

Weighted graph

Let be a simple graph. If a mapping is given, then

the triple is called a weighted graph. Each edge e of G is

thus assigned a real number , called the weight of e.

If is a subgraph of G, then is called the

weight of G '.

G=N , E  w : E R

G=N , E , w

G '=N ' , E '  w G ' =∑
u∈E '

wu

w e

Minimal spanning tree

Let be a simple weighted graph. Let be a

spanning tree of G. We say that S is a minimal spanning tree of G if

 for each spanning tree T of G.

G=N , E , w S=N , E ' 

w S ≤w T 

Next we will describe two algorithms that can be used to find a minimal

spanning tree of a simple weighted graph . Why such algorithms work is

shown by the theorems that follow.

Theorem 7

Let be a simple weighted graph and let

be a circle in G. If , then edge e
1
 is contained in no

minimal spanning tree of G.

G=N , E , w
C=v , e1 , u1 , e2 , u2 , , u p−1 , e p , v

ce1c ei , 2≤i≤ p

Proof:

Let be a minimal spanning tree of G and suppose .

Then we have a fundamental cut . By Theorem 5, in addition to e
1
,

there must be at least one more edge f that is both in C and . Since

 , f is a chord in M. Thus, we can define . By Theorem 6

 . Now add f to M to create M ' . The only circle in M ' is

 and, deleting e
1
 from this circle, we get a spanning tree M ' ' with a

total weight smaller than M, which is a contradiction.

M =N , E '  e1∈E '

DM e1

DM e1

f ∈DM e1 C M  f 
e1∈C M  f 

C M  f 

Corollary 8

Let be a simple weighted graph and let

be a circle in G. If , then there is at least one

minimal spanning tree not containing e
1
.

G=N , E , c
C=v , e1 , u1 , e2 , u2 , , u p−1 , e p , v

ce1≥c ei , 2≤i≤ p

This corollary affects graphs in which the weights of two different

edges may be the same. It is not difficult to show that, provided that all

the edge weights are distinct, there is a unique spanning tree of G.

(a)

(b) If S
i
 is connected, it is a spanning tree and the algorithm stops

(c) Put , if adding edge T
i
(1) to Q

i
 does not

give rise to a circle in S
i

(d) Put , if adding T
i
(1) to Q

i
does create a circle in S

i

Kruskal's algorithm
Let be a weighted simple connected graph with

 . Arrange the edges of E in a sequence

so that . In subsequent steps construct graphs

 Here will denote the first term of T
i

and the sequence T
i
 without its first term.

G=N , E , w

T 1=t 1, t2, , t k 

w t i≤w t j for i j

S 1=N ,Q1 , S 2=N ,Q2 ,

E={e1, e2, , ek}

Q1={t1},T 2=T 1−1

T i−1

T i 1

Qi1≝Qi∪{T i 1} T i1≝T i−1

Qi1≝Qi T i1≝T i−1

Thus by Kruskal's algorithm, spanning tree is created step by step by
adding edges from a sequence previously sorted in an ascending order by
the edge weights. Should a circle be created by adding an edge, it is
skipped.

A
B

C D

E

F

1

10
4 8

9

16 15

19

25

w(A,B)=1

w(A,C)=4

w(B,D)=8

w(C,D)=9

w(A,D)=10

w(D,E)=15

w(C,E)=16

w(E,F)=19

w(D,F)=25

(a) with and

(b) If, for an , we have , then is a minimal

spanning tree and the algorithm stops

(c) else

Prim's algorithm

Let be a weighted simple connected graph. For a subgraph

 of G not containing a circle, denote by the graph

created by adding a node v to V and and edge e to J such that

a) e is an edge between node v and a node in V

b) e has the least weight of all such edges.

In subsequent steps, create graphs S
1
, S

2
, ... as follows:

G=N , E , w

S 1={u , v} ,{e}

S i1≝S i
+

S=V , J  S +=V + , J +

w e≤w {u , z}∀ z∈Ne={u , v}
S i=V i , J i | J i |=| N |−1 S i

Prim's algorithm starts with any node, always adding edges with

minimum weights to extend the current graph to a connected graph

without a circle.

As compared with Kruskal's algorithm, no previous sort of all the edges

by their weights is necessary since Kruskal's algorithm mostly does not

make use of edges with large weights at all.

Prim's algorithm is based on the following theorems:

Theorem 9

Let be a simple weighted graph and an edge

such that . Then is included in every

minimal spanning tree of G

G=N , E , w

w {u , v}w {u , z}∀ z∈N {u , v}
{u , v}∈E

Corollary 10

Let be a simple weighted connected graph and

such an edge that . Then there is a minimal

spanning tree of G including

G=N , E , w {u , v}∈E

w {u , v}≤w {u , z}∀ z∈N

{u , v }

Corollary 11

Let be a simple weighted connected graph and

a subtree of a minimal spanning tree of G. Then there is a spanning tree

of G including T as a subgraph and, moreover, including an edge e with

the least weight such that

G=N , E , w

e={u , v} , u∈N ' , v∈N−N '

T=N ' , E ' 

Prim's algorith in a matrix form

If the weights of the edges of a graph are defined as a matrixG=N , E 

 w11 w1 2  w1 n

w2 1 w22  w2 n

⋮ ⋮ ⋱ ⋮
wn 1 wn 2  wn n


Prim's algorithm may be described as follows:

Step 1: Delete all column 1 entries and mark row 1

Step 2: If the marked rows only include underligned entries, the algorithm

 stops with the underlined entries indicating the edges of a minimal

 spanning tree. Else choose a minimal not underlined entry in

 marked rows.

Step 3: If an entry w
ij
is chosen , it is underlined, row j is marked and all

 the non-underlined entries in column j are deleted. Go to step 2.

Example 1 2 3

4 5 6

1 2

4

1

1
1

4

2 3

3

C1=
- 1 - 4 1 -
- - 2 - 1 -
- 2 - - 2 3
- - - - 4 -
- 1 2 4 - 3
- - 3 - 3 -

 *
C 2=

- 1 - 4 1 -
- - 2 - 1 -
- - - - 2 3
- - - - 4 -
- - 2 4 - 3
- - 3 - 3 -

 C3=
- 1 - 4 1 -
- - 2 - - -
- - - - - 3
- - - - - -
- - - 4 - 3
- - 3 - - -

*

*
*
*

*

1 2 3

4 5 6

1 2

4

1

1
1

4

2 3

3

*

C 4=
- 1 - 4 1 -
- - 2 - - -
- - - - - 3
- - - - - -
- - - 4 - 3
- - - - - -

 ***
C5=

- 1 - 4 1 -
- - 2 - - -
- - - - - 3
- - - - - -
- - - 4 - -
- - - - - -

 ****
*

C6=
- 1 - 4 1 -
- - 2 - - -
- - - - - 3
- - - - - -
- - - - - -
- - - - - -


*

*
*

*

*

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12

