
NETWORK

A network is a quadruple N=G , s , t , c  where G=V , A is a  simple 

digraph. Every ordered pair u , v of nodes is assigned a non-negative 

capacity cu , v ≥0 . For an ordered pair u , v∉A , we put cu , v =0 .

There are two special nodes: the source s and the target t. In what follows 

we will assume that each node lies on a directed path from the source to the 

target.



A flow in a network N=G , s ,t , c is a mapping f :V×V  R  

satisfying the following three conditions:

1. f u , v≤c u , v ,∀ u , v∈V

2. f u , v=− f v , u ,∀ u , v∈V

3. ∑
v∈V

f u , v =0,∀u∈V −{s , t }

The quantity f u , v , which may be positive, zero, or negative, is called 

the flow from node u to node v.

The quantity | f |=∑
u∈V

f s , u  is called the total flow of N. 



Notes to the definition of flow:

By Condition 2 above, we have f u , u=0 , that is, the flow from a node 

into itself is zero.

By Condition 3, the total flow from each node different from source and 

target is zero. Using Condition 2, this can be rewritten as 

∑
u∈V

f u ,v=0,∀ v∈V −{s , t } , that is, the total flow into each node 

different from source and target  is zero.

If no arcs exist between nodes u and v, there can be no flow between them 

as cu , v =c v , u=0 and so f u , v≤0  and f v , u≤0 . Condition 2 

then yields f u , v= f v , u=0 .



Summation formalism

We will use the following short-cut symbol where X and Y are sets of 

nodes: 

f X ,Y =∑
x∈X

∑
y∈Y

f  x , y

We may also leave out the brackets “{“, “}” denoting sets. For example, in 

the formula f  s ,V−s= f  s ,V  , V−s  is a shortcut for V−{s } .



Lemma 1

Let N=G , s ,t , c be a network where G=V , A is a simple digraph,

X ,Y , Z⊆V  and let f  be a flow in N. We have

1. f X , X =0

2. f X ,Y =− f Y , X 

3. f X ∪Y , Z = f X , Z  f Y , Z   and 

f Z , X ∪Y = f Z , X  f Z ,Y  if X ∩Y=∅



Ford-Fulkerson Method

This method rests on the following three basic concepts: residual network, 

augmenting path, and cut.

It starts with a zero flow. By each iteration, an augmenting path is found 

from source s to target t along which an additional piece of flow can be 

added to augment the current flow. This process is repeated until no 

augmenting path can be found.

By establishing a relationship between a maximal flow and a minimal cut, 

it can be proved that the resulting augmented path is indeed maximal. The 

basic concepts will now be defined and explained.    



Residual capacity
Define a flow f in a network N=G , s ,t , c  where G=V , A is a 

simple graph. For every pair of nodes u , v , u , v∈V , define the residual  

capacity as c f u , v=cu , v − f u , v .
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Residual network

Let N=G , s ,t , c be a network with G=V , A being a simple digraph. 

Let  f  be a flow in N. Let c f  be the residual capacity of  N defined by the 

flow f. Define a simple digraph G f V , A f  where 

A f={u , v  |u , v∈V∧c f u , v0} . The network N f=G f , s , t , c f   is 

called the residual network of network N with respect to flow f. 



Lemma 2

Let N=G , s ,t , c  be a network and f a flow in N. Let 

N f=G f , s , t , c f  be the  residual network of N with respect to f and let 

f *  be a flow in N f . Then the mapping 

 f  f *:V×V R  

defined as 

 f  f *u , v= f u , v f *u , v

is a flow in network N.



Augmenting path

Let N=G , s ,t , c be a network. Define a flow f in N and the residual 

capacity c f with respect to this flow. Using c f , a simple digraph 

G f V , A f  may be built as above. Let now P be any path in Gf  from 

source s to target t in. Such a path is called an augmenting path in N with 

respect to flow f. Let P=s=v0, v1, v2, , v k−1 , vk=t  . We define the 

residual capacity c f P   of P with respect to f as follows: 

c f P =min {c f vi , v i1 | i=0,1, , k−1}



Lemma 3

Let N=G , s ,t , c  be a network, define a flow f  in N  and the residual 

network N f=G f , s , t , c f  . Let P=s=v0, v1, v2, , v k−1 , vk=t   be an 

augmenting path in Nf and c f P  its residual capacity with respect to f. 

Define a mapping f P :V×V  R as follows:

1. f P v i , v i1=c f P  , i=0,1,2, , k−1  

2. f P v i1 , vi=−c f P  , i=0,1,2, , k−1

3. f P u , v =0 otherwise

Then f P is a flow in G f  with | f P |=c f P 0  



Corollary 4

Let N=G , s ,t , c  be a network,  f  a flow defined in N, 

N f=G f , s , t , c f  the residual network with respect to f, and P an 

augmenting path in Gf with c f P  as its residual capacity. Let a mapping 

f P :V×V  R  be defined as in Lemma 3. Define a mapping 

f *= f  f P :V ×V  R as in Lemma 2. Then f *  is a flow in N with 

| f * |=| f || f P || f | .



Network cut and capacity

Let N=G , s ,t , c be a network with G=V , A being a simple digraph. 

We will call any partition S ,T   of V a cut of N=G , s ,t , c  if s∈S  

and t∈T . Recall that, for a partition S ,T   of V, we have S∪T=V and 
S∩T=∅ .   

Given a flow f  in N, we define the flow over cut S ,T  with respect to f 

as f S ,T  and the capacity of cut S ,T  as cS ,T  .

Note that, when computing the flow over a cut, the sum may include 

negative flows between nodes whereas the capacity of a cut is always 

composed of non-negative values.



Lemma 5

Let N=G , s ,t , c be a network,  f  a flow in N, and let S ,T   be a cut 

in N. Then the flow over the cut S ,T   with respect to f is equal to the 

value of the flow f, that is, f S ,T =| f | .

Proof:

Since S∪T=V and S∩T=∅ , we have T=V−S and, using Lemma 1, 

we can write f S ,T = f S ,V − f S ,S = f S ,V =

                                   = f  s ,V  f S−s , V = f  s ,V =| f | .

An immediate consequence of the above lemma is that the value of a flow 

is equal to the total flow into the target.

The next corollary shows how capacities can be used to establish an upper 

bound for a flow.



Corollary 6

The value of a flow in a network is less than the capacity of any cut of this 

network.

Proof: Let S ,T   be a cut. By Lemma 5 and by condition 1 in the 

definition of a flow, we have 

| f |= f S ,T =∑
u∈S
∑
v∈T

f u ,v≤∑
u∈S
∑
v∈T

cu , v=c S ,T  .



Theorem 7 (on maximal flow and minimal cut)

Let N=G , s ,t , c  be a network and  f  a flow in N. Then the following 

conditions are equivalent:

(a) f is a maximal flow in N

(b) the residual network N f=G f , s , t , c contains no augmenting paths

(c) | f |=c S ,T   for a cut S ,T  of N

Proof: 
(a)⇒ (b)  Let f  be a maximal flow in N and suppose that there is an 

augmenting path P in G f . Then, by Corollary 4, f *= f  f P :V ×V  R

is a flow in N such that | f * || f |  which is a contradiction.



(b)⇒ (c) : Let there be no augmenting paths in N so that no path exists in

G f from s to t. Define S={u∈V | there is a path in G f  from s  to u } ,

T=V−S . Now S ,T   is clearly a partition and a cut since, obviously,

s∈S and t∉S as no path exists in G f from s to t.

For every u∈S , v∈T , we have f u , v=c u , v since, otherwise, 

u , v∈A f and so v∈S . Therefore, by Lemma 5, 

| f |= f S ,T =c S ,T  .

(c)⇒ (a) : Let | f |=c S ,T  for a cut S ,T  of N and suppose that f is not 

maximal. This means that there exists a flow f1 such that | f 1 || f | . 

However, by Corollary 6, we have | f 1 |≤cS , T  , which is a 

contradiction.



Ford-Fulkerson algorithm
For a network N=G , s ,t , c where G=V , A is a simple digraph:

1. INITIALIZE: For every u , v∈V put f [u , v ]:=0  

2. BUILD RESIDUAL NETWORK N f =G f , s , t , c f  : For every u , v∈V  calculate 

the residual capacity c f [u , v ]:=c [u , v ]− f [u , v ] to build the residual graph G f V , A f 

with A f ={u ,v |u , v∈V∧c f u , v0 }
3. DETERMINE THE EXISTENCE OF A PATH IN G f BETWEEN s AND t:

If no path exists: Stop. The current total flow f is maximal,

else create path P= s=v0, v1, a2, v2, , v k−1 , ak , v k=t   and continue.

4. AUGMENT THE CURRENT FLOW

Calculate the residual capacity of P: c f P =min {c f vi , vi1 | i=0,1 , , k−1}
Put: f [vi , vi1]:= f [vi , vi1]c f P  , f [vi1 , v i]:= f [vi1 , vi ]−c f P  , i=1,2 , , k−1

Go to Step 2.
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No augmenting path from s to t

Maximum flow is 23
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