
Complexity theory concerns itself with two kinds of measures: time and 

space.  

 

Time complexity is a measure of how long a computation takes to execute. 

For a digital computer, this could be represented by the number of machine 

cycles required for the computation.  

 

Space complexity is a measure of the storage required for a computation. 

For a digital computer, this could be the number of bytes used.  

 

Such measures are functions of a single input parameter, the size of the 

input.  



 

Given a particular input problem class, we might be interested in either the 

average case or the worst case. The worst-case complexity tends to be 

preferred because  

■ it may be difficult or impossible to define an "average" case. For 

many problems, the notion of "average case" doesn't even make 

sense,  

■ It is usually much easier to compute worst-case complexity.  



In complexity theory we generally subject our equations to some extreme 

simplifications. For example, if a given algorithm takes exactly 

100325 23 +−+ nnn  machine cycles where n is the size of the input 

problem, we will simplify this to ( )3nO  (read: order n-cubed). This is called 

an order statistic. Specifically, we:  

■ drop all the terms except the one of the highest-order,  

■ drop the coefficient of the highest-order term.  

This is because:  

■ for very large values of n, the effect of the highest-order term 

completely overrides that of lower-order terms.  

■ improving the code may improve the coefficients, but not the order 

statistic.  



A polynomial-time algorithm is an algorithm whose execution time is 

bounded by a polynomial. Problems that can be solved by a polynomial-

time algorithm are called tractable problems.  

 

There are also a large number of practical problems, for which no 

polynomial algorithm has yet been found. These are called intractable.  



To demonstrate that intractability is a serious problem, let us take a look at 

finding a minimum Hamiltonian cycle. In terms of the worst case, all 

algorithms solving this problem amount to the "exhaustive search" or "rude 

force" algorithm. With n vertices, there are 
( )

2

!1−n
 different cycles. 

Suppose it takes 0.0000001 sec. to check each cycle. We get the following 

table: 

n Time needed to solve the problem 

5     0.0000012 seconds 

15    1 hour 12 minutes 

20    192.86 years 10 months 2 weeks 

30    14 000 000 000 000 000  years 



Some problems can still be solved in polynomial time, even if a polynomial 

deterministic algorithm does not exist. All we need is "a little bit of luck". 

For example, the problem of determining whether a given graph contains a 

Hamiltonian cycle is among those known to be intractable. But, with a little 

bit of luck we may hit a cycle that happens to be Hamiltonian. Then it 

takes very little time to check this. These considerations lead to the concept 

of non-deterministic computation.               

 



A nondeterministic computation can be viewed in either of two ways:  

■ When a choice point is reached, an infallible oracle can be consulted 

to determine the correct choice.  

                  
The Delphic oracle is a temple in the town of Delphi in Greece where, in ancient times, a 
priestess named Pythia gave answers from the god Apollo to questions people asked him. 
His answers were often mysterious and difficult to understand, and were often in the form 
of a riddle.  
 



 

■ When a choice point is reached, all choices can be made and 

computation can proceed simultaneously.  

 1 2 3 4 5 
1 _ 304 258 634 494 

2 304 _ 53 740 382 

3 258 53 _ 350 615 

4 634 740 350 _ 442 

5 494 382 615 442 _ 

 

(1,4,2,3,5) ☼ - - - Processor 1 - - - - > 2536 

(1,2,5,4,3) ☼ - - - Processor 2 - - - - > 1736 

(1,4,2,5,3) ☼ - - - Processor 3 - - - - > 2629 

(1,2,3,4,5) ☼ - - - Processor 4 - - - - > 1643  BEST RESULT 

(1,2,4,3,5) ☼ - - - Processor 5 - - - - > 2503 

(1,4,5,2,3) ☼ - - - Processor 6 - - - - > 1769 

(1,2,4,5,3) ☼ - - - Processor 7 - - - - > 2359 

(1,5,2,3,4) ☼ - - - Processor 8 - - - - > 1913 

(1,2,5,3,4) ☼ - - - Processor 9 - - - - > 2285 

(1,5,4,2,3) ☼ - - - Processor 10 - - - > 1987 

(1,2,3,5,4) ☼ - - - Processor 11 - - - > 2048 

(1,5,2,4,3) ☼ - - - Processor 12 - - - > 2224  



A nondeterministic polynomial-time problem or an NP problem is a 

problem that can be solved in polynomial time on a nondeterministic 

machine.   

 

What follows is a list of some NP problems.  



Integer Bin Packing 

Given a set of n positive integers, arrange them into two bins so that the 

sum of the integers in either bin is the same.  

For example, given the integers 19, 23, 32, 42, 50, 62, 77, 88, 89, 105, 114, 

123, 176 whose sum is 1000, can they be divided into two bins A and B so 

that the sum of each bin is 500? There are variations of this problem such 

as:  

■ there are more than two bins,  

■ for a single bin find, find a subset of integers that fit into the bin and 

sum up to the greatest value possible - also known as the knapsack 

problem.  

 



Boolean satisfiability problem (SAT). Having a Boolean expression 

written using only operators AND, OR, and NOT, variables, and 

parentheses, the question is: is there some assignment of TRUE and FALSE 

values to the variables that will make the entire expression true? 

The problem can be further restricted. We can assume that NOT operators 

are only applied to variables, not expressions. If we OR together a group of 

literals, we get a clause, such as (x1 or not(x2). If we consider formulas that 

are a conjunction (AND) of clauses, we call this form conjunctive normal 

form. Another restriction is that each clause is limited to at most three 

literals. This last problem is called 3SAT, 3CNFSAT, or 3-satisfiability. 



Hamiltonian cycle problem. Given an ordinary graph with n vertices, 

determine whether it has a Hamiltonin cycle, that is, a cycle that contains 

all the n vertices of the graph.  

Note that when we know of a sufficient condition for the existence of a 

Hamiltonian cycle that such a graph fulfils, such as ( ) ( ) nvu ≥+ degdeg  for 

any two non-neighbouring vertices u, v of the graph, then the solution is 

easy but, generally, the problem is NP.     



Travelling Salesman Problem (TSP). In a complete ordinary graph 

( )EVG ,=  , each Ee∈  is assigned a positive number ( )ec . Find a 

Hamiltonian cycle ( )1112211 ,,,,,,, vevevevevH nnnn −−= K  of G such that 

( ) ∑
=

=
n

i
ieHc

1
is minimal. 

There is a weaker form of TSP which is still NP:  

Given a complete ordinary graph ( )EVG ,=  with each Ee∈  assigned a 

positive number ( )ec  and a positive number K, determine whether a 

Hamiltonian cycle H of G exist such that ( ) KHc ≥ .



Some of the NP problems have a remarkable property: they are all 

reducible to each other. It means that, given any two NP problems X and Y,  

■ there exists a polynomial-time algorithm to restate a problem of type 

X as a problem of type Y, and  

■ there exists a polynomial-time algorithm to translate a solution to a 

type Y problem back into a solution for the type X problem.  

Therefore the set of all the NP problems that can be reduced to each other 

are referred to as NP-complete problems. All the above listed NP 

problems happen to be also NP complete. 

 

 

 



This means is that, if anyone ever discovers a polynomial-time algorithm 

for any of these problems, then there is an easily-derived polynomial-time 

algorithm for all of them. This leads to the famous question: 

  

 

P = NP 

 

No one has ever found a deterministic polynomial-time algorithm for any 

of these problems. However, no one has ever succeeded in proving that no 

deterministic polynomial-time algorithm exists, either. Most computer 

scientists are convinced that a polynomial-time algorithm cannot exist, but 

no one knows for sure. 


