Complexity theory concerns itself with two kinds of measures: timd a

space.

Time complexity is a measure of how long a computation takes ¢ocute.
For a digital computer, this could be representethb number of machine
cycles required for the computation.

Space complexity is a measure of the storage required for a cortipata
For a digital computer, this could be the numbdnydés used.

Such measures are functions of a single input patemthesize of the

Input.



Given a particular input problem class, we mightriterested in either the
aver age case or thewor st case. The worst-case complexity tends to be
preferred because
. It may be difficult or impossible to define an "a&ge" case. For
many problems, the notion of "average case" doesalt make

sense,

. Itis usually much easier to compute worst-caseptexity.



In complexity theory we generally subject our equred to some extreme
simplifications. For example, if a given algoritiakes exactly
5n° +2n° —n+100Z machine cycles whereis the size of the input
problem, we will simplify this th(n"’) (read: orden-cubed) This is called
anorder statistic. Specifically, we:
. drop all the terms except the one of the highedé&Qr
. drop the coefficient of the highest-order term.
This Is because:
. for very large values af, the effect of the highest-order term
completely overrides that of lower-order terms.
. iImproving the code may improve the coefficientd, it the order
statistic.



A polynomial-time algorithm is an algorithm whose execution time is
bounded by a polynomial. Problems that can be ddbyea polynomial-
time algorithm are callett actable problems.

There are also a large number of practical probléonsvhich no
polynomial algorithm has yet been found. Thesecaledintractable.



To demonstrate that intractability is a seriousdopm, let us take a look at
finding a minimum Hamiltonian cycle. In terms okttvorst case, all
algorithms solving this problem amount to the "axgtave search" or "rude

(n-1)!
force" algorithm. Withn vertices, there are »  different cycles.

Suppose it takes 0.0000001 sec. to check each. tWel@et the following
table:

n Time needed to solve the problem
5 0.0000012econds

15 | 1lhour 12minutes

20 | 192.86years 10 months 2 weeks
30 | 14 000 000 000 000 O0@ears




Some problems can still be solved in polynomiaktimven if a polynomial
deterministic algorithm does not exist. All we need is "a littig of luck".
For example, the problem of determining whetheivarggraph contains a
Hamiltonian cycle is among those known to be intgble. But, with a little
bit of luck we may hit a cycle thdtappens to be Hamiltonian. Then it
takes very little time to check this. These consitdens lead to the concept

of non-deterministic computation.



A nondeter ministic computation can be viewed in either of two ways:

- When a choice point is reached, an infallimeacle can be consulted
to determine the correct choice.

The Delphic oracle is a temple in the town of Delphi in Greece where, in ancient times, a
priestess named Pythia gave answers from the god Apollo to questions people asked him.

His answers wer e often mysterious and difficult to understand, and were often in the form
of ariddle.



- When a choice point is reached, all choices camdge and

computation can proceed simultaneously.
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A nondeterministic polynomial-time problem or an NP problem is a

problem that can be solved Iin polynomial time omandeterministic
machine.

What follows is a list of some NP problems.



Integer Bin Packing
Given a set oh positive integers, arrange them into two binshs the
sum of the integers in either bin is the same.
For example, given the integers 19, 23, 32, 42630/7, 88, 89, 105, 114,
123, 176 whose sum is 1000, can they be dividedtmbd binsA andB so
that the sum of each bin is 500? There are vanatad this problem such
as:

. there are more than two bins,

. for a single bin find, find a subset of integeratthit into the bin and

sum up to the greatest value possible - also krasmheknapsack

problem.



Boolean satisfiability problem (SAT). Having a Boolean expression
written using only operators AND, OR, and NOT, wahtes, and
parentheses, the guestion is: is there some assigrofifRUE andFALSE
values to the variables that will make the entxpression true?

The problem can be further restricted. We can aesdinat NOT operators
are only applied to variables, not expressionadfOR together a group of
literals, we get &lause, such asx; or not(x,). If we consider formulas that
are a conjunction (AND) of clauses, we call thisvioconjunctive normal
form. Another restriction is that each clause mitked to at most three
literals. This last problem is called 3SAT, SCNFSAT 3-satisfiabllity.



Hamiltonian cycle problem. Given an ordinary graph witlmvertices,
determine whether it has a Hamiltonin cycle, teaticycle that contains

all then vertices of the graph.
Note that when we know of a sufficient conditiom flee existence of a

Hamiltonian cycle that such a graph fulfils, sushdac(u)+dec(v) = n for
any two non-neighbouring verticasv of the graph, then the solution is

easy but, generally, the problem is NP.



Travelling Salesman Problem (TSP). In a complete ordinary graph
G=(V,E), eacheJE is assigned a positive numbete). Find a

Hamiltonian cycleH =(v,,&,V,&,,...V. ,,€

* 'n-1?

_,V.,€.,V,) of G such that

n?*=n’

¢(H)=3 e is minimal.
=1

There is a weaker form of TSP which is still NP:

Given a complete ordinary gragh= (V, E) with eache ] E assigned a
positive numbec(e) and a positive numbét, determine whether a
Hamiltonian cycleH of G exist such that(H) =K.



Some of the NP problems have a remarkable propéeey:are all
reducible to each othdt means that, given any two NP problexandy,
. there exists a polynomial-time algorithm to resaf@oblem of type
X as a problem of typ¥, and
. there exists a polynomial-time algorithm to tratesia solution to a
typeY problem back into a solution for the tyderoblem.
Therefore the set of all the NP problems that earelduced to each other
are referred to dsP-complete problems. All the above listed NP
problems happen to be also NP complete.



This means is that, if anyone ever discovers anuotyal-time algorithm
for any of these problems, then there is an easily-dempadghomial-time
algorithm forall of them. This leads to the famous question:

No one has ever found a deterministic polynommaktalgorithm for any
of these problems. However, no one has ever suedargroving that no
deterministic polynomial-time algorithm exists,hat. Most computer
scientists are convinced that a polynomial-timeatgm cannot exist, but

no one knows for sure.



