≤ j≤n with 

xi j={1 if the travelling salesman travels from node i to node j
0 otherwise

we solve the minimization problem

∑
i=0

n

∑
j=0

n

c i j x i j                                   (1) 

under the restrictions

∑
i=0

n

x i j=1
j=1, 2,  , n (2)

∑
j=0

n

xi j=1
i=1, 2,  , n (3)

ui−u jn xi j≤n−1 i , j=1, 2,  , n i≠ j (4)



∑
i=0

n

∑
j=0

n

c i j x i j                             (1) 

∑
i=0

n

x i j=1
j=1, 2,  , n (2)

∑
j=0

n

xi j=1
i=1, 2,  , n (3)

ui−u jn xi j≤n−1 i , j=1, 2,  , n i≠ j (4)

Primarily, there are no integer restrictions on the variables ui in (4). 

However, it can be shown that, without loss of generality, they may be 

thought of as integer variables as well.



It is not difficult to see that such an integer programming problem is 

equivalent to the original TSP problem.

Indeed, the objective function ∑
i=0

n

∑
j=0

n

c i j x i j clearly defines the the optimum 

tour cost.  while the restrictions ∑
i=0

n

x i j=1 j=1, 2,  , n mean that the 

travelling salesman leaves every node exactly once (except for node 0) and 

the restrictions ∑
j=0

n

xi j=1  i=1, 2,  , n guarantee that he enters every 

node exactly once (except for node 0).



The role of the restrictions ui−u jn xi j≤n−1 , i , j=1, 2,  , n i≠ j

is to eliminate routes consisting of two or more disjunct cycles:

which also satisfy restrictions (2) and (3). Let us use the above example to 

show how they work.  
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For the cycle 5, 6, 7 we have 

u5−u610 x5 6≤9

u6−u710 x6 7≤9

u7−u510 x7 5≤9

Since x5 6=x6 7=x75=1 , by adding the above inequalities, we obtain

30≤27 so that such a tour would be eliminated.

On the other hand, for a feasible tour, say 0, 5, 4, 8, 7, 2, 3, 6, 10, 1, 9

we may put  u1=9,  u2=5,  u3=6,  u4=2,  u5=1,  u6=7,  u7=4,  u8=3,  u9=10,  u10=8. 

For example u6=7 because node 6 occurs as seventh in the tour. In this way, 

for  example,  the  inequality u7−u210 x5 4≤9 turns  into  4−510⋅1≤9

while, say, the inequality u7−u210 x5 4≤9 turns into 10−110⋅0≤9 .



HEURISTIC METHODS

For larger numbers of nodes,  the above algorithms are of little  help.  In 

practical problems, however, we might settle for near-optimum solutions 

computed  in  a  reasonable  time.  Algorithms  enabling  this  are  called 

heuristics.

A  heuristic  is  an  algorithm  that  solves  a  particular  problem  without 

guaranteeing  an  absolute  optimum,  which,  among  others,  means  that  it 

need not be based on an exact theoretical background. A problem may be 

considered solved by a heuristic, for example, if a solution is found that is 

known to lie within a pre-set "distance" from an optimum one or at  least 

this may be assumed with a reasonable probability. Another stopping rule 

for such an algorithm may be the solution time exceeding a pre-set limit.



Local changes

When performing the search, instead of just going through a list of objects, 

calculating the cost  of  each one separately to  find the  shortest  one,  we 

might  adopt  the  following approach:  we try  to  perform a  small  “local” 

change of the object to pass to a “neighbouring” one to see whether this 

“local” change has reduced the price. This improvement procedure may be 

then iterated until no local change can bring about any reduction in price. 

The question is then whether the resulting object is the optimum one that 

we set out to search.

For some type of graphs this question may be answered in the positive. 

This is, for example, the case with spanning trees.



Find a minimum spanning tree of the following complete graph K5:      

                   30                           31  
                                    
                                   2                                                 
                                      
                                       40

         25       45               14                     5

                                          8

                                     12                           

                                  

n1

n2n5

n4 n3

Edge costs:

(n5,n2) = 2
(n2,n3) = 5
(n5,n3) = 8
(n4,n3) = 12
(n4,n2) = 14
(n5,n4) = 25
(n5,n1) = 30
(n1,n2) = 31
(n1,n3) = 40
(n1,n4) = 45



Here, the local change is represented by adding one edge and removing 
another in the circle thus created.

                   30                           31  
                                    
                                   2                                                 
                                      

                                         40

         25       45               14                     5

                                          8

                                     12                           

                                  

n1

n2n5

n4 n3

Edge costs:

(n5,n2) = 2
(n2,n3) = 5
(n5,n3) = 8
(n4,n3) = 12
(n4,n2) = 14
(n5,n4) = 25
(n5,n1) = 30
(n1,n2) = 31
(n1,n3) = 40
(n1,n4) = 45

Initial cost = 146  



                   30                           31  
                                    
                                   2                                                 
                                      

                                         40

         25       45               14                     5

                                          8

                                     12                           

                                  

n1

n2n5

n4 n3

Edge costs:

(n5,n2) = 2
(n2,n3) = 5
(n5,n3) = 8
(n4,n3) = 12
(n4,n2) = 14
(n5,n4) = 25
(n5,n1) = 30
(n1,n2) = 31
(n1,n3) = 40
(n1,n4) = 45

Next lower cost = 117  



                   30                           31  
                                    
                                   2                                                 
                                      

                                         40
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n1

n2n5

n4 n3

Edge costs:

(n5,n2) = 2
(n2,n3) = 5
(n5,n3) = 8
(n4,n3) = 12
(n4,n2) = 14
(n5,n4) = 25
(n5,n1) = 30
(n1,n2) = 31
(n1,n3) = 40
(n1,n4) = 45

Next lower cost = 82  
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n1

n2n5

n4 n3

Edge costs:

(n5,n2) = 2
(n2,n3) = 5
(n5,n3) = 8
(n4,n3) = 12
(n4,n2) = 14
(n5,n4) = 25
(n5,n1) = 30
(n1,n2) = 31
(n1,n3) = 40
(n1,n4) = 45

Next lower cost = 49  



                   30                           31  
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                                         40
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                                          8

                                     12                           

                                  

n1

n2n5

n4 n3

Edge costs:

(n5,n2) = 2
(n2,n3) = 5
(n5,n3) = 8
(n4,n3) = 12
(n4,n2) = 14
(n5,n4) = 25
(n5,n1) = 30
(n1,n2) = 31
(n1,n3) = 40
(n1,n4) = 45

Minimum cost = 49
No further local 
changes will reduce 
the cost  



The  resulting  graph  is  really  the  minimum  spanning  tree.  This  is  a 

consequence  of  Theorem  7  of  the  minimum-spanning-tree  lecture. 

However,  for a TSP, no such guarantee exists as the following example 

shows. Here the local change is represented by two neighbouring nodes in a 

tour being swapped.

  

                                            

                                           



Find a minimum tour of the following complete graph K5:      

                                               
                                    
                                                                                   
                                      
                                       

                

                                          

                                                                

                                  

n1

n2n5

n4 n3

Edge costs:

(n3,n5) = 91
(n4,n5) = 223
(n1,n4) = 255
(n2,n5) = 288
(n1,n2) = 328
(n1,n5) = 446
(n2,n4) = 492
(n2,n3) = 536
(n1,n3) = 589
(n3,n4) = 754



      

                                               
                                    
                                                                                   
                                      
                                       

                

                                          

                                                                

                                  

n1

n2n5

n4 n3

Edge costs:

(n3,n5) = 91
(n4,n5) = 223
(n1,n4) = 255
(n2,n5) = 288
(n1,n2) = 328
(n1,n5) = 446
(n2,n4) = 492
(n2,n3) = 536
(n1,n3) = 589
(n3,n4) = 754

Initial cost = 2569



    

                                               
                                    
                                                                                   
                                      
                                       

                

                                          

                                                                

                                  

n1

n2n5

n4 n3

Edge costs:

(n3,n5) = 91
(n4,n5) = 223
(n1,n4) = 255
(n2,n5) = 288
(n1,n2) = 328
(n1,n5) = 446
(n2,n4) = 492
(n2,n3) = 536
(n1,n3) = 589
(n3,n4) = 754
Next lower cost = 1715
No further local changes 
will reduce the cost



However, here is a tour with an even smaller cost:    

                                               
                                    
                                                                                   
                                      
                                       

                

                                          

                                                                

                                  

n1

n2n5

n4 n3

Edge costs:

(n3,n5) = 91
(n4,n5) = 223
(n1,n4) = 255
(n2,n5) = 288
(n1,n2) = 328
(n1,n5) = 446
(n2,n4) = 492
(n2,n3) = 536
(n1,n3) = 589
(n3,n4) = 754
Minimum cost = 1433



This means that,  by subsequently reducing the cost of an initial  tour by 

local  changes,  we  may  get  trapped in  a  local  minimum.  Therefore  this 

method will not always find a minimum tour. It may be, however, used as a 

basis  for a  heuristic.  Surprisingly,  it  was inspired by a physical  process 

used in engineering which is called annealing. Steel is annealed to improve 

its  quality.  The  atoms of  steel  form a  crystalline  lattice.  The  lower  the 

internal  energy of steel,  the more  perfect  lattice is  formed.  By cooling 

down hot steel, we may reduce its energy. However, if this process is too 

rash,  the  lattice,  assuming  a  fixed  structure,  will  not  continue  to  be 

rearranged. Therefore, the cooling should progress slowly being interrupted 

by  short  increases  of  temperature.  Exactly  this  is  done  by  a  simulated 

annealing method used to reduce the cost of a tour.  



The method of simulated annealing was first published in 1983 by IBM 

researchers as a heuristic to be used to find good approximations of optimal 

solutions to combinatorial  problems. We will  describe a modification of 

this method for the travelling salesman problem.



As usual, we start with an initial tour. To each tour T we can define local 

changes  as  described  above  to  obtain  new  “neighbouring”  tours 

T 1, T 2, ,T k . Each tour Ti either increases or decreases the cost of T. We 

keep performing local  changes.  If  a  change will  decrease the cost,  it  is 

performed. If it would result in an increase of the tour cost, it may still be 

performed with  a  certain  probability  to  prevent  the  process  from being 

locked in a local minimum. This probability is usually defined as P=e−An

where  n is the iteration number and  A is a suitable constant that may be 

determined by experimenting. The cost of every tour is matched against the 

best one found and stored if better. The process is usually stopped after a 

certain number of iterations have been performed.


