NETWORK

A network is a quadruple N=(G,s,t,c) where G=(V,A) is a simple
digraph. Every ordered pair (#,v) of nodes is assigned a non-negative
capacity ¢(u,v)=0 . For an ordered pair (u,v)&A4 ,weput c(u,v)=0 .
There are two special nodes: the source s and the farget t. In what follows
we will assume that each node lies on a directed path from the source to the

target.



A flow in anetwork N=(G,s,t,c) isamapping f: VXV >R
satisfying the following three conditions:

1. f(u,v)<c(u,v),Yu,veVv

2. flu,v)=—f(v,u),Yu,veVv

3. 2 fu,v)=0,Yuer —|s,t|
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The quantity f (u,v) , which may be positive, zero, or negative, is called

the flow from node u to node v.

The quantity |/ |= 2 [ls.u) is called the fotal flow of N.
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Notes to the definition of flow:

By Condition 2 above, we have f (u,u)=0 , that is, the flow from a node
into itself 1s zero.
By Condition 3, the total flow from each node different from source and

target 1s zero. Using Condition 2, this can be rewritten as

Z f(u,v)=0,YveV —|s,t|

. , that 1s, the total flow into each node
uec

different from source and target 1s zero.

If no arcs exist between nodes u and v, there can be no flow between them

as c(u,v)=c(v,u)=0andso f(u,v)<0 and f(v,u)<0 . Condition 2

then leldS f(u)v):f(v,u):() .



Summation formalism

We will use the following short-cut symbol where X and Y are sets of

nodes:

fX.V)=2 2 flx,y)

xeX yeY

We may also leave out the brackets “{*, “}” denoting sets. For example, in

the formula f(s,V—s)=f(s,V), V—s isa shortcut for V—|s] .



Lemma 1

Let N=(G,s,t,c) be anetwork where G=(V", 4) is a simple digraph,
X,Y,Z<V andletf be a flow in N. We have



Ford-Fulkerson Method

This method rests on the following three basic concepts: residual network,

augmenting path, and cut.

It starts with a zero flow. By each iteration, an augmenting path 1s found
from source s to target ¢ along which an additional piece of flow can be
added to augment the current flow. This process 1s repeated until no

augmenting path can be found.

By establishing a relationship between a maximal flow and a minimal cut,
it can be proved that the resulting augmented path 1s indeed maximal. The

basic concepts will now be defined and explained.



Residual capacity
Define a flow fin a network N=(G,s,t,c) where G=(V,4) is a

simple graph. For every pair of nodes (u,v),u,vEV , define the residual

capacity as ¢ (u,v)=c(u,v)—f(u,v) .
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Residual network

Let N=(G,s,t,c) be anetwork with G=(V, A) being a simple digraph.
Let f beaflowin N. Let ¢, be the residual capacity of N defined by the
flow /. Define a simple digraph G ,(V', 4,) where

A;=|(u,v)|u,veV Ac,(u,v)>0| . The network N ,=(G,, s.t,c,) is

called the residual network of network N with respect to flow f.



Lemma 2

Let N=(G,s,t,c) beanetwork and fa flow in N. Let

N ,=(G,,s,t,c,) be the residual network of N with respect to f'and let
/" beaflowin N ,.Then the mapping
(f+f): VXV >R
defined as

(f+f )N u,v)=F(uv)+f (u,v)

1s a flow 1n network M.



Augmenting path

Let N=(G,s,t,c) be a network. Define a flow fin N and the residual
capacity ¢, with respect to this flow. Using ¢, a simple digraph
G ,(V, 4,) may be built as above. Let now P be any path in G, from
source s to target ¢ in. Such a path is called an augmenting path in N with
respect to flow f. Let PZ(SZVO,VLVQ,. e Vi szt) . We define the
residual capacity ¢, (P) of P with respect to fas follows:
cf(P):min[cf(vl., v..)]i=0,1,..., k—l}



Lemma 3

Let N=(G,s,t,c) be anetwork, define a flow  in N and the residual
network N ,=(G,,s,t,c,;) . Let P=(s=vyv, v,...,V,_,V,=t) bean
augmenting path in Nyand ¢, (P) its residual capacity with respect to f.
Define a mapping [ »- VXV — R as follows:

1. fp(v,vi)=c, (P),i=0,12,....k—1

o} fP(vl.H,vl.)z—cf(P),i=0,1,2,...,k—1

3. f»(u,v)=0 otherwise
Then fpisaflowin G, with | f,|=c,(P)>0



Corollary 4
Let N=(G,s,t,c) beanetwork, f aflow defined in N,

N ,=(G,,s,t,c,) the residual network with respect to f, and P an
augmenting path in Gy with ¢ ,(P) as its residual capacity. Let a mapping

fp: VXV =R be defined as in Lemma 3. Define a mapping

f=f+fp:VXV—>RasinLemma2. Then f" isa flow in N with
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Network cut and capacity

Let N=(G,s,t,c) be anetwork with G=(V, A) being a simple digraph.

We will call any partition (S,7) of Vacutof N=(G,s,t,c) if s€S

and 7€T . Recall that, for a partition (S,7) of ¥, we have SUT =V and
SNT=49 .

Given a flow £ in N, we define the flow over cut (S, T) with respect to f

as f(S,T) and the capacity of cut (S,T) as ¢(S,T) .

Note that, when computing the flow over a cut, the sum may include

negative flows between nodes whereas the capacity of a cut 1s always

composed of non-negative values.



Lemma 5

Let N=(G,s,t,c) be anetwork, f aflowin N, and let (S,7) be a cut
in N. Then the flow over the cut (S, 7) with respect to fis equal to the
value of the flow f, thatis, f(S,T)=|f] .

Proof:

Since SUT=V and SNT=0 ,wehave T=V —S and, using Lemma 1,

we can write f (S, T)=/f(S,V)—f(S,.S)=f(S,V)=
=f(s.V)+f(S=s,V)=f(s.V)=[]].

An 1mmediate consequence of the above lemma 1s that the value of a flow

is equal to the total flow into the target.

The next corollary shows how capacities can be used to establish an upper

bound for a flow.



Corollary 6

The value of a flow in a network is less than the capacity of any cut of this
network.
Proof: Let (S,7) bea cut. By Lemma 5 and by condition 1 in the

definition of a flow, we have

fI=£(S.T)=2 2, fluv)<), D clu,v)=c(S.T)

ueS verT ueS veTl



Theorem 7 (on maximal flow and minimal cut)

Let N=(G,s,t,c) beanetwork and f a flow in N. Then the following
conditions are equivalent:
(a) f1s a maximal flow in N

(b) the residual network N fZ(G s c¢) contains no augmenting paths

) | f1=c(S,T) foracut (S,T) of N

Proof:
(a)=(b) Letf be a maximal flow in N and suppose that there is an

augmenting path P in G, . Then, by Corollary 4, f ‘= (4, VXV >R

is a flow in N such that | 7|>| /| which is a contradiction.



(b)=(c) : Let there be no augmenting paths in N so that no path exists in

G ; from s to ¢. Define S:{ME V'|there 1s a path in G, from s to u

b

T=V—-S.Now (S,T) is clearly a partition and a cut since, obviously,
s€S and t&S as no path exists in G, from s to ¢.
For every u€S,veT ,wehave f(u,v)=c(u,v) since, otherwise,
(u,v)€EA,and so vES . Therefore, by Lemma 5,
| f1=/(S,T)=c(S,T) .
(c)=() : Let | f|=c(S,T) foracut (S,T) of N and suppose that fis not
maximal. This means that there exists a flow f; such that | f,[>]f].
However, by Corollary 6, we have | f|<c(S,T) , whichis a

contradiction.



Ford-Fulkerson algorithm

For anetwork N=(G,s,t,c) where G=(V, A) is a simple digraph:

1. INITIALIZE: For every u,veV put f|u,v|:=0

2. BUILD RESIDUAL NETWORK N ,=(G,,s,t,c,) : Forevery u,vEV calculate
the residual capacity ¢ |u,v]|:=clu,v|=f|u,v] to build the residual graph G, (V, 4 )
with AfZI(u, v)|u,v€V Ac,(u, v)>0}

3. DETERMINE THE EXISTENCE OF A PATH IN G, BETWEEN s AND t:

If no path exists: Stop. The current total flow f1s maximal,

else create path P=(s=v0,v1,a2’v2,. .., V,_1,a,,v,=t) and continue.

4. AUGMENT THE CURRENT FLOW

Calculate the residual capacity of P: ¢ ,(P)=min|c (v, v, )|i=0,1,...,k—1]|

Put: f[Vi)ViH]-':f[Vi’Vi+1]+cf<P):f[Vi+1’Vi]-':f[viﬂ’vi]_cf(P)’i:1»2’---’k_l
Go to Step 2.
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