
Arc length, path length

In this section, a graph will always mean a simple digraph.

Let G=N , A be a graph and assign a real number l(a) to each arc a∈A .
This number is called the length of arc a.

The length l  p of path p in G is defined as the sum of the lengths of all the
arcs in p.

Distance, minimal path

Given a graph G=N , A and two nodes u , v∈N , we define distance d u , v 

between u and v as the minimum length of a path from u to v. Such path is called

minimal from u to v. If there is no path from u to v, put d u , v =∞ .

In this graph: d u , x=14, d u , y=33

15

10 3

1

20
u

v

w

x

y

Note

As the length of an arc may also be negative, the existence of a cycle with a neg-

ative length will make the search for a minimal path pointless. As seen in the pic-

ture below, there is a walk from s to v with a length that is less than any given

number. To overcome this difficulty, we will first only deal with digraphs that

have arcs with positive lengths.

 s vc c-c

-c-c

c > 0

Consider the following problem:

Let G=N , A be a digraph with each arc a assigned a positive real number

l a and let s∈N . For every v∈N , find the distance d  s , v and the corres-

ponding minimal path p  s , v  .

This problem may be solved by an algorithm devised by

prof. Edsger Wybe Dijkstra, a Dutch mathematician,

* 11. 5. 1930 † 6. 8. 2002

Auxiliary concepts

An upper estimate of the distance d  s , v is a number D(v) such that

D v ≥d  s , v . For each v∈N , ()vπ will denote the node immediately pre-

ceding v in the minimal path from s to v constructed by Dijkstra's algorithm.

When such a path has not yet been constructed, put () ∅=vπ .

Next for each v∈N , ()vN will denote the set of all nodes to which there is an

arc from v, formally N v ={w∈N |v , w ∈A} .

The symbols S, S⊆N will denote the set of all nodes w for which Dijkstra's al-

gorithm has already fixed a minimal path p  s , v  along with d  s , w .

Moreover, Q=U−S .

Flow chart

1. Initialize: Put u:=∅ , D s:=0 , D u:=∞ if u≠s , S :=∅ for every

u∈N

2. Test for termination: If S=N , go to 5.

3. Determine fixed node: In Q find a node v with the least D(v) and move it to S.

If D u=∞ for all u∈Q , go to 5.

4. Improve upper estimates: Put D w=D v l v ,w and w =v for

each w∈N v∩Q such that D wD v l v , w . Go to 2.

5. Generate minimal path:No path exists from s to nodes remaining in Q. For

all other nodes put d  s , v=D v and generate path p  s , v by reversing

the path vvvv⋯ s

Example

Initialize: S={∅}, Q={s ,u , v , w }, D s=0 , D u=D v =Dw=∞

Step 1: S={s} ,Q={u , v , w} , D s=0, D u=3 , D v =7 D w =∞
 u=s ,v =s
Step 2: S={s , u} ,Q={v , w} , D s=0, D u=3, D v =6, D w=5

u=s ,v =u ,w=u
Step 3: S={s , u , w} ,Q={v} , D s=0, D u=3, D v =6 , Dw=5

u=s ,v =u ,w=u
Step 4: S={s , u , w , v} ,Q=∅ , D s=0, D u=3, D v =6, D w=5

u=s ,v =u ,w=u
ps , u=su , ps , v =suv , p s , w =s uw

s

u

v

w

3

7

3

2

4

Theorem

For every v∈N , Dijkstra's algorithm will find a minimal path p  s , v and the

distance d  s , v .

Proof:

We will prove that, at any time during the algorithm's procedure, we have for

every Sv ∈ , : D v =d  s , v and the corresponding path from s to v is only built

from nodes in S. Now this is certainly true if ∅=S . Suppose that, at a certain

point, this is true for every node in S. Thus, immediately before moving a new

node v∈Q to S, the situation is as follows:

(1) D w=d  s , w for w∈S ,

(2) if w∈S , then u∈S for every node u included in the path p  s , w .

(3) for every w∈Q , D w is the length of a minimal path from s to w such that

u∈S for its every node u, u≠w ,

(4) D v ≤D u for u∈Q

Suppose now that there is a path p ' from s to v such that l  p' ≤D v  and at

least one node z in p ' such that z∈Q . Without loss of generality, we can think

of z as the first such node from s in the path p '. We have D  z D v  since the

length of every arc is positive. However, this contradicts (4). This means that,

when node v is moved to S, properties (1) to (4) remain in force.

Exercise 1

4

6

8

4

5

42

5

1

6

8

s

1

a

b

c

d

e

f

Exercise 2

10

5

2
3

1

9

7

2

4
6s

a

b

c

d

Problem that cannot be solved by Dijkstra's algorithm

It can be verified easily that, after Dijkstra's algorithm terminates, we have:

D(s)= 0, D(1) = 10, D(2) = 8.

However, it is evident that the minimal path from node 2 has a value of 7.

This is due to the negative length of arc (1,2) even if there are no cycles with a

negative length.

10

8

-3s

1

2

Floyd-Warshall's algorithm

The above example shows that Dijkstra's algorithm does not work for graphs

containing negative lengths. For such graphs, provided that they do not contain-

ing cycles with negative lengths, Floyd-Warshall's algorithm may be an alternat-

ive. If the lengths of arcs are given, this algorithm will find a minimal path from

each node to each node and, if such a path does not exist due to a negative cycle,

it will be detected.

Consider graph G=U , H  with n nodes and the lengths given as entries in the

following matrix

A= a1,1 a1,2  a1, n

a2,1 a2,2  a2, n

⋮ ⋮ ⋱ ⋮
an ,1 an , 2  an ,n


Next we will also use a matrix

P= p1,1 p1,2  p1, n

p2,1 p2,2  p2,n

⋮ ⋮ ⋱ ⋮
pn ,1 pn ,2  pn ,n


with initial values pij= j

The algorithm has always n iterations:

We start off with matrices A0=A , P0=P and, in iteration i, create matrices

Ai , P i from matrices Ai−1 , P i−1 respectively. Thus, in the last iteration, we will

create matrices An , Pn . The entries of matrices A j , P j , j=1,2, , n are calcu-

lated as follows:

aik
j =aik

j−1 , pik
j = pik

j−1 if aik
j−1≤aij

j−1a jk
j−1

aik
j =aij

j−1a jk
j−1 , pik

j = pij
j−1 if aik

j−1aij
j−1a jk

j−1

It may be proved by induction that, after the algorithm terminates, entry aij
n has

the value of the distance from node i to node j. It can also be verified that pij
n=k

if i , k  is the first arc in a minimal path from node i to node j, which can be

used to determine such a path.

Example

A= 0 4 −3 ∞
−3 0 −7 ∞
∞ 10 0 3
5 6 6 0

 P=1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4



1 2

4 3

-3
4

-3 6
5

6
3

10 -7

Iteration 0

A0= 0 4 −3 ∞
−3 0 −7 ∞
∞ 10 0 3
5 6 6 0

 P0=1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4


Iteration 1 Iteration 2

A1= 0 4 −3 ∞
−3 0 −7 ∞
∞ 10 0 3
5 6 2 0

 P1=1 2 3 4
1 2 3 4
1 2 3 4
1 2 1 4

 A2= 0 4 −3 ∞
−3 0 −7 ∞
7 10 0 3
3 6 −1 0

 P2=1 2 3 4
1 2 3 4
2 2 3 4
2 2 2 4


Iteration 3 Iteration 4

A3= 0 4 −3 0
−3 0 −7 −4
7 10 0 3
3 6 −1 0

 P3=1 2 3 3
1 2 3 3
2 2 3 4
2 2 2 4

 A4= 0 4 −3 0
−3 0 −7 −4
6 9 0 3
3 6 −1 0

 P4=1 2 3 3
1 2 3 3
4 4 3 4
2 2 2 4



Example

A= 0 ∞ ∞ 1
2 0 1 3
∞ ∞ 0 ∞
∞ −4 3 0

 P=1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4



1 4

2 3

1

1

2 3-4
3

Iteration 0

A0= 0 ∞ ∞ 1
2 0 1 3
∞ ∞ 0 ∞
∞ −4 3 0

 P0=1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4


Iteration 1

A1= 0 ∞ ∞ 1
2 0 1 3
∞ ∞ 0 ∞
∞ −4 3 0

 P1=1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4


Iteration 2

A2= 0 ∞ ∞ 1
2 0 1 3
∞ ∞ 0 ∞
−2 −4 −3 −1

 P2=1 2 3 4
1 2 3 4
1 2 3 4
2 2 3 2


Here the diagonal entry (4,4) is negative, which indicates the existence of a cycle

with a negative length and thus the non-existence of a minimal path.

