
A particular node of a tree may be specified as its root. Such a tree is

typically drawn with its root at the top. A tree with a root specified is called

a rooted tree.

The edges of a rooted tree are often treated as directed. Every non-root

node has exactly one edge that leads to the root. Descendant of a node in a

directed tree is defined as any other node reachable from that node.

parent

child
parent

child

leaves leaves

root's descendants

A binary tree is a rooted tree with all its nodes having two or fewer

children. The depth of a binary tree is a number indicating how many

nodes are traversed from the root to a leaf:
node depth = 0

node depth = 1

node depth = 2

node depth = 3

tree depth = 4

 In a balanced binary tree, the depths of all the leaves differ by at most 1.

Balanced binary trees have a predictable depth equal to the integer part of

log2 n where n is the number of nodes of the binary balanced tree.

n=12 trunc log2 12=3

A balanced binary tree may be stored as an array: the root is stored at index

0, its left child at 1 and right child at 2. Generally, if a node is stored at

index i, its left child is stored at 2 i1 and right child at 2 i2

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11

AB C

D E F G

H I J K L

A binary search tree is a binary tree in which every node is assigned a

unique key from an ordered set. Each node's subtree defined by its smaller

child has keys less than the node's key, and the subtree defined by the larger

child has keys greater than the node's key.

7
3

1 5

0 2 4 6

11

9 13

8 10 12 14

A heap is a structure for storing ordered data. It may be viewed as a

balanced binary tree with the property that, if node n1 is a descendent of

node n2 in the heap, then n1 is less (greater) than n2. This property is often

referred to as the heap property.

The root of a heap is always its largest (smallest) element.

12
10 11

8 9 6 7

2 3 5 4 1

Arranging data into a heap is the underlying idea of a heap-sort.

Suppose the sequence 2, 9, 1, 12, 10, 4, 6, 3, 8, 7, 5, 11 is to be sorted in an

ascending order. It may be represented by the balanced binary tree:

9 1

12 10 4 6

3 8 7 5 11

2

In the first phase, the nodes of this tree are rearranged to form a heap. This

process is called heapifying or heapification. Subsequently, the following

steps are repeated in a cycle:

Swap the first (largest) number m of the heap of not yet sorted numbers

of the sequence with the number at the index at which m is supposed to

be after the sort. Once swapped, m is thought of as sorted.

Heapify the resulting balanced binary tree of not yet sorted sequence

numbers.

The cycle is ended if the number of unsorted numbers equals 1.

To describe the process of heapification, we first describe the sifting down

of a node: a node n is sifted down if the following operation is recursively

repeated until one of the leaves is reached:

n is compared with its children c1 and c2. If, say, c1n and c1c2 , n

is swapped with c1 and compared with its new children, etc.

In the following example, node 2 is sifted down to the lowest position:

9 1

12 10 4 6

3 8 7 5 11

2

12 1

8 10 4 6

3 2 7 5 11

9

To heapify a balanced binary tree, sift down its nodes beginning with its

rightmost non-leaf and ending with its root. See the following example:

9 1

12 10 4 6

3 8 7 5 11

2no swaps necessary

9 1

12 10 11 6

3 8 7 5 4

2

12 11

10 4 6

3 8 7 5 1

2

9

The binary tree representing the number sequence has been heapified. Now

the root will be swapped with the rightmost leaf.

10 111

7 4 6

3 8 2 5 1

12

9

This violates the heap property of the binary tree, which has to be heapified

again.

10 111

7 4 6

3 8 2 5 12

1

9

Note that, this time, it is sufficient to sift down the root to restore the heap

property.

10 111

7 4 6

3 8 2 5 12

1

9

10 6

7 4 1

3 8 2 5 12

11

9

10 6

7 4 1

3 8 2 11 12

5

9

10 6

7 4 1

3 8 2 11 12

5

9

9 6

7 4 1

3 5 2 11 12

10

8

9 6

7 4 1

3 5 10 11 12

2

8

8 6

7 4 1

3 2 10 11 12

9

5

8 6

7 4 1

3 9 10 11 12

2

5

7 6

2 4 1

3 9 10 11 12

8

5

7 6

2 4 1

8 9 10 11 12

3

5

5 6

2 4 1

8 9 10 11 12

7

3

5 6

2 4 7

8 9 10 11 12

1

3

5 1

2 4 7

8 9 10 11 12

6

3

5 1

2

6
7

8 9 10 11 12

4

3

4 1

2

6
7

8 9 10 11 12

5

3

4 1

5

6
7

8 9 10 11 12

2

3

3 1

5

6
7

8 9 10 11 12

4

2

3 1

5

6
7

8 9 10 11 12

2

4

2 1

5

6
7

8 9 10 11 12

3

4

2 3

5

6
7

8 9 10 11 12

1

4

1 3

5

6
7

8 9 10 11 12

2

4

2 3

5

6
7

8 9 10 11 12

1

4

2 3

5

6
7

8 9 10 11 12

1

4

The heap-sort algorithm is known to perform in a time proportional to

n log n where n is the length of the sequence.

