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Preface 

Different branches of mathematics., c.g., algebra. \apology or combinalorics, usc 
different means to express their concepts and methods. It is thus surprising to see 
how much they actually have in common. The fundamental s of a greal num~r of 
ffi<llhcmatical theories are built up on certain general principles. The study of these 
principles is the aim of the theory of mathematical structures and. more abst ractly, 
the theory of categories. 

Our book presents the theory of mathematical structures in a way comprehensible 
• 

to a reader having but little experience with any concrete Structure. We explain all 
the concepts used and exhihit a number of examples. 

The concept of mathematical structures was introduced by N. BOURBAKI in the 
Theory of Sets (Hermann, Paris, 1957). Chapter 4 "Structures" starts as follows: 

The aim of the presenl chapter is fO describe, once Qnd for all, some of the eM­
structions Qnd proofs mel particularly of len in mathematics. 

The descri ption whIch Bourbaki used was.. unfortunately, rather clumsy. Simul­
taneously. a more abstract (and more convcnient) theory of categories was introd uced 
by S. Eilenberg and S. Mac Lane. The theory they presented in their pioneering 
papers during the forties has been rapidly developed in the following decades. 
Today, there is a number of mathematicians working in the field of category theory, 
and st ill more those using categorical hmguage in their work in other fields, ranging 
from topology and analysis to computer science. 

In our book we present a nontradit ional view of categories by returning somewhat 
to the concrete approach of Bourbaki. Our stress is on sets endowed with a structure 
and on mappings preserving this structure: such a setup is called a nmwru(/ We 
investigate the basic concepts concerning COnstructs: subobjt:Ct, free object, initial 
structure, Cartesian product. etc. This is the contents of the first two chapters . 
Not until the third chapler do we int roduce categories and functors, and we then 
study the interrelationShip of various constructs (and categor;s) and present some 
more abstract concepts. The fundamentals of the: theory of categories a rc exh ibited 
in the third and fourt h chapters. 

The last two chapters a rc devoted to a deeper theory of embedding of constructs 
and categories into special constructs: the algebraic and relat ional constructs and 
the construct of sets. Thc character of theSe two chapters is somewhat different fr om 
that of the preceding four. Most of the presented results appear for the first time 
in a hook. The exposit ion is quicker and the demands on the reader are grea ter : 
e.g., we work here wilh ordinals and the transrmite induct ion . 

• 
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Organization 

Sections are denoted by capital letters. chapters and subsections by numbers. 
Thus, 

50) 

designa tes chapter 5, section D, subsection 3. 
The exercises of each section arc dtnotcd by case letters. Thus, 

lOa 

designates exercise a in section 5D. The exercises arc usually easy and they arc fre­
quent ly referred to in the texl. 

/ 

A great number of names ofconSlructs and categories is used (e.g" Top, Gra, etc.). 
A list of these names, as well as a list of Olher frequently used symbols, can be found 
alt he end of the book. Also all historical comments are pl3ced there. 

Long proofs and arguments arc concluded with the sign 0 

Ackn owl ed gme nt s 

1 have learned a lot, and could have learned much more, from my teaChers and 
friends at the Charles Univc:rsity Prague, notably Z. Hedrlin, V. Koubek, A. Pultr, 
J . Rciterman and V. T rnkova. Part icularly the fruitful a tmosphere of the seminars 
led by V. Trnkova and my close cooperation wi th her, V. Koubck and 1. Rei!erman 
have innucnced this book profound ly. 

I am much indebted to E. G. Manes, A, Melton, J. Reiterman and T, Sturm fo r 
countless improvements they ~ugges!ed, and to A. Ehresmann for her encouragement. 
My thanks also go to my wife and m)' sons for their patience and help in many 
ways, 

.. 

• 

,,-

PART I: Constructs 

-- -

• 

--

• 

> 



Chapter 1: Objects and Morphisms 

1A. 

I. The purpose of this book is 10 study sets with a structure and structure-preserving 
maps. Without going into unnecessary technical details, we want to explain now 
what we mean by "SCts~. 

We use the tenn -SC:I- nah'cly, i.e .. we are not going 10 present a collect ion of 
axioms of a sct theory, but we assume that the nolion of a set is known to the reader. 
Each set X is determined by its clements, i.e., by the elements x such that XE X. 
For example. the void set 

has no elements; the set 

{x} 
has just one element x. 

We are using the standard operations on selS: union. intersection, complement, 
Cartesian product, Ihe power-set exp X (of a ll subsets of X~ i.e., 

expX = {At : M !iii X}, 

and the set of maps, 
, 

yX ..., {J: f is a map from X to Y} . 

WIH;:n a set is writlen with the use of indices, ~.g., 

x = {Xi: Ie!}. 

we caU X a collection or famil}' with the index sct/. 

T'>I-o sets X and Yare equal if each clement of X is also an element of Y. and vice 
\'ersa. Two collections X = {.l:;: ie / } and Y= {Yj;je J } a re equa l if 1 = J 
and XI = y, for each l e I . Thus, the set {a t.ol} is equal to the sct {al.a l}. but 
thes~ two collections are differe nt unless a I = al . For each famil y of sets {Xi: j E I J 
we can for m the union UX, and the intersection nXi' 

~I ~ , 

Some standard symbols for sets are N = to, 1,2, .. J the natural numbers: Z. 
the integers and R, the real numbers. 

2, Recall lhat a map is a triple") consisting of a set X (the domain), a sct Y (the 

. ) I'airs. triples, ~tc. are al,,'~Y' a;~umed I" be ""kred. 

• 

. . 

• 

• 

, 
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range) and a relation j 50 X x Y such that for each XE X there exists a unique 
y E Y with f(x) = j ' (i.e., with (x.y)ef). We M ite this triple as 

j: X ..... Y. 

For example, for each set X we ha\'c the id~n1iIY map 

idx:X ..... X 

defined by 

(xt Xl. 
If X = 0 then the void relation 0 ~ 0 x r is a map (because a statement "for 

each x E0 ... H is t rue by default ): we c-.dl il Ihe ~VJid map. Thus. fo r each set X '>I- C 
have • 

X· = {void map} , 
bot 

OX = 0 irX",.\) , 
O~ = { id~ } ". {void map}. 

• 

Given maps 

f: X_ Y and .q: Y_Z 

the composile map is Ihe map 

g.f: X-Z 

defined by 

, .f(x} - ,(f(.'I) for each xeX. 

3. Some fam ilies are "too largc" to form a set. Fo r e.~a mpk, we cannot form the 
"set of all sets". (Thi~ would lead to the famous Russel's paradox: denote by A the 
set of all sets X such t hat X f- X . Then cilher A e A, but this would imply A f- A ; 
or, A f- A. but Ihis would Imply A E A.) In thc theory of mathematical structures we 
oftcn work with such families. e.g .. of all sets. of alJ veetor spaces. ·ctc. We nt:ed 
a broader eoncept than a SCI - we call it a dClss. Thus, classes are families general. 
izing sets in the fo llowing sense: 

(I) each SCI is a cla&.'i: ,. .. I 

(2) for each property P of sets we can form the class {.x : X IS a set sausfymg P" 

For example, all sets form a class A; all sets X sueh that X,- X form a subclass Ao 
of A. Neither A nor Ao is a sct (thus, Ao' Ao and this leads to no contradiction). 
A class which is not a sct is called ltirge. For contrast, Sets urc also called small 
classes. 

We extcnd some of the set -theoretical operations to classes. Given classes X 
and Y, we form their Cartesian product, i.c., Ihe class X x r of all pairs (x, .II) with 
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X E X and .I' e r. Then we can define class maps J: X ..... Y quite similarlY as above. 
We can also form the union of classes indexed by a class J. ThaI is. given a class C; 
for cach j e 1. we can form the class • 

the clements of which are precisely the elements of C1 fo r all I E I . Finally, for each 
SCI X and each class Y we form the class yX of a ll class maps from X to Y. No other 

operations on classes will be used. 
Classes are also wrinen as collections 

X={x;;ieI}. 

If I is a proper class we call X a large collection, reserving the simple term collection 

for the case of sma!! index sets. 
We u~c the axiom of choice for classes : if ..... is an equi,'alenee relation on a class X, 

then there exists a choice subclass, i.e., a class Y S X such that each x E X is 

equ h'a1ent to precisely one yE Y. 
The reader acquainted with set theory will rea lize that we are working within an 

arbitrary theory of two universes, e.g., Berna)'s-GOdcllheor)' or Zermelo-Frnenke! 

theory with a rIXed univcTSum, assuming the ax iom of cho ice. 

lB. Constructs: Definitions and Examples 

1. Before presenting the definition of a construct, we illustrate some of its features 

on the case of (real) vector spaces. 
In the theory of vector spaccs there are two basic concepts: vector space and 

linear map. A vector space is a set X together with operations 

+:Xx X _X and · :1R:)(X -+X , 

satisfying the well-known axioms. Formally, a vcctor space is a pair 

(X.(+.·)) 

consist ing of a set X a nd its -structure~ (+ , . ). 
l<t 

(x.(+ . . )) "d (Y.(+· •• ·)) 

be two vector spaces. A map 

• 
is linear ifit "prescrve~ the structure", i.c .• if 

J(X , +Xl)=j(X,)+'!(X1) forall Xj,X1EX; 

J(r . :c)=r-'f(x) ror a1l xEX;rER. 

5 

If f is a lint:ar map. we write J: (X, (+ .. )) ..... (Y, (+', "J). Note the following proper­
ties of linear maps: 

(i) The composition of linear maps is linear, i.e., if 

I' (X.(+ . • ))_ (y.(+ .. .• )) 
and 

" (y.(+· •• ·))-(2.(+ · •. ·)) 
are linear maps, then 

gI (X.(+ •• ))-(Z.(+· •. ·)) 

is also a linear map. 

(ii) For each vector space (X,( +, . )) the identity map is linear: 

;d" (X.(+,.))_(X.(+ •• )) . 

. These two properties of st ructure-preserving maps arc encountered in numerous 
mstances of "slructures~. Therdore. they serve as a basis for the following general 
definition. 

. 2. Definition .. A construct (or a concrete category of scts with structure) Sf' is 
gJven by the followmg data: 

a) for eac~ set X a class 9'[X] is defined. Its elements are called. the StruCtures 
of X, and paIrs 

A _ (X.,). 

where X is a set and a: is its structu re, a re called objects. 
b) for each pair of objects 

A==(X.:r) and 8 ",,( Y.P) 
a sel 

bomy{A. B) 5 yX 

~s defined. Its elements are called the morphisms a nd, given a map f: X ..... Y then 
Instead of j E hom AA. 8), we write 

j:A-+8. 

The sets of morphisms satisfy the following axioms: 

COMPOSITION AXIOM. The composition of two morphisms 

j: A - 8 and y: B -+ C 

is a !fV)rphism 

g.f:A-+C . 

IDENTITY MAP AXIOM. 
a morphism -

id.r: A -+ A . 

For each object A = (X,a:) the identity map is 
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3. Example: the construct Jiut is gh'en as follows.. For each set X, 

"w[ Xl 
deno!es the set of all pairs ( + .. ) defining the structure of a vector space on X. 
Given objects, i.e., vector spaces, A = (X.(+, ·)) and B = (y,(+" .. )~ then 

hom(A, B) !iii yX 

is the set of all linear maps from A to B. 

4. Terminology. Important constructs are denoted by an abbreviation of the 
names of their objects (e.g., Vut). A list of these abbreviations can be found at the 
end of this book. 

It is usual to state what the objects of a construct are ra ther than to introduce 
the c lasses .9"[ Xl Fo r each object 

A _ (X,.) 

we call X the underl}'ing set of A. 
For eaeh morphism 

j: A -. B 

we call A the domain and B the range of f. The identity morphism of an object A = 
= (X, a:) is often denoted by 

104 : A __ A 

in place of id~: A ..... A. We write hom(A, B) instead of homy(A, B). 
, 

R em a rk s. (ij The class 9'( X] of structures of a set X can be empty. For example, 
if X is any finite set with at least two points then it does no! carry the struct ure of 
any vector space. Thus, 

I'ecr[X] "" 0. 

(ii) F OT technical· reasons. t he classes .9'[X] 3 rc usually supposed to be pairwise 
disjoint. In other words, cach structure carries the information what underlying 
set is considered. We shall usc tIDS harmless convcntian. 

5. Examples df cons t r u cts 

(i) The construct Pos of J!2.sctt (i,e., panially ordered sets) and order-preserving 
maps. lts objects, called pose/s, are pailS (X, S), where X is a set and S is an or­

.derillg 00 X, i.e., a binary rdation which is 

reflective (x S x for all x EX). 
antisymmetric (x S y a nd y;;; x imply x _ y for all x. y E X) and 
transitive (x :0;; y and y S : imply x.s z for all x, y,: EX). 

I 

I 
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The morphisms from a pose! (X, S) to a pose! (y,;;;;) are the orJer-pre,wrfiing nuIPS, 

I.e, maps 

f: X ..... Y 

such Ihal 

Xl <Xl implies f(Xl)~f(X2) 

rorall X"X 2 EX. 
We must verify the axioms. First, Jet 

be order- preserving maps. Then 

is also order-preserving, since for a ll x, _ Xl EX, 

Also, 
f(xj):s f(x 1) implies g(f(x j):::; g(f(x1)). 

id,' (X, ~) _ (X, ~) 

is order-preserving since XI S Xl implies XI S x 2 for all xI' x 2 E X. 
The verification of the two axioms is usually quite routine and we leave it to the 

reader. 
(ii) The construct GrQ of graphs and compatible maps. Its objects, called graphs, 

are pairs (X, a:~ where X is a set and a: is a binary relation, i.e., 

<xSXxX. 

In other words, 

Gra[X] :: exp(X )( Xl, 
the set of all subsets of X x x. 

The morphisms from a graph (X.:I:) to a graph (y, p) are the compatible maps, 
I. e., maps 

i' X - y 

such that 

XI <XXI implies f(x j )Pf(x2) 

for all Xl'X 2 EX 
(iii) The constrUCt Sill of sets and maps. Its objeets are (non-structured) sets and 

its morphisms are (all) maps. Formally, for each set X the class of structures Sn[ X] 
has just one element, say·. ; that is, . 
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Thus tin object (X,.) can be identified with the set X. And for arbitrary obj~ts X 
and Y, 

hom(.,¥, Y) "" y.Y . 

Remark. The void sel can, but need not, carry a structure. For example. each 
vector space has at least one element (the zero vector), thus, 

Jlw(O] = O. 

On the other hand. the void relation defines a grapo. in fact a poser. on 6. Thus, 
both Gra[0] and Pos[0] are singleton classes . 

6. Defi nit io n. A suoconMruc, of a construct Y is a construct Y such thaI 
a) each object o f 9" is au object of t/'o i.e., 

5"[ x] :iii .!IT X] for cach set X 

,"d 
h) each morphism of!T is a morphism of 9', i.e., 

hom,..(A. B) S; hom....{A.B) 

for arbitrary objects A and B of .r. 
And Y is a full SUbcOllSlrJlct if 

hom,..(A, B) = homy{A, B) 

for arbitrary objects A and B of Y. 

For example, Pas is a full subconstruct of Gra. Each poset is a graph, a nd gi~'cn 
posels A = (X, $) and 8 = (1', ::S) then a map f: X ... Y is ordcr-preserving 
iff it is compatible. Thus, 

hom,.~.(A, 8) ". homGr.(A. 8). 

7. Example: The construct Lat of lattices :lOd l~ttice homomorphisms. 

A lattice is a pose! (X, !::) in which each pair x"x1 E X has ajoin :1: , v Xl (i.e. 
the least of ~II clements )" E X satisfying XL $ Y and Xl $ y) and a meet XL 1\ Xl 

(i.e., Ihe lar£est of all elements; E X satisfying Xl ~ z and Xl > =). For example, 
on the set Z · = {I, 2.3 •... } we can define the Qrdering by didsiQn: 

X ::;; y ifT X divides)' (x.)" E r). 
• 

Then (Z ... ~) is a lanice: X v j' is the least common multiple of x a nd I'. while 
• X " j' is their greatcst common divisor (X,YEZ·). Also the usualorderins S of Z" 

defines a lalliee (l~. $): here x v y = max {x.r~ and x".r = min [x.y} . 
On the other hand. the discrete order on a sct X, which is defined by XI < Xl 

iff x. = Xl' does not yield a lattice (unless X has at most oneelcment). 

ot>,ens alMi Morphism. 9 

The objects of the construct Lat arc aU lanicc:s. The rnorphisms from a Jallice 
(X, ::;;) to a lattice (Y. ~~ called lattice homomorphisms. are maps f: X ..... Y pre­
serving joins and meets, i.e., such that 

fix! v Xl) = f(x,) v f(x1) 

f(x l fI x2) = f(x,) A !(Xl) 

OhSef\'3tio n s. (i) Lat is a subconslruct of POl. Indeed, each Janice is a poset. 
Also, given 1111tices (X. !l) and (Y. :5:). then each lattice homomorphism 

FIX, S)_(Y,=» 

isorder-preser\' ing: if XPX1EX fulrd 

Xl ~ Xl 

then obviously Xl v Xl - Xl' This implies 

f(x l ) S f(x,) v f(x:) = f ix. v Xl) = f(x:). 

(ii) Lat is not a full subconstruct of PO.f. In other words, there exists an order­
preserving map f: (X,;:;a ) - (Y, ::S) which is not a homomorphism, though both 
(X, $) and (Y, ::5:) arc lattices. 

For CJlample, consider the latt ices (Z+, ~) and (Z~ . $) defined above. The idcntlty 
map is clearly ord.:r -pr':»ef\ IIlg: 

id, :(Z~,::S)-(Z~,:o;). 

But it is not a latt ice homomorphism since it fa ils to preserve the meet 2 " 3 ... I. 

Ii. Example: The construct C/a, of completel:;lItices and complete lattice 
ilomomorphisms. 

A poset (X, ~) is a complete lattice if each subset T 5i X has a join VT{Le .. the 
least of all elements ylO X satisfying I ;:;a J for cach lET) and a meet /\T(i.(' .. the 
largest of all clements = E X satisfying I ~ : for each lET). Fo r example. the set 

X '" expM 

of all subsets of a sct M ordered by the inclusion 5 is a complete laltice:. For each 
T 5 X (i.e., fo r each collection T of subsets of ,\1) the union of all sets in T LS the 

join of T: 

VT ~ U M' 
If·.T 

and the imersection o f all sets in Tis thc meet: 

On the other hand, t he lattice (Z~, :::». defined in IB7, is nol complete: it does not 
have, for example. the join of T = Z .. (i .e., it has no largest element). 
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Note that in each complete lattice the join of 0 is, by definition, the least element 
(because any y E X satisfies 1::2)' for each lEO, by default). Analogously witb 
the meet of 0: 1\0 = VX and VO = Ax. . 

The construct C/ut has as objects all complete lattices. Its morphisms from (X , ~) 
to (Yo -<), called complele {aUice homomorphisms, are maps 

f: X ..... Y 

which preserve the join and the meet of each subset T s:: X. Thus, denoting 

!(T) ~ If('); 'EX}, 
-we have 

V!I T) ~ !IVT} 
"d 

NITI ~ j I/IT} 

Observation. Clat is a subconstruct of Lat which is not full. The affirmative 
part is evident; thus, it suffices to find a lattice homomorphism between complete 
lattices which is not a complete homomorphism. 

Consider the usual extension of real numbers (R+, <J, where 

W = Ru{+m,-oo}. 

The map 

f; Ie .. ~) - 10', ~) 
defined by 

!(x)~O (HO); 

f( - 00) = - IX) and f( + 00) - + co 

is a lattice homomorphism. But it is not complete 

VR= +00, 
bot 

V!(R}~O, 

9. Remark. A poset (X, :-S:), in which each subset T;; X has a meet /\T, can 
be called a ('omplete semi/attice (more in detail, a complele meet-semi lattice). This 
term is, however, Ullllct:deu since each complete semilattice is a complete lattice. 

Let T be a subset of a complete semilattice (X . .:S:). The join of T is, by definition, 
the least element of the following set 

r· = {reX; t'-:;; y [or each rET). 

Therefore, Vr exists because /\T+ exists, and we have 

, 

, 

• 

, i , 

, 
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Nc\'crtheless, the term complete semilanice is useful with respect to morphisms! 
Given complete {semi-)laltices (X, <) and (Y, -<) then a map 

!, X _ Y 

is called a comp/ele semi/artiee homomorphism if it preserves all meets, i.e .. if 

!IIIT) ~ NIT} foreach T S X. 

Let Csi denote the construct of complete scmilattices and complete semi lattice 
homomorphisms. Ther:. 

(61)s a subconstruct orciail : .. 
, 

and these two constructs have the same objects. But Csi is not a full subconstruct ' 
(in other words, Csl #- Clar). Choose any ~et M with a\ leas! I wo points and choose 
mo EM; define 

f: (exp M, S) ..... (exp M, S) 

as follows: 

!( "') __ {M' if mo E M' " for each ,\1' S M . o else 

Then f is a complete semilatlice homomorphisms, i.e., 

!lnM,) ~ n!IM,} 
.. I ,.1 

for each collection {M,; ie I} of subsets of M. On the Olher hand, f is not even 
a laltice homomorphism: 

!I{mo)} v !IM - {moll ~ {mo); 
f({m o} Y (M - {mo})) = M . 

Concluding remark. The choice of objects of a construct does not determine 
the choice of morphisms: two (naturally arising) constructs with the same objects 
need not have the same morphisms. We have seen several examples of non-full 
subconstTUcts: I' '. '-. C? L-,.. 

Clar S ~ Lat S Pos. 

That these subconstructs are nOl fun is caused by the fact that their morphisms are 
required to preserve less and less structure (from the left to the right). On the other 
hand, Pos is a full subconstruct of Gra, since in these two constructs morphisms 
are defined by the same ··rulc". Finally 

Pos and Vect 

are incompatible conslru<.1s: neither is a subconstruct of the other one. 
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Exe-rcises IB 
• 

a. Th e co nst ruct s Llltp o f pa rt ia l lattices : its objects are all posets; its 
morphisms are a ll maps f: (X, :-:» - (Y.;::;;) which preserve all t he eli~' ing jo ins 
and meets of pairs, i.e., 

XI V Xl = X implies f(xd v f(x 1} = f(x) 

Corall XI.XIEX for which XI v Xl exists;analogouslywith XI 1\ Xl· 
(I) What arc the interrelations of the r.:onstructs Pos, Latp and Lat? 
(2) Let (X, :-:» be a discrete poset (i.e., XI s: Xl implies XI = x 2 ); prove [hat 

for each pOsel (Y, ~) and each map f: X --10 Y we have a morphism f: (X,~)--+ 

..... (Y. 5) of Lot,.. 

b. Preorder ed sets arc pairs (X, .$) where S is a renexive and transItIve 
(but not necessarily antisymmetric) relation. The construct Pros of preordered sets 
is defined as the full subconstruet of Gra, t he obj(.'Cts of which are all preordered 
sets. 

(1) Check that the "ordering by the norm'" in R": 

(0l'" .. ' u.) .$ (bl' .... b.) iff J"f.af.$ .Jr.bf 
(for (oJ. (bl ) e I!r') is a preorder. 

(2) Check that each equivalence relation is a preorder. 
(3) For each preordered set A = (X,~) verify that the relation 

XI ..... Xl ifTboth XL.$Xl and x l;:liX L (xpxleX) 

is a n equivalence relat ion o n X . 
(4) In (3), let X/- be the set of aU equivalence classes [x] = (rEX; I - xl 

for x e X. Verify that x.$y implies I<S for a ll te[x] and se[y). Define 
a re latio n o n X/_ as follows: 

[x] ~ *[},] iIT x:-:> y (for each [x],[.\']eX/ ~) . 

Verify that A* = (X/-, S ·) is a pose!. Tenn inology : A* is called the o/ltisym­
melrization of A. 

(5) Find the antisymmetrization of the prcordered sets in (1). (2). 

c . Norme d ,'ector spac es. Reca ll that a norm on a vector space (X, +, .) 
i~ a map II: X ...... [0, + cc] such that 

• 
(i) Ixl "" 0 iff x = 0 (the zero 1Iector). for each 

(il) Ix) + XII < IX II + Ix:1 for all x!' x 2 E'X: 
(iii) 1"xl-lrl 'lxl for each xEX,re~. 

xeX; 

Denote by Nor the construct of normcd 1Iecto r spal:Cs, i.e .• quadruples (X, +. ', I ) 
consisting of a 1Iector space (X. + •. ) and ils norm II. and the lIorm..<Jecreasing 

• 

, 

, 

, 

I ., 
, 
• 

• 

I 

, 

• 
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linear maps. Thus, 1 he morphisms fro m (X, +, ' . [) into (Y, +', .', 11') are lhoS(' linear 
maps f: (X, +, .) ...... (X', +', .'J which fulfi l the foll o ..... ing condition: 

, 
Iflx)1 < Ixf foreach xeX . 

(I) Verify that the Euclidean space (R", +"J with its usual norm lal = ..fLof 
for each u = (a I' ... , a.) e R", is a normed vector space. 

(2) For which keR is the Jinear map f(x)=k . x amorphism f : (W. +, ' . 11 )­
-I", +,·.N)1 

(3) Denote by Mat l •l the set ofal! (2, 2)-matritts. Verify tha t it is a normed vector 
space under the usual addition and scalar multiplication of matrices and with the 
following norm 

Let K = (kIJJ be a matrix with IkiJl = 1: prove that the map f: MatD .... MatI.:' 
defined by f(X) = K· X, is a morphism. 

IC. Isomorphisms - -
I. When studying the objects of a certain construct, it is important to kno w when 
two of them are to be considered "esentia ll y~ t he same. For example, two vector 
spaces are "esentially'· the same ilT t hey ha\'e the same dimension. The exact for­
mulation of tllese consideritlions is expres~d by the notion of isomorphism. 

Recall that a map f: X __ Y isa bijectioll ifit is one-to-one and onto. Equivalently, 
i f t hcreexistsa map /~l: )' _ X with 

r1.f= idx and I . rl=id y . 

Then I- I is called the illl'erse of I. 

'i- 2. D efi n i [ io n. An isom(Jrpi,ism is a morphism 

such that f is a bijection and the inverse map is a morphism 

r"IY·p)-IX.,). 

R e rna r k. In this definit ion we d id not state explicitly what construct is considered. 
M ore precisely, the definit ion should be as follows: Let !I' be a construct, then its 
morphism f: (X , :z)- (Y, P) is a n isomorphism if ...• Whenever an arbit ra ry (but 
flxed) construct is considered, we leave its symbol o ut of definitions o r theorems. 

Ter mi n 0 log y. Two objects (X , 0:) and (Y. Pl are ealled isomorpli ic if there exis ts 
a n isomorphism I: (X, 0:) -- p', {I); in symbols 

IX.,) - (I'. P)· 
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Note that a bijective morphism nt:ed not be an isomorphism. For example, the 
morphism id~ : (2+, :'5) -> (Z+,;;,;;;) (in Pos) of Observation lH7(ii) is bijective. 
But this morphism is not an isomorphism, since the inverse map is not _ order­

preserving id.-_: (2 + , $ ) ---- (r, -<I· 

Examples. (i) In the construct Pos of posets, isomorphisms are morphisms 
j: (X, .::;;) -> (y, :'5) such that f is a bijection "transporting" the relation'::;; onto 
the relation ~ in the sense that 

X j SX2 iff f{xd--</{x 2) for each X"X1EX. 

Thus, two posets (X, S) and (Y, :$") are isomorphic iff one is obtained by a "rela­
belling" of the elements of the other. For example, the posets 

(exp{1,2,3}, 5 ) and (exp{a,b,c}, 5 ) 1. 

are isomorphic. 
(ii) Two vector spaces are isomorphic (in the construct Veer) iff they have the 

same dimension. 
(iii) Two finite sets are isomorphic (in the construct Set) iff they have the same 

number of clements. 

3. Remark. The relation ::::-:, to be isomorphic, is an equivalence relation on the 

class of all objects (of any construct). Indeed: 
(i) For each object (X, 0:), 

idx : (X,a:) ..... (X,a:) 

is an isomorphism (because idx = id; 1); thus, 

(ii) For each isomorphism 

the inverse map is also an isomorphism 

FL (Y,PI _ (X,ai 

(because (r1)-1 =1); thus 

(X,ct)::::-:(Y,{J) implies (Y.P):::(X,~). 

(iii) The composition of two isomorphisms 

is an isomorphism 

, oF (X, 'i - (Z, yl 

, , 
I I 

I 

I I 
I , , 

j 
• • 

• -. 

· 

I 
I' ., 
I 

· 

I 

I , 
• 
• 

! 
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(because (g.ft l = f- 1. g-1)jtbus 

(X·'I~(Y, PI ""d (Y, PI~(Z,yi imply (X"i-(Z,yl. 

4. E x am pIe: the construct Mel of metric spaces and contractions. Recall that 
a metric on asel X jsa map 1%: X x X ---+ [0, +00) such that for all X"X 2,X3 €X. 

(i) a(x p x 2) = 0 iff Xl = x 2 ; 

(ii) a(x i • x2) = 0:(x 2,xtl; 
(iii) o:(x j • x 2) + O:(Xl'X~ ) ~0:(X[>X3)' 

The construct Mer has as objects all metric spaces, i.e. , pairs (X, rx) where X is 
a sel and (.( is its metric. The morphisms from a space (X, 0:) to a space (Y. P), called 
contractions, are maps 

I : X ..... Y 

such that 

An example of a metric space is the n-dimensional Euclidean space (of n-tuples 
of real numbers) 

(R-. ,I 
where given Xl = (a j , ... , a.) and X 2 = (b l , .. . , b.) in R·, we put 

e(x j' x 2} = ,JlJa; - hj)2 . 

(In particular, in iQ = Rl we have e(x p x2) = IXj - xJ) 

R e mark. Isomorphisms in Met are called isometries. An isometry from a space 
(X, ct) to a space {Y, (J) is a bijection 

I: X .... Y 

which "transports" the melri!; ct onto the metric P in the sense that 

For example, the linear map I (x) = kx + q is an isometry of (R, 0) lIT k = 1. Thus, 
the intervals 

[0,1] "'" [5,6] 

in R with the Euclidean metric o(x»x2) = IX I - x21 arc isometric, i.e., isomorphic 
ill Met. Indeed, the map 

f' [0,1]-[5,6], 

defined by I(x) = x + 5 (XE [0, 1]), is an isometry. 
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5. Ex a mple : the construct Top of topological spaces and cominuous maps, 
Recall that a topology on a set X is 3 collection :J: of its subsets (called open sets) 
such that 

(i) 0 and X are open, j,e., {0. X} 5" It; 
(ii) the intersection of two open sets is open. Le., 

M 1,M2 Ell implies Mj li !'12 EIX; 

(iii) t he unio n o f open sets is o pen, i.e., 

M,Ef1. (or each iel implies UM;ECII. ., 
The construct Top has a s objects topological spaces, i.e., pairs (X, 0:) where X is 

a set and (I; is its topology. The mo rphisms from a space (X,a) to a space (Y,P) a rc 
all continuous mtJps, i.e., maps 

f: X --- Y 

such that the preimage of each open set is open: 

(M$iii Y). 

Each metric a on X induces a topology!i : a set M $iii X is defined to be open iff 
for each meM there exists a number r e(O. + co) such that 

.x(x, m) < r implies x E M (for all x e Xl. 

If there is no danger of confusion, we use the same symbol for a metric a nd the 
induced to pology. 

For example, the line (R, 0) is a topological space in which a sct AI $iii R is open 
iff with each point m e !If il contains an open intefval with the midpoint m. A set AI 
is open in the plane (R l, (I) iff with each point me M it contains a disc with the 
cent re m. 

Each contraction is continuous. More precisely, for each morphism in ,"' tel 

we have a morphi sm in TfJp 

Let M 5i Y be open. To prove that f- '(!If) is open, choose any point 
Since f(m) e M and M IS open, there exists r e (0. + co) such that 

, Jl(y,J(m») < r implies .r e M. 

Then also 

a(x, m) < r implies xerl(M), 

• 

merl(M). 

i 
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bec-.ause if !2(:c, m) < r then .B(f(4f(mJ) < r (sinoe f is a contraction) : hence. 

fIx) E M. . 
On the other hand, a continuous map need not be a contraction. For example, 

each linear map fIx) = kx + q is continuous 

i' (R,U)- (R.U) . 

In fact, continuous maps from (R.C) into itself are precisely the continuous functions 

as defined in t he calcu lus. 

Remar k. Isomorphisms in Top arc called homeomorphisms. A homeomorphism 
from a space (X ,;x) 10 a space (Y. (1) is a bijection 

f: X - Y 

whichhtransportsM the topology (I; o nto the topology fJ in the sense that 

for each M a X . 

For example, all dosed intervals [a, b) in R, with the topolog! o. induced by the 
Euclidean metric, arc pairwise homeomorphic (i.e., isomorphIC In Top). Indeed, 
given two closed intervals [a, h] and [a', h'] there d early exists a linear map 

fix) = kx + q, 

mapping [a, b] onto [(J', b']. Then 

i' ([",b),,) _([d,b'], ,) 

is a homeomorphism, because the inverse map is also linear (hence, continuous): 

(for each ye[o',b']), 

Note, faT example, that 

([0,1],0) = ([0,2].6) 

([0,1],,) HO,2],,) 

Indeed, we have 

(.1(0, 2) = 2 

in Top 

in Met . 
, 

and no two points in [0, 1] have distance 2; thus, [0, !] and [0,2] are not isometric. 

6. Exa mple: the construct Topm of melrizable spaces and cont inuous maps. 
A topological space (X ,:x) is said to be melrizl.lble if there exists a metric"/ on X, 
inducing the given topology, i.e., such that 

(1; =)1. 

• 
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We denote by Topm the full subconstruct of Top. the objects of which are all melri­
zable topolo~ical spaces (and .morphisms arc, necessarily, all cominuqus maps 
between metrl'lable spaces - th IS follows from the fullness). 

An example of a non-metrizable topological space is the indiscrete space (X,a) 
where « :" to, X}. If X has at least two points, then for each metric y we have 
{0, X };;y:choose Xl'X 2 EX wilh X j -F-x2 ;thcn }~Xl,X1J>O and the set 

M - {xe X ; i'(X , X2) < i{X,.X1)} 

is evidently open, M E~. ~et , M ¢ 0, becauS(: Xl 10' AI, and M 'F X. because Xl' M. 
. An eXlimple of a rnctnzable ~pacc is the discrete space (X. 0:), in which each sct 
IS open: 

«=exp X . , 
This topology is induced, e.g .• by the following mctric: 

"' ") {O if XI = Xl ,x,.x, - (x , 'X) I i(x1#-x1 1'"2 . 

(Each set M is open in ~. because for every /II EO M we can choose r = I; then 
!Z(x, m) < r implies x = mE M .) 

. Distinct metrics can induce the samc topology. E.g., if y is a metric inducing the 
d iscrete topology, t hen the metric 2y a lso induces it. Thus. the objects of the con­
st ructs M n and Topm are basiC"d1Jy d ifferent. 

" 

~. w..e have sce~ in the abc)\'e examples that isomorphisms are just those bijections 
which transport one structure Onto another. It is an importanl property of most 
of the usual const ructs that bijections can transport structures in the following sense. 

. Derini t i.~n .. A construct !/' is said .to be Ir~l!sportabl(:" if for each object (X,a) 
and each bijectIOn f: X ..... Y there eXI~ts precIsely one structure p EO 9"[ rj such 
that 

f' (X •• ) ~ (Y.PI 

i~ an isomorphism. 

Examples. (i) Gra is transportable. The unique P is defined by 

fJ =< {(rpJ'l) E Y x Y; there exists (XpX l)E<X wjth )". =f(xd 

and Yl = f(x l )). 

!'-10reo~er, if CI: i~ an ordering, then so is p - hence. Pos is also transportable. ' f '­
.'s a .'.auKe ordermg then so is fJ - hence, Lat is transportable. 

(II) Mt!1 is transportable. The unique fJ is defined by 

fJ(>'I ' >'2) = CI:(x j.x2) where I(xd = Yj and f(x 2) = Yz. 

This follows from Remark 1C4. 

(iii) Top is transportable. The unique Ii is defined by 

AJEP iff rl(M)ECZ. 

This follows from Remark I CS. 

Ob)ec1s and MorphIsm. 

LeI us mention an example of a construCt which fails to be transportable. 
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8. Example : the construct Mu: of metric spaces and continuous maps.. Recall 
that a map {: X ..... Y is ClmrillllOus from a metric space (X,o:) to a metric space 
(Y, fJ) if for each x E X and each £ E (0, + 00) there exists a .; E (0, + 00) such that 

a(x. t) <.; implies fJ(j(x),f(t)) < ~ for each t EX. 

This is equi\alent to the continuity of { from lX, i) to (f,P). 
The construct IHte of metric spaces and continuous maps is not transportable: 

if tWo metrics ai' tl:l on a sct X induce the ilame topology, i.e., if 

then 

idx : (X'!ZI) ..... {X''-l) 

is an isomorphism of Mte. of course. Assume !Z. of 21 (for example, «. = 221); 

then 

arc i~omorphisms, in contradiction to the uniqucncs~ of P in the definition above. 

9. Con c I ud i n g re rna r k. For each construct. the class of all objectS is partitioned 
into sulxlasses of pairwise: i:.omorphic objects. i.e., objects which arc: (up to a re­
labelling of elements) equaL Isomorphisms are bij~ion5 which "transport" the 
structure. In most of the usual constructs. bijections conversely '"transport" structure 

uniquely, thus determining the isomorphisms. 

Exercises Ie 

a. Isomor phi sms of lattices. Prove that each isomorphism {: (X, ;5;) ..... 
__ (Y, :5) in Pos. where (X, ~) and (Y. -<)are lallices. is already a lattice Isomorphism 
(i.e., an isomorphism in Lut). Does thc same hold for complete lattices? 

b . T h e line is homeomorphic 10 intervals. Prove that (al. q) is homeo­
morphic to each open interval (a, b), the topology of which is the restriction of (l. 
Hint : the continuous map { (x ) = tanx maps (-n/2,1f{2) onto R; its invcrse 
I - I(x) :0 arctan x is also continuous. Thus, (R.,,) ::::: {( -11,/ 2, n/2). Q). 

c. Closure in a topological space. Let (X,::>:) be a topological space. The 
dOSlJre of a subset M 5ii X is the sct K1 of all points x E X such that 

XEU implies M ,",U ""O (for each U E «). 
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If Xl = M then M is said to be closf'd. 
(I) What is the closure of (0, 1 ~ (0. I] and [0, 1] in the line tR. q)? 

(2) P rove that a set M is closed iff X - M is open. 
(3) Prove that the closure operation is 

isotone:Ml5 Mz implies ML a lJ~ (Ml , Ml ECXpX) : 

idempotent : iJ = Xl (MeexpX) ; 
addilive:~ = 0 and M1 v M z -iJ 1 u 1Jz (MI'M1Eexp X). 

(4) Given topological spaces (X,a:) and (Y,P), prove that a map f: X ..... Y is 
continuous ifT it respects the closure in the sense that 

[(.17") ,. [(Mf fcreach M 5 X. 

(5) Prove that a map is continous iff the preimage of each closed set is closed. 
(6) Characterize K1 in a discrete space and in an indiscrete space. 

d. Co nstructs of top ologica l spaces. Topological spaces can be classified 
by properties related to the possibility to "separate" poiots and sets. For each of 
these properties we obtain a full subconstruct of Top, the objects of which a re all 
spaces with this property (and morphisms are all continuous maps). 

(1) TOPn, the construct of To·spaces. A topological space (X,:x) is To if each pair 
of distinct points x. y E X can be separated by an open set, i.e., if there is U E IX 
such tha t XEU and ytj. U,or xlj.V and rEV. 

Is the indiscrete space a To·space? 
Consider the following space, which is called the Sierpinski space : X = {Opal} 

and the open sets a re 0, X and {Ol}' Is it To'! 
(2) TOPI ' the construct of T •• spaces. A topological space (X, a) is TI jf each finite 

subset is closed. 
Prove that a space is TI iff each" pair of distinct points x. Y E X can be separll ted 

bropen sets V, Vinthcscnse that XEU,J'f.V and x ¢. V, j'E V. 
Prove that the Sierpinski space is nol T,. 
Define the space of finit e complements on each infinite sct X as follows: a set M 

is open iff X - M is a fmite set. or M = n. Prove thaI this is a TI·space. 
(3) TOP1' the construct of Tl·spaces (or Hausdorff spaces). A topological space 

is Tl if each pair of distinct points x. J' E X can be separated by disjoint open sets. 
Le., there exist disjoint open sets V, V with x E U and y E V. 

Prove that a space of finit e complements is not Tl . 

Prove that each metrizable space is TI . 

e. Compact spac es. Let (X.a) be a topological space, and let M ~ X be 

a subset. An open cm>er of hi is a collection Vj, i E J, of open scts such that M ~ U Vi' ... 
The SCI M is compact if for each of its open covers V" i E 1. there exists a finite open 
subcover, i.e., a finite set J 5 I such that M ~ U Up The space is compact if M = X ., 
is a compact sel. 

Objn:t< and M orphi'lI'Is 2I 

(1) Prove that each indiscrete 5paC~ is compact, while a discrete space is compact 
iff il is finite. 

(2) Prove that the line (R(l) is not compact. A non·trivia! pro)")Osition: a set 
At a R: is com pact ilT it is bounded (I.e., M 5i (a, b 1 for some <I . h ER) and closed. 

(3) let (X,a.) be a compact Tl-space. Prove that a subset of X is compact iff it is 
closed. Hint : if M is closed and VI' i E J is its open cover. tben X - M and Vi' 

i E J. form an open cover of X . Conversely, if M is not closed, pick some x E K1 - M 
and for each mE M choose disjoint open sets V.., V. with mE V .. x E V •. Then 
V ... m EM. is an open coyer of M with no finite subcover. 

(4) Prove that for each continuous map f: (X,:x) ..... (Y,PJ and each compact 
set M ~ X the set f( M) 50 Y is also compact. 
M 5 R is compact ifT it is bounded (i.e., M 5ii [0, b] for some a, b E R) and closed. 

f. Den se s u bsets. A subset of a topological space is dense if its closure is all 
of the space. 

(I) Prove that a set M is dense iff it meets each nonvoid open set. 
(2) Prove that the set of all ra tionals form s a dense set in the line (R, e~ 
(3) Which subsets a re dense in a discrete space?, in an indiscrete space?, in a space 

of finite complements? 
(4) Prove that a subset M of a metric space (X,:x) is dense (in the topology oi) 

iff for each ... E X 

10, Fihres 

I. D efin i ti o n. Let IX.PE9'[X] be Iwo structures on the same set X. We say 
that II is finer than fJ (or that P is C()(Jrser than 0:) if 

:. "'(~ J ... r • •. , 

;d, ' (X,,)_(X,P) 

is a morphism We write 

or. more precisely. a: ~y p. 

E x a m pi es. (i) Gra': given relations II, P on a set X , then 

:x S P iff IX5iiP. 

Thus, a relation !I is finer than P iff it contains re""'Cr pairs. In particular, the finest 
relation is the void one, and the coarsest relation is all of X x X . 

Since Pos is a full subconstruCt of Gra. the analogous statement holds for posets. 
As an example, consider the o rderings :::; and S of the set Z + (Example IB7~ I n Pos 

;;$ is finer than :s: . 
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IHowever, in Lat 

-< is not finer than < . 

(ii) Top : given topologies (I:,{J on a set X then a: < II iff each a-open set is {J-open. ~. 
i.e., iff f3 ~ a (as subsets of exp X). 

The finest topology is the discrete one, and the coarsest is the indiscrete one. 
Another example: consider the line R with the Euclidean topology (I; each finite 
set is closed (i.e., the line is TI ), hence, its complement is open - thus, e is finer than 
the topology of finite complements (lCd(2)). 

2. Definition. A transportable construct Y' is said to be fibre-small if for each 
set X the class Y'[X] (of all structures on X) is small. In other words, if for each 
set X the coliection of all objects with underlying set X is a set. 

Proposition. Lei 9' be a fibre-small construct. For each set X the relation 
"to be finer~ defines a pose! 

(Y'[x], <I, 
ealled the fibre of the set X in the construct Y. 

Proof. The relation .:<0: is 
(1) reficxh'e since for each :l E Y[X], 

idx: (X, a:) ..... (X, a) 

is a morphism; 
(2) Iransitive since given a, {J, y in 9'[ X] such that 

idx : (X,a) ..... (X,,B) and idx: (X,,B) ..... (X,y) 

are morphisms, then so is 

idx = idx . idx: (X, 11:) ..... (X,},) ; 

(3)1 antilefiexive/since given 11:, {J in 9"[ X] such that 

idx : (X, Il) ..... (X ,,6) and idx: (X,,6) ..... (X, Il) 

are morphisms, then 

is an isomorphism. Since 

idx : (X,I1:) ..... (X,a) 

is also isomorphism, the definition of transportability (I C7) implies 

CI: . {J. o 
Remarks. (i) In all the constructs which we have introduced abo\·e. the classes 
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9'[ X] are small. This is fu rther true in all the constructs usually met in mathematics. 
Thus, for all practical purposes "fibre-small" and "transportable" are equivalent 
(and extremely mild) conditions on a construct. 

(ii) A fibre-small construct is called fibre·dbcrete if all its fibres are discretely 
ordered, i.e., if for arbitrary (1:, {J E.5I'[ X] 

(I: # {J implies id x: (X, (1:) ..... (X, P) is not a morphism. 

A fibre-small construct is caned fibre-comp/ele if all its fibres are complete lattices. 

EXamples. (i) Gra is;1 fibre-complete construct. The fibre of a set X i~ the 
set or all subsets of X )( X ordered by inclusion (see the example (i) above), 

(Gra[X]'.:<O:) = (expX)( X, ~) . 

(ii) Top is a fibre-complete construct. For each collection of topologies 

T ~ Top[X] 

define a topologY:l as follows: 

a = nT = {M 50 X ; M is open in each topology {JET}. 

(This is easily seen to be a topology.) Then 

:l=VT in Top[X]. 

. (iii) Pos is not fihre-com plete: for each set X with al least two elements there 
exists no C(l:lrscst ordering on X. On the other hand, Pos is also nol fibre-discrete 
(see the examp\c (i) above). 

(iv) Lat i~ fibre-discrete. If 

idx : (X. ::£) ..... (X , -S) 

is a lattice homomorphism then the meets (as well as joinsl in the posels (X, .:<0:) 

and (X, :5) coincide: 

XI AI :< I X2 = idx(x i "-l;li IX2) 

= idx(Xd "- 1;:: I idxfx l ) = XI "-1 ;. IX2 · 

Hence, for all Xi'X2 EX, 

[n other words, the orderings .:<0: and -< are equal. 

3. A I ge br a i c 51 i- u ct u re s. A number <?,f important fibre-discrete constructs 
are the constructs of algebras. We review some of them briefly. 

An operation of arity n on a st;:1 X is a map from the n-fold Cartesian product X" 

(of ann-tuples in X) into X, 

Il: X" ---> X. 
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In particular, we have the following: 
a unary operation C!: X ---+ X; 
a binary operation :1:: X x X ...... X 

(we usually write x' y or x + y, etc., instead of ~x, y)); 
a ternary operation CI.: X x X x X -> X. 

We also consider n = 0, the nullary operations. 

Convention. For each set X put 

X'_{O}; 

we often write 1 = {OJ; thus, 

X O =l. 

A nullary operation is a map !.r:: {O)_ X, which is usually identified with the 
element cr:(O) of x.. 

A set endowed with a collection of operations is called an algebra. A map 

f: X_ Y 

is said to preserve opera/ions IX (on X) and p (on Y) of the same arity II, if for each 
II-tuple (x;) in X· 

a(x l ) = x implies p(J(x;)) = f(x) . 

Maps preserving all the given operations are thc morphisms in various algebraic 
constructs ~ they are usually called homomorphisms. 

4. Examples. (i) A groupoid is an algebra (X, 0), where 0 is a binary operation.·) 
The construct of groupoids and homomorphisms is denoted by Crd; a homo­
morphism from a groupoid (X, 0) into a groupoid (Y,.) is a map f: X --> Y such 
that 

As an example, consider the set ~ of real numbers with the addition + and the 
multiplication ". The exponential function f(x) = eX is a homomorphism 

(ii) A semigroup is a groupoid (X, 0) satisfying the associativity law: 

Xl o(X 2 oX3) = (XI oX"2) oXl (Xl,X2,X2 E X). 

The construct Sgr of semigroups is a full suhconstruct of Crd. 

OJ The term groupoid appears also in a different CODlexl: as a constroct (or calClory) in which each 
morphism is ao isomorphism. We do not use this concept in OUI book. 

, 
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Both (R, +) and (rR,.) are semigroups. But R+ = (0, + 00) with the exponential 
operation x, ",Xl =x~' is not a semigroup since for example (2*2)*3 #- 20.(2003). 

(iii) A monoid is an algebra (X, 0, el. where (X, 0) is a semigroup and e is its unit 
element, i.e., an element such that 

eox=x and xoe=x (x E X); 

e is C<Jnsidered as a nullary operation. The construct of mono ids and homomorphisms 
is denoted by Mon. A monoid homomorphism from (X, 0, e) to (Y, " €) is a semigroup 
homomorphism f preserving the unit, 

-
For example, (R, +,0) and (R, · , 1) are monoids. And f{x) = c is a monoid 

homomorphism. 
Another exaqtple: for each set 2: (called an alphabet) denote by 1.:* the sct of all 

words, or finite sequences, over 2:. The elements are 0, the void word ; (J p the one· 
letter words (for each (T I € 2:); (TIll" 2' the two· letter words (for each (T l> (T 2 E 2:) etc. 
Then (2:*,·,0) is a monoid, wherc " is the concatenation of words : 

{fOTeach (Tl(T2 •.. Il". and'lt1 . .. r", in 2:*). 
(iv) A monoid (X, ., e) is a group if for each element x € X there exists an inverse 

element x - I, i.e., an element such that 

Denote by Crp the full suhconstruct of IIfon, the objects of which are all groups. 
Note that each homomorphism in Crp 

f' IX,.,,) - (Y,'_') 

preserves the inverse elemcnls: 

foreach xeX. 

In fact, inverse elements are easily seen to be unique (if x 0 y = e then y = X - I 

because y=eoy=x- loxoy=x-loe=x - I) and we have 

(XEX). 

Therefore, we could consider groups as algebras 

(X, 0, e, in) 

where in is the unary operation of inverse element. This would result in a formally 
different construct which is, however, "essentiaHy" the same. We make these con­
siderations precise in the next section. 

(R, + ,0) is a group; (R, " 1) is not a group, since 0 has no iuverse element; 
(R - {O}, ", 1) is a group. 
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(v) The construct Veet of vector spaces can be naturally viewed as an algebraic 
construct: each vector space on a set X is given by the binary operation + and by 
a collection of unary operations 

r.():X ..... x (reR), 

assigning to each vector x E X its scalar multiple r' x. 

5. Observation. All the algebraic constructs in the preceding examples have 
discrete fibres. More generally, given /l·ary operations ~,fi on a set X which arc 

preserved by id x' then 

Il(X;} = x implies .8(x i) = x 

in other words, Il = .8. 

for each (Xi) E X· ; 

6. A different situation occurs with the fibres in constructs of partial algebras. 
A partial algebra is a set X together with partial operations, i.e., maps from subsets 
of X" into X. The definition of a homomorphism of partial algebras has se,'eral 
natural variants - we present one of them, not going into general considerations 
(and restricting ourselves to a few examples only). . 

A parfial groupoid is a pair (X, 0), where X is a set and c is a map from a subset 
. of X x X into X; thus, Xl o X! is either an element of X or is undefined (for all 

x 1> X2 E X). A homomorphism from a partial groupoid (X, 0) into a partial groupoid 
(Y,.)isamap f: X ...... Y such that 

Thus, whenever Xl oXI is defined, so is f(x l) · f(x l ). Denote by Grdp the construct 
of partial groupoids and homomorphisms. 

o bs e rv a t i on. The fibres in Grdp are not discrete. Given partial operations 0 

and • on a set X then 0 is finer than • ifT 

Thus, the finest operation is that which is nowhere defined. 

7. We conclude this section by a notion needed in the third cbapter: a partial 
monoid. (This rather special concept is introduced for the purposes seen below. 
The term partial monoid is not currently used in algebra; thus our terminology 
does not contradict any current usage.) 

A partial groupoid (X, 0) is said to be weakly associati~e iffor arbitrary x I' x l' X lE X 

such that Xl oX 2 and Xl o X3 are defined, we have -

The equality is understood in the sense that both sides are defined. 
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A unit in a partial groupoid (X, 0) is an element rEX such that for each .x € X, 

if x oe isdefinedthen xoe=x: 
if e ox isdcfinedthen e ox=x. 

A parlial monoid is a triple (X, 0, E). where (X, 0) is a weakly associative partial 
groupoid, E ~ X is a set of units and for each x E X there exist units ex E E and 
xe E E such that 

A homomorphism from a partial monoid (X, 0 , E) into a partial monoid (Y, . , E) 
is a map f: X ..... Y which is a homomorphism of the partial groupoids preserving 
units, I.e., 

e E E implies f(e) E t.. 
The resulting construct is denoted by Monp• 

Example, Let X be the set of all (real) matrices, let· be the usual multiplication 
of matrices, and let E be the set of all the unit matrices. Then (X, " E) is a partial 
monoid: for each (n, k).matrix x E X the unit ex is the unit (k, k)-matrix and "e is 
the unit (n, n)-matrix. • 

Observation . The fibres in Monp are not discrete. For example, on the set X 

of all real matrices define an operation 0 which is the usual multiplication x 0 y 
if x or y is a unit matrix, and which is undefined otherwise. Then (o, E) is finer than 

(" EI· 

Exercises 10 

a. Tran sformation monoids. A map from a set X into itself (Le., an clement 
of X X) is called a trall~j{!rmation. A transformation monoid is a set T ~ X x con­
taining idx and closed under composition (j, gET implies f· 9 E 1'). 

(I) Verify that(T,.,idx)isa "lonoid. ' 
(2) Prove that each monoid (X,", e) is isomorphic to a transformation monoid. 

Hint: for each x E X define a transformation I" E XX by f .Lv) = x 0 Y (.I' E X). 
Then t •. Ix. = f.k ,· and I. = idX' 

b. Abelian groups are groups (X, +,0) satisfying the commutativity law, 

The construct of Abelian groups is denoted by Ab; it is a full subconstruct of Grp. 
(The operation of an Abelian group is usually denoted by + and its unit by 0.) 

(I) Verify that the addition of integers defines an Abelian group (1, + ,0). What 
about the multiplication of integers? 
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(2) Two integers x. J E Z are said to be congruent modulo k _ 1, 2, 3, ... if k divi­
des Ix - }1 ; in symbols, x =: y (mod k). Put 

Z, ~ (0, .. .... ,-1) 

and deline the addition on Zj as follows: x ffi y is the unique element of Z •. COD­

gruent to the usual sum x + y modulo k. Analogously with multiplication 0. 
Prove that (l k' EI3. 0) is an Abelian group. 
Prove that (Z. - {OJ, 0. J) is an Abelian group iff k is a prime. 
(3) Find a non-Abelian group. Hint: the largest transformation monoid defining 

a group. 

c. R i n gs and f ield s. A (uni tary) ring is an algebra (X, + , 0, . , I~ where (X, + , 0) 
is an Abelian group and (X", I) is a monoid such that the following distributive 
1011'S hold : 

X' (, + 4 ~ (X' ,) + (x',) 
(y + z) · x = (y , x) + (z, x) forall x,Y,zeX. 

A field is a ring such that (X - {O}", 1) is a group. The construct of rings is denoted 
by Rng ; its morphisms are the ring homomorphisms which are monoid homo· 
morphisms with respect to both of the operations + and ' . The full subeonstruct 
of fields is denoted by I1d. 

(I) Verify that (II, +.0", I) is a field. 
(2) Veriry Ihal (Zt. ffi, 0, 0, I) is a ring which is a field iff k is a prime. 
(3) Verify that the map 

I' (Z, +,0. , . J) - (Z,. $.0. 0.') 

which assigns to each integer = e 1 the remainder of the integer divi sion !z !: k IS 

a ring homomorphism. 
(4) Prove that for each ring (X, +,0, " I) 

1 _ 0 implies X = {OJ. 

Such a (singleton) r ing is called Iridal. 
(5) Prove that each morphism in Fld, 

I ' (X. +. 0" .• )- (Y, + , 0. ,, ' ) 

is either one·lo·one or conslant ; the latter case occurs iIT(Y, +,0,., I) is the tri vial 
field. Hint : If XI - Xl #- 0 theD the (multiplicati\<c) inverse to x = XI - Xl exists. 
Then X- 1 ' (XI - Xl) = I implies f(X)-I · f{x J - Xl) = 1. Thus,f(x J ) - f(Xl) = 0 

• implies 0 = f(x) . ([(x J ) - f(Xl)) = l. 

d. The co n struc ts Tope and Compo The full subconstruct of Top, Ihe objects 
of which are all compact spaces (respectively all compact Tl-~pa,es) is denoted by 
Tope (respectivcly Comp). 
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(I) Prove that Comp is fibre-d iscrete. Hint: If idx: (X. IX) ..... (X, P) is continuou~. 
then for each M E Cl the sct X - AI is dosed, hence, compact. Thus X - M IS 
compact, hence closed. in p (see ICe(3) ,(4)). Thus,lI ~ p. and {J 5: IX is clear. 

(2) Verify that the indiscrete topology is compact. Conclude that To~ does not 
have discrete fibres. Is Tope fibre-complete? 

I E. Isomorphic Constructs 

I. A topological space can be defined by its open sets (see IC5) or by its closure: 
operator (see ICc). Thus, we could define a construct 

Top' , 

of IOpological closure operators and continuous maps, as follows. Objecrs are pairs 

(X. -) 

where - is a map from exp X into itself which is isotone, idempotent and additive:. 

Morphisms from (X . -) 10 (Y. -.) are the maps 

f : X .... Y 

such that 

roreach M ~ X. 

The constructs Top and Top' a re closely related - so closely, in fact, that we a re 
tempted to consider them as identical. We shall make Ihis precise, 

For each topology a on a SCI X denote by 

.Ja) 
the corresponding closure operator. This defines a map 

Ix: Top[X] - Top'[X] 

which is easi ly secn to be a bijection. The important property of these bijections Ix 
is that they "transport" morphisms in the following sense: given lopological spaces 

(X,a)and(Y,p)andamap f: x ...... Y, then 

f: (X , a) - (Y,P) is a morphism of Top 
;rr 

f: (X./~al) - (Y' /IIP)) is a morphism in Top'. 

(See exercise lCc(4).) 

2. Definiti o n. Constructs .9' and !f arc said to be concretdy isomorphic ir 
there exist bijections 

(X a sel) 
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sati~fying the following condition: 
(R) gi\'cn arbitrary objects (X. ill and (Y, (I) of!J' and an arbitrary map f : :< ..... y 

then f: (X,a)---> (r. P) is a morphism of f/ iff f: (X,I.\(!:I:j)-(l',l r(P)) IS 

It morphism of :T. 

Thus, Top and Top' are concretely iMl morphic constructs. 

3. Example: lattices as algebras. Let (X. 5: ) be a lattice. Forming all joins 
(of pairs) we obtain an operation 

v:xx x ..... x 
which is clearly 

(i) commutati\'c: X, v Xl = Xl V x. (x"x l EX); 
(ii) associalivc : x. v (Xl V X,) = (XI V Xl) V X, (x •• _'C1.·l" JE Xl: 
(i ii) idempotent : x v .r _ x (x e X). 

Also the meet is a commutative, associative and idempotent opc:ralion 

A:XX X_X. 

These 11'0'0 operations arc related by the so-called absorption laws: 

x = :0; v (y A x) 
X = X A tv v x) 

All this is quite casy 10 verify. 

fOTcach X, YE X . 

Sti ll easy. though more technical. is the vcrificat ion of the converse : Ic:l ¥ and ~ 
be binaTY operations on a set X such that 
(.) y and A are commutat ive, associntive and idempotent. and they sa tisfy 

the absorpt ion laws. 
Then there cxists a unique order relation ;S; on X such that (X, < ) is a hlUice wilh 'oj 

and A as ilS join and meet, respectively. (This order is, necessarily. defi ned by 

X I :5X1 iff XI ,,"X1 '"'.1"1 (XUX 1E X) . 

It mu st be verified that this is really an o rder and that 

X 1 Y X2 =X j VXl and XIAXl=X1AX1 forall XI'X1EX .) 

We t:onclude that lattices can be considered as special algebras rather than speci;d 
posets. Let us formalize this. 

Obse r vation. The construct Lat is concretely isomorphic to the construct 
L~ of algebras (X, Y, ~), where Y and /), are binary operations satisfying (. ) 
and their homomorphisms. ' 

_ Indeed, for ~a~h ordering !O: in Lat[X] denote by lx(:-:::) the corresponding pair 
( v, 1\ ) of the JOIl1 and the meet operations. This defines a bijective map 

Ix: L-at[X] __ L-at,[X] . 

It is obvious that morphisms in Lat and Lat correspond under these bijections. 

'f 
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4. Definition. A rfQli:ar ion of a construct !J' in a construct .T is a fu ll sub­
construct !I" of !T which is isomorphic to !/'. 

Thus,.9' has a realization in !T iff there exist one-to-one maps 

Ix: .Y[X ] ... .;r[X] , X aset , 

such that the condition (R) of Definition 2 holds. The full subconstruct .Y' of ;T 

then has as objects all the pairs (X , I ~{IX)), IX E 9'[ X ]; its morphi~ms are all .r -mOT­
phisms between these object5. 

E x amp Ie: the construct Pros of preordered setS (I Bb) has a realization in the 
construct Tup of topological spaces. For each preordeT !O: on a set X denote by 
I x(:5) the following topoloSY on X : a sct AI 5ii X is open iIT for x I' Xl E X wilh 
X I :iix 2 and xlEM weha\'e x 2 E M. This dclines amap 

Ix : Pros(X] - Top[X] . 

which is cearly one-to-one: the relation < can be retracted from the topology 
I rt :5. ) since: x !O: J' is equivalent to y E IX} for all x, y E X. We shall prove that 
also the morphisms correspond. 

Let f: (X, !O: ) .... ( Y. ~ ) be an order-presl;':rving map. Thcn f: (X.lrt <)) ... 
.... (Y,/y(::-:;)) is continuous, i.e., for each open set ,lr,1 5ii Y the set f - I(M) is open. 
(If x! < X 2 and Xi Ef-I(M~ then f(x l) -< [(x2) and f(xl)e AI ""hich implies 
f{-'.: 2) e M. i.e .. x 2 e r l(M).) 

Let [: (X , I xl :5 )) -- (Y. I t·(;:;i)) be a continuous map. Then x I :5 Xl implies 

Xl E {x I }, hence J (x~) e f ("fxJ) 5 {f{x IH (sec ICc): in other words. f(x 1) -< f (x l ~ 

Remarks. (i) Note thlli . for each preorder ::;, the topology l x(S) has the fol­
lowing special property : the intersect ion of an arbitrary collection of open setS is 
open. Such topological spaces are called quasi-discrrrc. It is rnther casy to prove 
that , conversely, every quasi-discrete topology a: has the form :I: = Ix{!O:) for the 
following preorder: :' 1 !O: Xl ilT Xl E"[XJ. Thus, thc tea1i7.ation of Pros in Top is the 
full subconstru,-1 of a ll quasi-discrete spaces. 

(ii) The construCt Pl.I.f ofposets has a realirution in Tol' o (!Cd(l)}: ghen a preorder 
:5 then the topology I x(;a) is To ilT !O: is an o rder. 

5. We conclude: this section wit h an observation explaining the role of tra nsport­
able ( IC7) const ructs among a ll constructs. The reader who fi nds these: considerat ions 
too abstract can sk ip this pari without breaking the continui ty of the text. 

Let us call two structures« and p on the same set X eqlli~(l'ent if ,; :s p and P ::::;; :1:: 

in other words. if 

is an isomorphism. We write 
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Ina transportableconstrU(;t,(.l!:; P implies ~ = P Indeed th b" . 'd 
t P . . ,e IjectlOn I transports 

(.l! 0 ; slDce the transport is unique and id : IX ,) _ (X )', . ' . 
this implies ~ = p. x" (.l! IS a so an Isomorphlsm, 

In the construct M rc PCS), two metrics are equivalent iff they indu .... 9 th . 
topology, ....... e same 

Let .~s s~y that a Construct.<;F' is 1I!11lri-tran.~(lorrah!e if for each object (X 1) 'md 
each bIjectIOn J: X -+ Y there exists a structure {I e [I'[yJ not ., . .' 
such that I' ,necessan y unique, 

j, (X.,) _ (y.p) 

is an isomorphism. Note that given 
property, then another structure P' E 9'[Y] with the same 

p = po. 

FO"bothr"(rp)_(x) d['(X) ( , . 
so is " ,fl an . ,C!..... Y, P) are Isomorphisms and hence, 

;d, ~ j·r" (Y, P) - (Y, P'). 

~Con:ersely, fo~ ea~h structure p', equivalent to p, it is clear that 
IS an lsomorphlsm.) J: (X, a:) ..... (Y, P') 

Let us call two constructs Y' and .'T nearly isomorphic if there exist maps 

Ix: Y'[X] ..... .:r[X], Xasel, 
, 

whi~h satisfy condition (R) of Dt:linition lE2 
lowmg sense: and are "nearly" bijective in the fol-

~9 if fr(a- I ) = IX(fl2) then a- j .::: fl2' for each X and . 
(11) for each X and each pe.'T[X] there exists C!EY'[xjl':~t~ ·~[X]ixf.IZ). 
p . . 

SUChr;h~~~t~~:::~: m,ul~i-t.ransportl~bk construct Y' has a full subconslruct.'T 
near Y Isomorphic and :!7 is transportable. 

Proof. Foreach 'setX the I' . 
By the axiom of choice (1~3) t~:;:l;X~stS:s c~:~:c~~s~:;i~;lence rclati.on .0n.9'[~]. 
classes for all sets we obtain 0 f" 1._ [ ] for =. Fmdlng chOice 

, ... u SU,-",Ons(ruct 'T of !/··t b' 
(X,fll with IZE:!7[XJ' its h ' '.1 S 0 1ccts are the pairs 

F h 
,morp Isms are, neccssarily, all.9"-morphisms 

or eac set X let I . Y'[XJ Y"[XJ . . 
a E !/[XJ Ih . X· ..... be the canonical map. assigning to each 

e umque structure P = I ((Xl such Ih t _ (I 

is onto and "nearly" one-to-one. LeI x. X -> a • IX = I' and P E ~[~]. Then Ix 
j,IX I (fl))-(Yl(P))' . J.\ ,11) P ,P) be a morphIsm m9'. Then 

, n 'r IS a morphIsm (m '1' 0 .'T) be< '. 
following three morphisms: id : X I a- -+' r , ause It IS composed of the 

..... .(~., I y(P)). Analogously in tll: c~n~e~~})diri~jlZ)' f. (X ,0:) ..... ( r,P), and idr : (Y,fJ) ..... 
Fmally, .'Tistransportable Foreach b' . ( on). 

there exists P E Y'[ X] . h b 0 1el:t X, 'l. of § and each bijection f : X -> y 
aE9'[X] and 9" s~c. 1 at f: (X, a:) ..... (Y,fJ) is an isomorphismin.9'{because 

IS mu tl-transportable). Let p' be the unique structure in ff[Y] 

, 

I , 
I , 
I 
I 
I , 

\ 
I 

I 

t 
• 
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with P = p'. Then 1: (X, a) ..... (Y, P') is an isomorphism in:T. Since in .'T equivalent 
structures are equal, the uniqueness of P' follows. 0 

. 
Example. The construct Mtc of metric spaces is nearly isomorphic to the con­

struct Topm of metrizable spaces. Consider the maps 

Ix: Mtc[X] ..... Topm[X] 

assigning to each metric fl the topology l.Jfl) = Ii induced by a.. 

6. Definition. A skelewn of a construct Y is a full subconstruct 9'0 of [/' such 
that for each object A in [/' there exists precisely one object Ao in 9'0 isomorphic 
with A (in 9'). Two constructs 9' and:T are said to be concretely equivalent provided 
that Y has a skeleton 9'0 and.'T has a skeleton.'To such that Yo and.'To are concretely 
isomorphic, 

Remark. Each construct has a skeleton. This follows from the axiom of choice: 
a skeleton of Y' is nothing else than a choice class of the equivalence relation :: 
(Remark IC3) together with all Y'-morphisms. 

Examples. (i) Cardinals are sets which form a skeleton of the construct Set. 
This means that for each set X there exists a unique cardinal, denoted by 

card X , 

which is isomorphic to X. Thus, two sets X and Yare isomorphic iff card X = card Y. 
For finite sets this means that X has the same number of elements as Y. The usual 
choice of finite cardinals are the natural numbers, 

O~0, I ~ {OJ. 2~ {O.I), 3 ~ (O,I.2); ,to. 

The statement 

card X = 2 

means that X is isomorphic to 2 = {O, I}, i.e. , that X has precisely two elements. 
All countable infinite sets have the !mme cardinal; the usual choice is the set of 

all natural numbers, denoted by "aleph zero": 

~o ={O,l,2, ... }. 

(ii) Euclidean vector spaces. Denote by Vecto the full subconstruct of Veet formed 
by rmite-dimensional ,'ector spaces. All Euclidean spaces 

10·, +, . ) n=O,l,2. ... 

form a skeleton of Vecto: each vector space A of dimension n is isomorphic to 
(R", +, . ), and two distinct Euclidean spaces arc non-isomorphic. 

Proposition. Each construct is concretely equivalent to a transportable con­
struct. 

I , 
I 
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Pro of. Let 9' be an arbitrary construct. We shal! exhibit a mult i-t ransportable 
construct 9", concretely equivalent to Y. Then we shall use the prccedLng prop­
osition: r is nearly isomorphic to a transportable construct Y'. It is obvious that fI' 
and !T' are also concretely equivalent. and this will conclude the proof. 

The definit ion of 5". Its objects are quadruples 

(X, g,~ p) 

where X is a set, (f,a) is an o bject of 9' a nd p: X -+ X is a bijection. Its morphisms 
from (X , X. a, p} to (Y, f,p,q) are maps f: X .... Y such tha t 

, 

IS a morphism of Y. l et us verify the axiom of composition. Given morphisms 

then q- 1 . f. p and , - I. g. q are morphisms in 9', hence, also 

is a morphism in !/'. We see that ,'7'" is a weB-defined construct. 
!T is multi-transportable: for each object (X, .R, IZ, p) and each bijection f: X .... Y 

we obtain a new object (y, t. (l, f . p), and clearly. 

j, (x.g",p)_( y,g",j.p) 

is an isomorphism. 
!T is concretely equivalent to Y. leI 90 be an arbitra ry skeleton of Y. Denote 

by 9"'0 the full subconstruct o f :T. the objects of which a re aU Ihe quadruples 

(X . X ,a, I x) 

with (X.:x) in 9';,. Then 9'0 a nd :To are obviously conretely isomorphic; hence. il 
suffices to show thaI :To is a skeleton o f :T. First , no two objects or.'7o are isomorphic 
(since this ho lds for .9'0)' Next, fo r each object 

(X.g", p) 

in !T there eusts an object (Y. P) in 9'0. isomorphic to (g,7:); let f: p'. P) -- (k,lZ) 
be an isomorphism. Then 

pI (Y, Y,p, 1,) _ (X,g", p) 

is an isomorphism in !T (because both p- 1 • (p ./J. 1)_ and 1; 1 . (p. fl- 1 . P are 
mo rphisms in Y ). 0 

7. Ex am pIe : One-object conSlructs. Let 9' be a construct which has precisely 
one objecl A = (X, ill. The symbol lZ is somewhat superfluous: since the structure 
is unique, it is only important 10 know what the set X is and what the mo rphisms 

, 
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arc. Each morphism is a transformation of X (see J DOl). By the axioms of compo-
sition and units, . 

hom(A, A) 5 X.t . 

is a t ransfonnation monoid. 

Thus, we can identify t ransformation monoids and one-object constructs. 
For each such construct g we obtain a transportable construct !T concretely 

equivalent to 9' as rollow$. Its objects are (Y.O'~ where Y is a set and 0:: Y --+ X 
is a bijection. (Thus, a il o bjects in !T are o n sets isomorphic to X.) The morphisms 
fro m (Y, (I) to (Y', !X') are those maps 

f: Y .... Y' 

for which rx' . f. (1 - I: X .... X is an clement of the transformation monoid. 

1 F. Subobjects aDd Ceneralion 

1. Each subset of a poset is also ordered: by the restriction of the given order. On 
the other hand, subsets of a vector spnce need not carry a structure of a subspace. 
We are able to formulate a general concept of subobject using morphisms. 

Let Ybe a subset of a set X. We define the inclusion map 

v: Y--+X 

by L"{y) = y for each y E Y. 
If X is ordered by a re la,ion ;:lji, denote by ;ii' its restriction to Y: .1'1 .:0:;;' Yl in Y 

iff .1'1 < .1'1 in X (for all .1'1' .1'1 E Y} Then 

(I) v: (Y • .:0:;;,) ..... (X,:ii) is o rder-preserving. 

Note that. howe\'er, th is condit ion a lone docs not determine the order .:0:;;': if --< 
deno tes the discre te o rder then v: (y,;:i;) .... (X,~) is also o rder· preserving. T he 
o rder < ' is determined by the following proper ty (easy to verify) : 

(2) for each poset (T,~ ) and each map h: T .... }' such tha t Ii. h: (T, <) .... 
..... (X, <) is a morphism. h: (T. :i:) .... (Y. ~') is also a morphism, 

Condit ions (I) a nd (2) do determine .:0:;;' since ( I) is fulfilled by all orders finer 
than .:0:;;', and P) is fulfilled by all orders coarser than ~'. 

2. Definit io n. Let (X,:xl be an object and let Y be a subset of X. An object 
(Y,P) is a subobjrct of (X, ~J if the inclusion map v: Y -. X fulfils the foUowing: 

(IJ v: (Y,P) .... (X,IZ) isamorphism; 

(2) for each object (T,o) and each map h: T .... Y such that v.h: (7;b) .... (X,:x) 
is a morphism, also h: (T, ti) -. (Y, p) is a morphism. 

I T,O'l 

Jh 
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Examples. (i) Top : for each topological space (X.a:) and e3eh set Y SO X the 

following is clearly a topology on Y: 

7.'={M n Y; MeCl}. 

Then (Y, a'l is a subobject of (X, al, called the (topological) subspace. 

Proof. (I) v: (Y, IX') -> (X, /1) is a continuous map because 

for each ME'~ . 

(2) Let v. h: (T. h) _ (X, IX) be a continuvUS map. Thcn for each M Ii Y E' ~, 
where M E' er:, we have 

h- I(M n Y) "" h- I(Il-'(M») = (v. hr! (Mle};. 

Hence. h: (T . .5) -> (y, ::.;') is continuous. 
(ii) Comp : for each compact Tl-space (X, a) and each closed subset Y SO X the 

topological subspace (Y, a') is also compact Tl . Then (Y,IX') is a subobject of (X ,!X) 
in Comp; t he proof is as in (i). 

Conversely, if (Y,a') is a subobject of (X"7.) in Comp then Y SO X is a closed 

subset - see tee(3). 
For example, the interval [0, 1] with the Euclidean topology (1 is compact, Tl · 

The interval (0, l) does not carry a structure of a subobject of [0, I], i.e .• there is 
no compact Tl topology IX on (0,1) such that the space ((0, 1 ~(lJ is a subobject of 

([0.1], (1) in Compo 
(iii) Met : for each metric space (X, er:) and each set Y SO X, denote by a:' the 

restriction of the metric Il to Y. Then (Y,Il') is a subobject or(X, !X) in Mf't. The proof 
is analogous 10 that in (i~ 

Remark. A construct is said to be heredilary if for each object (X, IX) and each 
set Y SO X there exist a subobject (Y, PJ of (X, er:). Thus, Pos, Top and Mf't are 
examples of hereditary constructs., while Comp is not hereditary. 

- 3. 0 b se rva t i on. LeI (y, P) be a 5ubobject of{X. (I). Then p is the coarsest o f all 
the structures "I on Y sueh that v: (y, y) ... (X, 7.) is a morphism. 

Proof. Since 

A/', id r)(= v: (Y,y) .... (X,a) 

is a morphism, the definition of a subobject implies that also 

is a morphism. That is, p is coarser than.,. o 
Corollary. In eaeh transportable construct , the subset Y SO X determines the 

subobject (Y. Pl of (X, IX): if (Y, P') is also a subobject of(X, a) then /1 = jJ'. 

Remark : It is usual 10 call a subset Y SO X a subobject of (X, 7.) if there exists 

Objects ~nd Morrlll.1m 37 

a structure f3 such that (Y, fJ) is a subobjeci of (X, a). This leads to no contradiction 
in transportable constructs - this is the message of tne preceding corollary, For 
example, we can say that the subobjects in Comp are precisely t he closed subsets. 

The algebraic constructs have discrete fibres, as we have seeo in the section lD. 
Therefore, subobjects can be defined by the condition that the inclusion v be a homo­
morphism alone. (By the observation above, this determines the Structure p.) 

Exampl es. (i) I'tel : a subobject, or a (vector) subspace, of a vector space 
(X. +, .) is a subset y~ X which can carry a struCture of a vector space(Y. +-..1 
such that the inclusion map is linear. The laller means that +' is just the rest riction 

of +: 
YL +'Y2 = t{yl +'Y2) = L1YI) +tVl)=YI +Y2 (rorall YI,Y1E' Y). 

Analogously, " is just the restriction of • . 
Therefore, a subspace of a vector space (X, + , .) is a subset Y lii X. closed under 

the addition, 

y,+Y1EY whenever Y1.YlEY, 

and the scalar multiplication, 

r · yeY whenever YE'Y (for each r e iI). 

For example, the subspaces of the two-dimensional Euclidean space (1R1, +,.) are 
J. all the lines going through the origin, 1 the trivial subspace HOt oj} and 3. Rl 
itself. 

(ii) A subia nice, i.e., a subobjec! in the construe! Lat, ofa lattice (X, $) is a subset 
Y 5 X, closed under joins a nd meets, in the sense that for all , '!.YlE' Y we have 

For example, in the lattice (Z .. , :::5) (1B7) the set Y SO Z .. of all even numbers is 
a su blattice : given two even numbers 'I and Yl' their least common mUltiple ) ' 1 v Yl 
and their greatest common d ivisor Y, 1\ )': are a lso even. In contrast, the sel P SO Z ~ 
of all primes is not a sublattice - in fact. the order;;:; on P is discrete! 

(iii) The set N = {O, 1,2 .... J is clearly a submonoid (a subobject in the construct 
MOil) of the additive monoid of real numbers (tR, +, O~ 

Note that, however. N fails 10 be a subgroup (a subobject in Grp); indeed, (N. +,0) 
is nol even a group. 

In general. a submonoid of a monoid (X, -, e) is a set Y = X containing e and 
closed under the operation - , i.e., YL' Yl e Y whenever Y!,Yl e Y. Whereas, a sub­
group of a group (X. -, e) is a submonoid Y £: X, which is also closed under the 
inverse-clement operation, i.e., such that 

)'E' Y implies Y- ' e r. 
4. Defi nit ion. A construct is said to have lTUf'rsectiOI1S if the intersection of any 

collect ion of subobjects of a certain objea is also a subobjccl. More formally, if 
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for each object (X,:I:) and each collection (1';, PJ i E I , of its subobjects the set Y = 
= n Yr also carries a structure of a subobject of (X , CI:). 

ioJ 

This property is common to most of the constructs encountered in mathematics. 
Each hereditary construct (e.g., Top, j\ /et, Gra, Tos) has intersections, of course. 
leI us mention some other examples. 

Examples. (i) Algebraic constructs have intersections. For example, if Y;, i E I 
are sublattices of a lattice (X, <) then so is Y = ny;. Given YPY2E Y, then for 
atl i E J we have YI' Y2 E 1';, hence, YI v Yl E r; and Y I 1\ Y2 E Y;. This implies 

YI v ylE Y and YI" y1EY. 

Thus, La! has intersections. It can be similarly shown thaI Clar, Grd, Man, etc, 
have intersections. 

- (iiI The construct Comp of compact Hausdorff spaces has intersections : the 
subobjects are precisely the closed subsets, and an intersection of closed sets is 
always closed (because a union of open sets is open by the definition of a topology). 

Remark. The construct Tope of compact topological spaces fails 10 have inter· 
sections, Consider the following space: (X, CI:): 

. ~, . . .... 
o 1 2 3 '-, 
x = {CC I'COl}u {O,I,2, ... }; 

(Z = {V !iii X; either X-V isfiniteor {co l ,cc 2 }nU=O}, 

Then (X, Il) is easily seen to be compact: if UI, i E J, is its open cover then 0:; I is an 
element of V ", for some io E 1; then X - U;o is a finite set, which can be covered 
by V j , i E J, for some finite set J S 1, hence, 

V;, iEJU{io} 

is a finite cover of X. It is evident that 

YI = X - {ool} and Yl = X - {co2} 

are also compact subsets. Thus, the subspaces (Y"Pd and (Y1,/ll) of(X,Il) are sub· 
objects in Tope. 

The set 

Y=Yj IiY2 ={O.1,2, ... } 

IS not a subobject of (X, Il) in Tope. Indeed, the induced topology 'J.' = {,>o"J n Y; M E'J.} 
is discrete, CI:' = exp Y. If)' is a topology such that (Y, y) is a subobjeci of(X, (1) then 
the fact that the incusion map 

"' IY.,)-IX,,), 

, 

I 

I 
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is continuous clearly implies rJ.' 5iO I', i.e., rx' = y. But (f, It') is not compact since the 
open co\'cr {O}, {I}, {2}, ... has no finite subcover. Therefore, )' docs not exist. 

5, Remark. Let (X,CI:) be an object of a construct with intersections. For each 
set M 5ii X there exists the least subobject Y of (X, CI:) with At ~ Y: indeed, Y is 
the intersection of all subobjects of (X , (1) containing M. We say that the set M 
generales the subobject Y. If Y = X we call At a set of generators of (X , CI:). Thus. 
M is a set of generators ilT no subobject of (X, CI:), except all of (X , (1), contains At. 

An object (X , CI:) is said to have n generators if there is a set M S X of generators 
with n = card M. 

Ex amples. (i) In the construct Mon of monoids, the additive monoid of integers 

(l.+.O) 

has two generators: 1 and - 1. If a submonoid Y !iii Z contains both 1 and -1, it 
contains 2 = 1 + 1, - 2 = (- I) + (- I), 3 = 1 + t + I, - 3...; thus, Y = Z. 

(ii) In the construct Grp of groups, (1, +,0) has one generator: 1. If a subgroup 
y c: Z contains I then it contains also the inverse element -1, hence Y = Z. -

Note that I generates the submonoid {O, 1, 2, ... } of (2. +,0) (in the construct 
Man). 

(iii) A vector space has n generators ilT its dimension is at most n. Each set M 
generates the subspace of all linear combinations of ekments of M (the linear span 
of M). 

( iv) Generation is trivial in hereditary constructs. For example, each subset M 
of a topological space (X, CI:) generates the subspace (M, 1:'). 

(v) In the construct Comp, the intt:nal [0, I] (as a subspace of {R el) has ~o 
generators: the set M of all rational numbers in [0,1] is dense; hence, it is a set 
of generators. 

Exercises IF 

a. Th e transitivity of subobjects. Let (Y,P) be a subobject of an object 
IX,,). 

(1) Prove that each subobject of( Y, P) is also a subobject of( X, CI:). 

(2) Conversely, prove that each subobjcct (Z, y) of (X, CI:) such that Z !iii Y is 
also a subobject of (Y, P). 

(3) In Comp this means that given a closed set Y S X then a set Z ; Y is closed 
in X ilT Z is closed in Y. l s it true for each topological space (not necessarily compact)? 

b. Generation implies intersections. Let !I' be a construct such that for 
each object (X, III and each set M the least subobject Of(X,Il) containing M exists. 
Prove that then 9' has intersections; compare Remark 1 F5. Hint: if 1'; are subobjecls 
and M = n 1'; generates a subobject Y, then, necessarily, Y !iii 1'; for each i; thus, 
M = Y. 
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C. Unary E -a Ige br as are sets X together wilh a collection (using 1: as an index 
set) of unary operat ions, i.e. , 

0: .. : X - X C1 E 1:. 

We usually identify unary algebras with pa irs (X . IX), where X is a SCI and 

a:XxI:-+X 

is a map (related to the above operations by a(x. u) = a..(x) for x e X and t1 e r). 
This gives rise 10 the construct U,,~ of unary E-algebras and homomorphisms (for 
each set I). 

(1) Verify tha t U,,~ is a fibre-discrete construct. 
(2) Using the word· monoid;P (see lO4(i;i)). define 11:* : X x r- ... X as foll ows: 

rx*(x.0) "" x; 
rx*(X, OIOl'" O'~) - 0:",((1",( ... ((I .. Jx») ... ) 

fo r each x E X and 0' 1(11'" (1. E 1.:' . Prove Ihal in Unreach subset AI 5: X generates 
the subalgebra a;'(M x P) 5: X . 

d . The subalgcbra s of integers. (1) Verify that the additive group(Z, +,0) 
has precisely the following subgroups: 

kl = {kz ; ZE l} k=O,I,2, .... 

(2) Prove that the monoids (Z, + ,0) a nd (Z. · . I) have uncounta bly many sub.. 
monoids. Hint: use a n arbitrary SCI of primes as a generating sct. 

e. A subbase of a topological space (X ,II:) is a colection (10 of its open scts such 
that (I is the coarsest topology on X for which (10 5: cr.. 

(I) Prove that the intervals ( - 00. a) and (a. + x ) for all a E R form a subbase 
of the line. PrO\'e tha t the strips J x Rand (R x J for all open intervals J 5: R 
form a subbase of the p lane. 

(2) l et (X ,:x) be a to pological space wi th a subbase 11:0 , Let I: T ... X be a map 
and Jet " be a topology on T with I ' I( U) E " for each U E (1 0' Prove that then 
I: (T,") ..... {X,(I) iscon\inuous. Hint :verify that {VS X: 1-I(V)s"} isatopology 

containing (10 and hence, also :l:. 

f. Ge n e rati o n in Compo Prove that each subset of a compact T2·space gen· 
era tes its closure in the space. Conclude that dense sets are precisely the generating 
seiS. Does tbe same hold in Top? Hint : subobjects a re precisely the closed sets in 
Compo 

IG. Quotient Objects 

I. Quotient objects of an object (X,(I;) are induced by equivalences o n the set X 
(in a manner similar to the subobjecls induced by subsets of X). 

, 
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LeI - be an equivalence relation on a set X . For each x e X we denote by [x] 
its equivalence class, i.e., the subset of X containing all points equivalent to x: 

[x}={r:IE X and X-I}. 

All these equivalence classes form a new sct, called the quoliem sel of X under .... 
and denoted by X / .... : 

Xi- ~ ([x); xe X). 
The map 

.' X _X/_ 
defined by 

<p(xl ~ [x) roreach xeX 

is called the quotlenl map or the canonical ma p. 
Before giving the general definit ion or a quo tient object. let usconsider the construct 

of graphs. For each graph (X, 11:) and each equivalence relation - on X we obtain 
a new grapb a on the q uolient set X f -; for arbitrary equivalence classes I, t' E Xl ..... 

• 
t at' ifTthere exist X E t and X'Et' with XII:X'. 

(No te that XEr is equivalent to [x] _ I.) For example. consider the graph (X,a) 
depicted below (where a n arrow from x \0 x' indicates t hat x ~ x') and the cquh'ale nce 
... o n X with the equivalence classes indicated by dolled lines: 

r"" • • 
, ... , . ; ............. _ ... , ... ~ .... " ...... 

'\ :2: :3 ' :4 ' .. 5 6: : 7: 
. +-.,., . +,-;oo[.~:-,~.. "' .. ! · t' -'~, · f r u ~ .. ; l ~ "".. t j ~ .. ' ... , _ ___ -+, • '. '. • i 

, , b . • 
Q : •• ~ . ... ~ •... 

(11 {21 {3] [41 
• • • J . • • 

U-~u-
[61 171 

0 " 

The quotient map is clearly compatible: 

.' (X.,) _ (X /-,.). 

(x .• ) 

(X/- "I 

Moreover, for each graph(T,.5) and each map h: Xl-'" T suchthat h.cp : (X.a) ... 
... (T,.5) is compat ible, h: (x /-. a) ... (T,.5) is also compatible. If 1 a t' then there 
exist x € I and x' € r' with x (l x'. Then [x] = r, i.e., rp(x) "" r; ana logously. rp(x') _ 
'"' r'. Since h. cp is compatible, we get (h . rp(x)) .5 (h. cp(x')), i.e., 

10(,),,,(,·). 
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2. Definition. Let (X,fl) be an object, and let - be an equivalence relation on 
the set X. An objecl (X/-.til is called a quolienl {}bject of (X. (Xl under _ provided 

that 
(1) rp: (X,a)_(X/_,a:) isamorphism; 
(2) for each object (T, b) and each map h: X /- -> T such that h. rp: (X, x) --> 

..... (T, b) is a morphism. h: (X /-, il) ---> (T, b) is also a morphism. 

IX,OC:) f ~ ]x/cv,i<.) 

I" 
(T,6J 

E xamples. (i) Gra: the quotient graphs have been described above. 
(ii) Top : for each topological space (X, 0:) and each equivalence ~ on X denote 

by ~ the topology on X / ~ in which a subset of X /- is open iff the corresponding 
subset of X is open, i.e., • 

a = {V 5ii: X/- ; op-I{U)eo:}. 

Then (X/-, a) is a quotient space of(X, Il). Clearly, ~ is continuo1ls. For each space 
(T,,)) and cach map h: x l~ -> T with h.tp continuous. h is also continuous: 
Ve <5 implies (h. !pj-l (V) = <7'-'(11- '(V)) e IX, i.e., h-l(V)e ii. 

For example, let - be the equivalence on the real Ene ([Il;,Q) with two classes: 
(- 'Xl, 0) and [0, + (1»). The quotient space has two points, a l = [0, + (1») and 
a2 = (-(1),0), and the topology on {a l ,a2 l has three open sets: 0, raj and 
{ai' a1} - this is the Sierpinski space (1 Cdr I)). 

(iii) 59r : on the additive semigroup of integers (I, + ) define an equivalence -
as follows: 

Then Z/- has two classes; [0] - the set of all even numbers, and [1] - the set of 
all odd numbers. Deline an operation ffi on Z/- as follows: 

[0] Ell [0] ~ [1] Ell [1] ~ [0] "d [0] Ell [1] - [1] <I> [0] ~ [1], 

Note that for arbitrary 2 1, Zl E Z, I 
o 

, 
In other words, • 

is a homomorphism. It is easy to sec that (1./-. EEl) is a qnoticnt semigroup of (1:, +). 
Define another equivalence on Z as follows : 

ZI - Z2 iff either 1 1 > I, Z2 > 1 or =1:5: 1, 12 < 1 
(for all 11> 11 e I). 

, 

• " 

, 

, 

• 

, 

, 

, 

, 
, 
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Then Z/- also has two classes: [1] "" {1,Q, -I, -2,o .. } and [2] = {2,3.4,. .. }. 
But tbere exist no operation 0 on ZJ _ such that rp: (Z, +) -> (Zj-, 0) is a homo­
morphism: 1 + 1 = 2 forces us to define [1] 0 [ 1] =2, whereas 0 + 0 = 0 forces 
us to define [1] 0 [1] = [1]. -

Remark. A construct is said to be coheredilary if each equivalence on each 
object induces a quotient of this object. Thus, Top and Gra are co'hereditary con­
structs . 

For those constructs which are not cohereditary, for example 5gr, it is important 
to know which equivalences do induce quoticnt objects. 

3. Definition. A congruence on an object (X, 0:) is an equivalence ~ on X such 
that there exists a quotient object of (X, 0:) under ~. 

Examples. (i) Grd: a congruence on a groupoid (X,.) is an equivalence ~ 
such that, for all x,x', y,y in X, 

(-) x-x' and y-y' imply x'y-x"y'. 

Proof : If (.) holds, we can define an operation 0 on the quotient set X/- as 
follows: 

[x] o[y] = [x.y] forall x,yeX. 

It is easy to verify that (X /-,o)is a quotient groupoid of(X, . ). 
Conversely, if (X/-, ¢) is a quotient groupoid then <7': (X,.j -> (X/_,oj is 

a homomorpl:iism, thus, 

[x]o[y] ~ .(x)oq>(y)~ O(x . y) ~ [x·y] 

(for all x, .I' E X). if x - x' andy - y' then 

[x] 0 [y] ~ [x'] 0 CY'] ~ [x" y'], 

therefore, x ' .I' - x', y. 
(ii) Sgr, Mon, Grp: the condition (-) characterizes congruences. 

(iii) Rng: a congruence on a ring (X, +,O,.,ej is an equivalence - with the 
property (.) both with respect to + and with respect to' . For instance, on the ring 
of integers (1, + , 0, ', 1) consider the equivalence :: (modk) of 1Db(2). This is 
a congruence because given x, x', y, y' e Z such that Ix - x'i and Iy - y'l are 
divisible by k then 

I(x + .1') - (x' + y'jl and Ixy - x'y'l 

are also divisible by k. The quotient ring has elements 
operations are induced by those in I: 

[O], .... [k -1] 

[ZI ] + [Z2] = [ZI + Z1] and [Zl]' [Z2] = [ZlZ2] 

(for all Zj>Z2EZ). 

. ' 

and its 
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4. Obse r vation. Let - be a congruence on an object (X.:t:). Then (X/ - . Ii) 
is a quotient object of (X,a) under .... ilT:i is the fmest Structure on X/ - for which 
the quot ient map is a morphism . 

({J : (X.o:) .... (XI _ ,.;')· 

Pro o f. Let (X /-. a) be a quotient object. If P is a structure such that tp: (X.:t:) ..... 
..... (X/-,P) isa morphism Ihen rp = idxl~' II' implies that 

• 

is a morphism. Thus, Ii is finer than p. 
Conversely, kl Ii be the finest structure with respect to the property above. Since _ 

is a congruence, there exists a quotienl object (X / - , a,); then IP : (X , ~) ..... (X /-, 01 ,) 
is a morphism. thus, :i :;;; (I ,. Since IP = idxl_ .qJ: (X , 01) ..... (XI - , i) is a morphism. 
we ha \'e 01, ~ Ii Hence, the st ruCtures Ii and 01 , are equivalent. Consequent ly, 
(X /-, Ii) is a quotient object of (X, (1). 0 

Corollary. In each transportable const ruct, the congruence _ determines the 
quotient object (XI -. Ii) of(X. tt:): if also (XI-. P) is a quotient object. then p = Ii. 

Examples. (i) Pos: let - be an equivalence on a poset (X , ~ ). The finest 
rela tion on X/_ for which rp is compatible, is Ihe following; for each fl , floE XI -

fl ~ fl iff there exist XIEf l • X1Ef1 with x,:s.: X l . 

• 
The relation ::; is easily f-ttn to be reflexive p,n? transitive but it need not be ant i-

sy~metric .. J<. . - 1\ 
'. h~ equlvalen'7-. - IS a congruence on (X, ~ ) ifT the relation ::; is anlisymmelric; 

if so, then (XI _. ~) is the quotient posel of (X, ~~ 
, 

Proo f. Assuming.:::s; is an ordering Ihen (XI_. -<I is a quotient pose! - this 
fo llows from the preceding observation. Conversely. let _ be a congruence. Then 
there is an ordering ~ ~ of X /- such t.Rat (X /-, ~ .) is a quotient pose!. By the 
preceding o bserva;ion.;:;;· is finer than:i; it fo llows immediately that 9: coincides 
with ::; • . Hence. ::; is antisymmetric. 

For example. let (~, :s.:) be the sel of all real numbers wilh the usual ordering. 

The equivalence with the two classes Q , "" [0. + XI) and az "" ( - oc.. O) is a congru· 
ence ; the quo tient poset is ({a" all. ~J where 0z -< 0,. The equi \~.t lence 

r, - '1 ifT the integer pans of r, and r 1 all: equal 

• is another congruence; the quotient poset is isomorphic to (Z. ;i ). But the 
equivalence 

rl .... rl iff ""lE[- I, I] or r"rlE R -[-l,l] 

is not a congruence: the above relation 5}S not antisymmetric. 

I , 
I 

r 
, , 
'I 
I 
I 
• 
I 

, 

, 

, 

I 

I 

, 
, 
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(ii) The construct Pro! of preordered sets is cohereditary, For each preordcred 
set (X, :5:) and each equivalence -.the above relation ;;::!: defines a quotient o bject 
(x/- . s) in Pros. 

5. An important example of an equivalence is the ktrnel of a map f: X ..... Y ; 

this is the equiValence _ on X defined by 

While equivalences often do not induce quotient objects, the kernels of morphisms 
usually do. 

Defi ni tion. A const ruct is said to hat'l!kt',.. d.~ irfor each morphism f: (X,a ) ..... 
-0 (Y, P) the kernel o f f is a congruence on (X, II). 

Exa m pie. (i) lbe construct Grd has kernels. Given a groupC'id homomorphism 
f: (X, .) .... (Y, e) then the kernel equivalence - is II congruence. since x - x' 

and y - y' i!"ply 

f (x ' y) - f(x ) . f()') 
- f(x') ' fV ) 
• f(x' • i ) 

thus.x .y-X.y'. 

[J is a homomorphism] , 

[i(x) - f(x') .. d flY) - f(il]. 
(j is a homomorphism] • 

The same hokls for Mon. Grp and other algebraic constructS. 
(ii) The construct Pas has kernels : given an o rder-preserviD!; ma p f; (X , ~) .... 

_ (Y. 'iOi 1 then the re la tion'3 of the preceding examples is antisymmelric. If r I ::; '1 

lhenthereexisl X,EI, and X!Etl with x, ;;!xl;ifalso f,2:f1 then there ex ist 
x, E t , and xi Ell with x', ~ X'l. Then X, - X,, i.e .• fIx I) z fIx',). and fI x 1) "" 
"" f{x;). HeD~ Xl implies 

f(x ,) 'iOi fIx}) 

and x; < X', implies 

f(x l ) = fix'l ) == f(x'\) '" fIx,); 

therefore,f(x,) = f(xJ In other words, x, '" Xl ; equivalently. t, '"" 12. 

(iii) Top, G,Il and all other cohereditary constructs ha\'e kernels. of course. 

Re ma rk. In a construct with kernels each morphism f ; (X, II)_ (Y, I:I) can be 
factored as f ,., /' ./fJ. where qJ: (X. iX) -+ (T.o) is the quotient morphism and 
/'; (T. i'i) __ (Y. 1:1) is a one-to-one morphism. In fa ct. let (T. d) be the quotient object 
of (X. a) under the kernel equivalence of f. [)crme J': X/ - -+ Y by 

r([ x]) - f(x) for each XEX . 

This is a map such that f = f' . rp ; since f' . rp : (X, II) --> (Y, P) is a morphism. so 
is /': (T, i'i) .... (Y, P~ Moreover. f' is one-to-onc since [x ,] :F [Xl] is equivalent 

to f(xd '" f(x1 )· 

, , r , 
I'-0 < • ~} / r· :/ , I 

~ Pr,' .( . ') -., ~., y. ,~v 1 / • • , • • "-' . ..' 

,-
, 

~ 
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6. Another factorization of morphisms is possible In constructS such that the 
image or each morphism is a subobject. For each map 

j: X __ Y 

we denote by 

im! = fiX) SO Y 

its image. 

Dcfi nil i on. A construct is said to h'JVf! images if for each morphism j: (X, (I) ---> 

-- (y, Pl the set im f is a subobjecI of (Y, p~ 
. 

E x am p les. (i) The construct Grd has images: given a groupoid homomorphism 
f: (X, · ) -0 (Y, ,,~ the set im f is a subgroupoid of (y, .. ~ For each 1 •. Y2 € im! 
there exist X . ' o'{2EX .... ith f(x.) "" 1. and f(x 2) = "2 ; then 

Y, Of! = f(x.) of(xzl = fix. · x1)eimi. 

Similarly with other algebraic constructs. 

(ii) The construct Comp has images: given a continuous map f: (X,a) ..... (Y,P) 
with (X, a) a compact space, then imf is a compact (ICe(4)); if(Y,P) is a Tl-space 
then im f is a compact Tl-subspace. 

Remark. In a construct with images, each morphism f: (X, a) ..... (Y,p) can be 
factored as f = v./, where ]: (X, a) ..... (T, 0) is a morphism with f onto and 
v: (T,c) ..... (Y,P) is the inclusion morphism. 

For example, the construct GrQ has images and kerncls. Consider the following 
morp"ism f: 

. - -- " !" - If -. -
" • Y, 

f --" 1 . -1--- t:, " , 
1X, ... 1 

f 
• [Y, II) 

The factorization f = f'. r:p is the 

following one: 

"f 
Xl ..... 

'T x, • _ 

[X, ... I 

-- (> 

Jr --
r -- I ~,I • -- 0- -- oy, 

, 
(T,S) • f ' 

(Y,~I • 

, 

! 
r 

I 
" 
'. 

r 
, 

, 
I , 
, , , 

I 

I , 

The factori zation f - II. J is the following one: 

x, t .......... ...... 
x, ' -

Exercises IG 

--

--

a. Congruences defined by subobjecu. 
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(1) Ab: for each subgroup Yof an Abelian group (X, +,0) define the following 
equivalence on X: 

Prove that::::: r is a congruence and Y = [0]. Conversely. prove that for each con­
gruence -. the da~s rOl"" Y is a subgroup such that ~r coincides with _. 

(2) Describe all quotients of the addit ive group (Z, + , 0) of integers and pro\"(' 
thall hey are isomorphic to the groups of lOb. Him : see IFd(l~ 

(3) Vur: prove thai, analogously, the congruences on a \'eclor space a re precisely 
the equivalences -"= T' where Y is an (arbitrary) subspace. 

(4) Describe all congruences on the two-dimensional Euclidean space (Rl, +, .). 
(5) Grp: a subgroup Y of a (non-Abelian) group (X, . ,el is said to be normal if 

for each ye Y and x e X we have X· y. X- I e Y. Prove that the congruences on 
a group are preCisely the equivalences::::: T' where Y is a normal subgroup . 

(6) Rng : a subring Y of a ring (X, +,0,·, el is called an ideal if for each ye Y and 
x e X we have x · y e Y. Prove that the congruences on a ring are precisely the 
equivalences::::: T' where Y is an ideal. 

(7j Describe 311 congruences on thc ring or inte.!;ers. Hint : ~ Example IG3/iiij 
(8) Fld: prm'e that no non-trivial equivalence on II rlCld is a congruence. 

b. Congru ences in Top ,. let (X,a) bea Tl-space. Prove Ihat an equivalence .... 
is a congruence in Top , itT each of its classes [x] is a closed subset of X. 

c. Congruences on posets and lattices. 

(I) Let (X,;S) be a lattice. P rove that an equivalence .... on X is a congruence 
in Lal itT for all x, . , y, y' e X with x - x' and y _ y' we have 

(xv~ _ (x'vy') and (XAY)-(X'AY'). 
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(2) Let (X. ~J be the poset with the following Hasse d iagram 

• 

b 

0 , 

(This means that X e to, a ,. a2 • bl' bo• bz• I}. and ::!! is tbe least ordering such that 
for each edge x - y in this diagram with x lower than y we have x .$ y.) 

Prove that (X, S) is a lall ice. Deno te by ..... the leaS( equh'3lence with hi"" b l 
(i.e" the only non-singleton cla ss of ..... is {b\,b1n Prove that - is a congruene<: 
in Pus but not a congruence in lAt. 

(3) Prove that in Clal a congruence on a complete tan ice (X. <) is an equivalence 
- such that for each collection (Xj, xi) E X x x, j E J, of pairs of elements with 
x, ,..., X; (for all i E I) we have 

Vx, - Vx j and /\xi - /\x;. 
~I ;,,/ 1001 100 / 

(4) Consider the complete lallice [0.1] (with the usual order~ Let _ be the 
equivalence with the classes {OJ and (0, I]. Prove that ""' is not a congruence in 
Clat though it is a congruence in Lat, where the quotient latt ice is complete! 

d . Fac t oriza tion of morphisms. Prove that in each conslruct which has 
both images and kernels, every morphism J: (X, a) _ (Y,P) can be factored as 
J = v . r . rp where rp: (X, ill - (T. 0) is the quotient morphism.f- : (T, 5) ..... (1"'. 3') 
is a bijecti,'e morphism and 1' : (T',o') .... (Y. p) i~ the inclusion morphism. Illustrate 
this on the example in era in Remark IG6, 

IH. Free Objects 

I. Definition. An object (X,fI) is said 10 be Jree OI'era SCI M ~ X provided that 
for each object (Y,P) and each map If): M -0 Y thc:re exists a unique morphism 
f : (X , ill -0 (Y, PI extending fo (i.e .• with J(m) = Ju(m) for all mE M). 

Examples. (i) The four-element lattice A = ({Q,a, b, !}, S~ where 0 S a S 1 
and 0::;; b ~ I and a and b are incompatible, is free in Lat over {a,b}. 

• 

I 

\ ,. 
! 
r 

• , 

I 
l , 

I 
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lei B = (Y,;:il be a lattice and let 10: {a, b} _ Y be a map. Sincc in A we have 

allb = O and a vb= l, 

the c1'. tcnsion of 10 10 a homomorphism f: A ..... 8 muSt fulfil 

(I) f(O)- flo) A f(b) - f,(o) A f~b) 

(l) f( I )-fl") v flb)-f,(o) v f~b). 

On the other hand, when c)ltending 10 to 1 by (1) and (2) we ciellrly obtain a homo­

morphism I: A - B. 
(ii) The add itive monoid of nalUral numbers (N. +.0) is the free monoid over {I}. 

Let (y, ' . e) be a monoid and let I?: {I } - Y be ~ map : put Yo = 10(1)· Then /0 
has a unique extension to a monOId homomorphIsm I: (N, + , 0) ---> (Y, . , e~ VIz', 

etc .. 

fIO) - '. 
f( I)-y,. 
f P)- f(i + i)-fl l).f(I) -y,.y" 
f(3) = /(1 + I + I) = fll)· f( I). f(1) - y, . y, . y,. 

(iii) for each sel M Ihe word-monoid (.-\'·. · ,0) (see lD4(iii)) is free over the 
set ;"vI, where ench In E At is considered as a one-letter word. Let (Y, 0. 1') be a monOId 
and let fo: M ..... Y be a map. Then Jo has a unique extension to a homomorphism 

I: (A,, ·. , ,0)_(y, o ,e~viz .• 

f(0) - •• 
I(ml ) =IJml ) foreach mIEi\!, 

I(mlm.) -Jo(m l) oJo(m2) for each m pmlE M , 
J(m

l
", .",)) = JJml ) .. fo(m2 ) .. fJ..m)) for each m p In J' Ill ) E M I 

el c. 
(iv) Every vector space is free in Vtct. In facl, if AI is. a ~a.sis of a vector space 

(X, +, ,) then each vector x E X is a unique linear comblnallOn 

rlEiR; m,E M (i = I .... ,n) . 

Lc:l (y, +, .) be another vector space, and let 10: M -0 Y be a map. The unique 
extension to a linear map f( X , +, . ) -- (Y. + .. ) is defined by 

J(x) .. ITl lo(ml ) 

for each linear combination x = Irlln, o f the base vectors. ~ 

Remark. If (X,,) is a free object over M ~ X then morphisms on (X,:x) are 

determined by M. That is, if two morphisms 
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fulfil 
11m) ~g(m) rorall meM 

then f,.. g. Denote by 10: !If - Y the (joint) restrict ion of f and g; then f and 9 
are both extensions of {o to morphisms. Since the extension of 10 is unique by defi­

nition, then f = g. 

2. Tee min 0 logy. If (X, IX) is a free object over M then M is called a set of Jr~e 
III'rlrralors. We also say thaI IX. 00:\ i ~ it frl'l' ubiect "'I II gerrl:'f<l.lors if eard M = 11. Let 
us prove thallhi5 terminology is consistent with that of I F5. 

Proposition. Lei (X. a) be a free object over M 50 X. Then M is a set of gen­

erators of(X ,a). 

P roof. We are 10 show thaI for each subobject (Y, p) of (X , ill 
. 

M 50 Y implies Y = X . 

Denote the three inclusion maps as follows: 

v: M ..... X; 
Thus, 

The map VI: M ..... Y can be extended 10 a morphism iii: (X , il) -0 (Y, Pl. The 

morphism 

"".V I : (X,il) ..... {X. il) 

fulfils, for each mE M, 

w . vl (m) = w{i\(m)) 
= "{vI(m)) 
: qm) 
= m. 

Thus. W,VI coincides with idx on the SCI M. By the Remark above, this implies 

w.iil = id x: (X.il ) ..... (X .a). 

Hence, for each x E X we have 

o 
x = w(;I(X»)~ Y, --

::. r~, 
, 

which proves that X = Y. 

3. Remark. A free obje<;1 over ~ SCI AI i, not uniyu~ly determined b) the ~el ,1,1 . 

For example. in [H I we saw that (N. +.0) is a fret: monoid over ~ q. <.Lnd also Ihe 
word-monoid His'",· , 0) is a frec monoid over {1}. Note Ihat thc elemenlS of {q. 

'" 0,1.11.[11 •...• 1· = 11 ... 1 (II-times), .... 
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It is clear thaI (N. +,0) is isomorphic with ({ W, · , 0) under the following bijcction 
I' 1\1 ~ {I)" 

1(0) : 0, IIi) : I; 1(2) - "; ... ; II") - I", .". 

We shall prove that Ihis is no coincidence. 

Propositi on. A free object is uniquely determined up to an isomorphism 
by its number of free generators. That is, 

(1) if A and A' arc free objects on II generalors then 

A is isomorphic to A'; 

p) if A is a free object on " generators then each o bject A'. isomorphic to A, is 
also free on II generators. 

Proof. (I) Let A ... (X. a) be free over a SCI M and let A' = (X'. a') be free 
over a sct ,1.1'. If M and M ' have the same cardinality, there exists a bijection 10: /If -0 

..... M'. Denote by v: M -0 X and v': M' -0 X' the inclusion maps. 

I, 

M 
, M' 

" I~ 

, 
" 

[XI "' J :,=="~:::· [x: ... ~ 
r 

The map v' '/0: At ___ X' has an extension 10 a morphism 

And the map v . /0- I: M ' .... X has an extension 10 a morphism 

I'IX',,')-IX,,). 

, 

To prove that f is an isomorphism. il suffices to show that / and J are inverse to 
each other. 

The morphism 

IIIX,')-IX,,) 
fulfi ls, for each m e M , 

J./(m) = f. v',fo{m) = 
"" v'/O-

I ./o(m) 
= »1m) 
_ m. 
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By Remark IHl, this implies 

J·f=id x · 

Analogously, 

f./=idX'. 

Hence, J = f - I and thus, f: A -> A' is an isomorphism. 

(2) Let g: (X,ex)_(X',ex') be an isomorphism, and assume that 
over M ::;; X. It suffices to prove that (X', a') is free over the set 

go 

• , 
g;j,..( 

v ly,~1 v' 

,Y 9 

is free 

Let (f, /1) be an object and let fo: M' -4 Y be a map. We extend fo to a morphism. 
To this end, denote by 

go:M ...... M' 

the domain-range restriction of the bijection g. The map fo. go: M ...... Y has an 

extension to a morphism 

Then the morphism 

[ . /.g-L (X',")_(Y.I) 

is an extension of fo: for each mE M' we have g-I(m) E At; thus, 

Jim) ~ j(g- '(mil 
~ [0' g,(g- '(mil 
~ lo(m). 

It remains to prove that f is unique. If II: (X', a') ...... (y, P) is also an extension of 

fo' then the morphisms 

clearly coincide on M and, hence, by Remark lHI. 

f·g =kg· 

" 

• 
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This implies 
• 

D 

4. Defi nit ion. A construct is said to hauefree objects iffor cach cardinal number n 
there exists a frce object on 11 generators. 

Examples. (i) The construct Alon of monoids has free objects, as we have 
seen rn IHI. 

We shall1ater prove that other algebraic constructs, Grd, Grp, Lat, ctc., have free 
objects. Free objects in algebraic constructs are usually interesting algebras, and 

the in vestigation of their properties is an important part of modern algebra. 
(iij The construct Top has free objects: for each set X the discrete space (X, exp X) 

is free ovcr X. Given a topological space (f,P), then each map fo: X ...... Y is con­

tinuous, i.e., fo: (X, exp X) -+ (Y, P) is a morphism. 
(iii) the construct Pos has free objects: for each set X the discrete poset (X, <) 

(where :<:1 < X2 is equh·alent to XI = Xl) is free over X. Given a poset (Y, :5:), 
then each map fo: X ..... Y is order-preserving, fo: (X.;i) _ (f, ;;:;i). 

Generalizing the situation in Top and Pos, we call an objcct (X, a) discrete if for 

each object (f,P), all maps f: X ..... Yare morphisms f: (X,:x) -> (Y,P). Equi­
valently, an object (X, a) is discrete iff it is free over all of X. 

Fu rt h er e x am pie s. (iv) The construct Met docs !lot have free objects on two 

or more generators. Heard M > 1 and if (X, :1:) is a free metric space over M ::;; X, 
consider the space (X, 2et): the inclusion fo = v: M -4 X has, of course, no extension 
toacontraetion f: (X,a)_(X,2a). 

For each real number k > 0 denote by 

the full subeonstruct of Mer, the objects of which are the metric spaces (X,:I:) with 

diamctcr at most k, i.e., such that 

Then ,-\1et~ has free objects, in fact, discrete objects: for each set X define a metric a by 

Then (X, a) is discrete in Met". 
(v) The CO!lstruct Clat of complete lattices does not have free objects on three -or more generators. The proof is beyond the scope of this hook (sec A. W. HALES, 

Fllndamenra ,'I>iatilemlllicae 54 (1964), 45 - 66). 
Tn contrast, the construct Csi of complete scmilattices has free objects. For each 
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set M consider the pose! (exp,\{, ~), where M I :iii AI 2 iff 1.1 2 5: M I (AI I' MlECXP M~ 
This is the frce colJlPiele semilattice over 

• 

M' .. {{m}; meM} 5: expM. 

lei (Y, ~) be a complete semilatlice and let 

fo:M' ..... y 

be a map. For each set M 1 50 M we have, of course, 

M,cU {m}; 
~ •. 

Ihus, in the pose\ (exp At, s ) 

M, ~ A {m}. 

To extend 10 to a homomorphism of complete scmilattices, we must define 

f(M I) = A fo{{m}) fo r each M I 'iii M . 

Conversely, it is easy to check that the map f: exp M --0 Y defined by the rule 
above is indeed a complete semilattice homomorphism extending 10-

5. A special case of the free: objcct is the inilial objl'ct, which is an object Ao such 
that for each object B there exists precisely one morphism from Au to B. The initial 
object is Ihe free object over the void sel (i.e., the free object on 0 generators): for 
each object 8 = (Y,P) there exists precisely one map from 0 10 Y. Ihe void map. 
This map can be uniquely extended to a morphism f: Ao ..... B; thus. hom(A o• B) 
is a singleton set 

Examp les. (i) 0 is the initial object in Sn 
(ii) In constructs which have a structure 11. on C, the object (C. t:t:) is usually initial. 

This is so in Cra : the void subsel of 0 x {'I = 0 is the unique rela tion on O. Similarly 
in subconstruc\ of Gra: Pus and Pros. Also in Top we have just onc topolOflY on 
0: a = {OJ . And tbe void groupoid is the ini tial object in Crd a nd Sg,. 

(iii) The inilia1 ~ec tor space is the trivial space {to}. + .. ): for each "ector space 
(X, +,.) the unique linear map I: ({O}, +, . )_{X, +, .) is defined by 1(0)=0. 

Analogously, the singleton monoid (respectively group), is the initial object of 

Mon (Crp). 
(i~) The ring of integers (Z. +, 0.·,1) is the ini tial object of Rng : for each ring 

(X, +.O, . ,e) the unique r ing homomorphism f: (Z, +,0, " I) _ (X. +.O ••. e) is 
defined as fo llows: 

fl'} =, ,nd flO) ~ 0 

(because I preserves the two nullary operations); hence 

1(2} - 1(1 + I) = t + e, 1(3) = f( l + I + I) = t + e + e •... 

i 
, 

• 

, 

I , 

I 

• 

• 
Objtcl~ ano.! MOlT'h,sms 

{because I preserves + J and 

fl-l } = - ', f(-2) ~ -{H'}. fl-3)- -('''H), ... 

(because I pre!>erves the inverses~ 
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Concl udin g r e mark . Since frce objccts are determined only up to an isomor­
phism, it is orten not so important to know their precise inner structure: their 
"universar property is all that matters. Thus, in some situations we are mainly 
interested in the existence of free objccts. In all the constructs we considered above, 
a free object on one generator exists (see Exerd!>e a. below) and also an initial object 
exists. But wilh more generators the problem is not so easy. 

One of the major achievements of the theory of structures is that a powerful 
criterion for the existence of free objects has been obtained. We introduce it in the 

next chapter. 

Exercises IH 

a. The free object on one generator. Verify that in .each of the constructs 
below the descr ibe<! object is free ovcr the singleton set {xl 

(I) Top, Mt t, Gra: the singleton object. i.e., the underlying set is {x}. The same 
holds in a ll full subconSlructs containing th is object, e.g .. Comp and POl. 

(2) Rng : the fing of all polynomials with integer coefficients and with the in­
determinate x. The operations + and· are the usual addition and multiplication 
o f polynomials; Ihe nullary operations 0 and 1 are the constant polynomials. Hint: 
for each fing (X, +,O, · ,e) and each 10: {xl - x. fJ..x).,. t, we can "e\'aluate" 
all polynomials. i.e .. we can extend 10 as follows: 

IJ..a) - e + e + ... + e (a-times, where a E Z), 
fo(ax) "" (e + e + ... + e)· r , 
lo(ax1

) ... (e + e + ... + e) - I . t, 

etc. 
(3) Grp and Ab: (Z. +,0) is frrt over x = I. 
(4) Lot : the singleton lattice {x}; Clat: the three-clement chain ({O,x.l}. ~) . 

where 0 S x S I. What about csn 
(5) Cr4: the groupoid (T, c) of all formal expressions x, x 0 x •. x 0 (x 0 xl, (x 0 xl 0 x, 

(x • :r) 0 (x • x), etc. Tilus, T is the least set, containing x and such that 11.1 1 e T 
implies tl " t1eT- {x},while /I o tl = 1'1,, / '1 iff ll=1'1 and ll=ti (for all 
ll'l'l' l~,tie 7} 

b. free Abelian groups. For each set M denote by (,\1, +.pO) the group of 
all integer functions p: M _ Z of jinile supporl (i.e., such that the ~et of all me Al 
with p(m) 'f- 0 is finite) with the usual addition or runctions: 

(p + ,')1m} ~ rim} + ,'(m) forall p,p'e;\?, meM, 
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and wi th pO the constant funcl ion with value O. Prove that this is the frtt Abelian 
group over 101' = {P.}_ ..,., where p. is the function assigning 1 10 m and 0 to a ll 
other elements of M. • 

c. Free sc migroup s are the semigroups of nOD· void words (sec: lH l{iii)): 

("·_(O}. ·). 

Prove it . 

d. Fr ee unary algebras. for arbitrary sets 1: and M a free unary [-algebra 
over M is the algebra 

(Mx.P.a) 

where a is de fi ned by a(m, u I ... u.; u ) = (m, uu I ... u.) and where me M is identi­
fied with (m , 0~ . 

e. Free partial gc 0 U po ids are the discrete objects of Grdp : these are the pairs 
(X, .) where · is nowhere defined. 

. 
f. Factors of an o bjcct A are the objects which are isomorphic to quotient 

objects of A. In algebraic constructs (Mon, Ab, Unx, etc.) prove that B is a fa ctor 
of A iff there exist s a surjective morphism j: A --0 B. Conclude that each object 
is a factor of a free object. 

g. E m bedd i n g . An object B can be embedlled into an o bject A iff 8 is isomorp hic 
to a su bobjcct of A . P rove that in algebraic constructs th is is the case iff there exists 
a one-to-one morphism j: B --0 A. 

h. The po se l of all equival ences. For each set X, denote by ElriX} the sct 
of all equivalences on X and dcfine an ordering on Eq{X) as in the fibre Gra[ X], 
i.e .. an equivalence 'X is sma ller or eqUlt) 10 fJ if :): ~ fi· 

(I) Prove that the poset (E{J(X~ ~ ) is a complete Janice; d escribe lhe least and 
Ihe largest clement. Hint: a scH heoretieal m terse<:lion of equivalences is an equi­
valence. 

(2) Prove thaI each posel (X, :S) can ~ embedded in to (Eq(X), ~~ 1·lint: fo r 
each x e X consider the equivalence with only o ne Don-trivia l class: {J' e X ; )':S x}. 

(3) Prove that in esf each complete semilauice can be embedded into the lanice 
of all equivalences. Hint : the embedding in the previous hint preserves meets. 

• 
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Chapter 2: Initial and Final Structures 

Many constructions in m:nhemalics are of the fo llowing type: we are given objects 
Ai (i E I) and a ~t X and we create a new object on X using maps from X into the 
underlying sets of AI or, conversely, maps from the underlying sets into X . For 
example. the ,Cartesian product of two objects AI = (X 1,0: 1) and A2 = (X 2.a: 2) 

is created on the set X "" X I X Xl by the projections. A subobject of an object 
Ao = (X 0> 110) is created by the indusion map p: X --0 X 0 (if X 5 X 0)' and a q uo­
lien! of Ao is created by the quo tient map tp: Xo --0 X (if X = Xoi -). 

The present chapter is devoted 10 a general invest igat ioll of such consl ructions. 
We first. study initial struct ures, i.e., the case of maps leading from X, and particularly 
the Cartesian products. Then we turn to final structures. i.e .• 10 maps leading inlO X. 
An important genera1i1.3tion of the cona:pl of final object is the "semifinal objec!"'; 
while initial and final objects often fail to exist, it turns out that semifinal objects 
exist in most ofthc constructs used in mathematics . 

2A. lnitial Structurcs 

I. Let 

f: x .... Yr. ie / , 

be a collection of maps wit h the common domain X . If on each ofl he sets 1'; a graph 
fl, =- l~ x 1'; is defined, then a natural graph a can be defined on X: 

for cach ie I . 

For example, consider the maps and graphs depicted below (where an arrow from 
r to y' indicates y~, y' in Y, for j = 1,2): 

x 

C/ 
• • 
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.Th.e resulting graph on X is 

I C·· . . I • 

Note that 
(I) fi: (X, a) ..... (y;, Pi) are compatible maps for all i E I. This follows immediately 

from the definition of It. Moreover, 
(2) for each graph (T. b) and each map h: T ...... X such that J;. h: (7,.5) ---> (Y" p,.) 

are compatible for all i E I, also h: (T,.5) -+ (X, a) is compatible. 
• , Proof: let 11' (2 E T be elements wilh (1" 12 ; for each f E I we have 
fJh(t j )) Pi !.{h(r l ))· Therefore, 

h(t j )ah(1 2); 

hence. Ii is compatible. 

Properties (l) and (2) determine the relation :z : (1) is fulfilled by IX and all the finer 
structures; (2) is fulfilled by IX and all the coarser ones. We call cr: the ini tial structure 
of the given collection of maps and graphs. 

2. More generally, we can introduce initial structures in an arbitrary construct .7. 
A source (in Y) on a sct X is a collcction (Y;, Pi'/;)' i e 1, where (Y;, P;) are objects of 
.Y' and /;: X ...... Y; are maps (for all i e f). The collection is allowed to be largc. i.c., 
I can also be a (large) class (see IA). We usually denote sources as follows: 

• 

{X ':sP;,P;)};ol' 

Definition. An initi(ll.~trllcwre of a source {X':s(Y;,,B,J};,,/ is a structure a 
on X such that 

(1) k (X,a)-+(Y;,PJ are morphisms for all ief; 
(2) for each object (T,o) and each map h: T ...... X such that all t;.h:(T,o) ..... 

...... (Y;. fJ.l are morphisms (i E I), h: (T, 0) ..... (X, a) is also a morphism. 

IT, 5) 

j h 

IX,"'] 

1'1\ • • • 
IYt '~) 

A construct is said to be illirial/y complete if each source has a uniqu<: initial 
structure. 

Remark. Conditions (1) and (2) can be restated more compactly as follows: 
for each object (T,o) and each map h: T ..... X, 

h: (T,o) ....... (X,a) isamorphism 
• 

• 
• 

, 

, . 

, 

• 

, 

, 

, 

, 
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iff 
/;. h: (T, oj ..... (y;, Pi) are morphisms for all i e I . 

(lfthis holds. then put h = id x: (X. a) ..... (X.a) to conclude that I. are morphisms.) 
We also call (X. x) the initial objeCl of thc ~ourl:t:. . 

Exam pIes. (i) Gra is an initially complete construct. 

(ii) Top is an initially complete construct: for each source {X ~(Y;, P;)};d the 
initial topology has the following subbase (IFe) 

ao = {J;-I(M); iel and MepJ . 

In fact, jf a denotes the topology with the subbase ao then 
(1) J;: (X,a) ..... (r;,p,) are continuous for all ie I since for each ie I and each 

Mep; we have J..-!(M)eao ::: x; 
(2) assuming that .f,. h: (I', b) ...... (Y;, p;) are continuous maps for all i E /, then 

h: (T, b) --+ lX, a) is also continuous. This follows easily from J Fe: for each 
1;- '(M) e (10 we have h-! (1;- '(M)) = (1;. h) - I (M) E 0 because /;. h is continuous. 

As a concrete example, considcr the two projections on the plane, 

and the Euclidean topology Cl on ~ (with respect to both 1'1:, and 1'1: 2), The subbase CXo 
consists of all the sets 

(MEQ); 

hence, the initial topology a is the Euclidcan topology or the plane (see I Fe). 

3. Proposit ion . Lct 

be a singleton source such that f is a bijection. A structure Il is initial iff 

is an isomorphism. 
Hence, each initially complete construct is transportable. 

Proof: (1) Ira. is initial, thenfis a morphism, and since 

id, ~ IF' (Y,PI - (Y,PI 

is a morphism, so is f - L: (Y, /1) --+ (X, Il). Thus, f is an isomorphism. 
(2) If f is an isomorphism and if f: h: (T. oj ...... (Y, fi) is a morphism\ then 

h ~r' .(J.hl' (T,bl_(X,'1 

is also a morphism. 

Observati on. If (l is an initial structure of a source tx £>,. Pi, t/;)};.I then (l is 
the coarsest structure on X for which all I., i E I, are morphisms. 
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Proof. Let Ii be a struct ure such that !; :{X,a) ..... {Y;,PI) a re morphisms (ie l ). 
Since all idx ./;: {X,a) ..... (t;,p,l arc morphisms, ie/, also 

, 

ida': (X,a) ___ (X.a) 

is a morphism. In olher words, oX is coarser than,t. 

Remark. The obsen-alion above simplifies the task of determining whether 
an initial structure exists, and of finding it: it suffices to inspect all structures on X 
for which each Ii is a morphism. 

Example: initial ordering. Let 

{X~(Y"~,)}", 
be a source in Pos; docs it have an ini tial o rdering? 

If ;;:;: happens 10 be the initial ordering then il must be coa~r than each o rdering 
;:;;. on X for which a l1 J. are order-preserving, more precisely. for which 

x;;:;: · x' implies f,{x) S,fl...x') (i e I) for all x,x'eX. 

This condition suggests the following definition of :S: 

x:::; x' iff };(x)~! .fJx') (i e I) forall x,x'eX. 

This relation :::; is, obviously, rcnexive and t ransitive; it need not be antisymmelric, 
however. 

A. If::i is anl isymmetric, then it is the initial o rdering. 
Proo f: let (T, ;;;: ) be a posel and let h : T ..... X be a map such that a l1 f,. h:(T, S I ..... 
..... (f/, S/) arc order-preserving. Then r ~ r' implies j,{h(/)) $, f,{II(I')) (ie I ), hence, 
11(1);:j: 11(1'). Therefore, h: (T. S) ..... (X,~) is order-preserving. 

Il If =i is not antisymmetric. then the initial ordering docs not exist . Proof: il 
suffices to show that if $ is the inili:ll ordering then < is a coarser relution than :::; 
(thu~, if :::; is not :mtisymmetric, then ~ is a lso not amisymmctric, which is a con­
tradiction). Given x o, x~ e X with Xo ;:;; Xo we want to ~how that Xo :::Ii x~. Define 
an ordering ~. on X as follows : 

x S · x' if either x "" x' or if x :::: Xo and x' = Xo 

(for all x. x ' e Xl. Since each 

J. ... id x J.:(X.::'5·J ..... P~'SI). ie/, 

is clearly order-preserving, also idx: (X, :::; .) ...... (X, <) is order-preserving, i.e., 

Xo S '-':0' 
Observation. The above relat ion :::; is antisymmelric iff the source .~t"I'(1rares 

poims in the sen sc that given x, x' e X then 

(' ) x """ x' implies fAx) F ;;(x') for some ie/. 

, 

, 

, " 
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If the source separates points and if x, x' e X are points such that x -< ,,\' as well 
as x' -< x, Ihen for each i e I we have /.{x) :..;; I f;(xl as well as /,{x'J s; /;(x); hence, 

/,{.t) = J.(x'~ This implies x :: x'. . .. . 
Conversely. if thc source docs not separate points-Ihcn there eXiSt distinct pomts 

x. x' E X such that .(,{x) "" /;(x') for all i E I . Then x ::; x' and x' -< x and therefore. 

the relation:s is nOI anlisymmetric. 

4. Definition. A construct is said to be initially mOllO-complete if each source 

{X l.!. (1';, P,)} id separa t i ng points (i.e., f utrilling (.) aboye) has an initial structure. 

Exampl es. (i) Pos is initially mono-complete. 
(i i) 10P2 (the construct of Hausdorff spaces) is ini tially mono-complete. Let 

{X!!' (~. II;)}"" be a source (If topological T:-spaces which separates poims. Then 
the ioitial topology (l is also T1 : given d istinct points X, x'E X there exists i e l 

with f.{x) F f~x'); let V, I' be disjo int open sets (in fl.) with fl...x )e V and f,{x' )e V. 
Then J,- 'tV) and}; - '( V) are disjoint open sets(in 0:), and x e}; - ' ( V) and y e J. - '( V). 

(iii) Met is not initially mono-complete. 
For example, define metrics 11:. on X = {O. t} by 

no: 1,2,3, .... 

Then the source 

{X id .. (X,a~)}:'_ 1 

docs not have an in itial metric. In fact. there is no metric:x on X such tha t id:t: (X .:x) ..... 
__ (X,a. ) is a cont ract ion for all n. (\Vecan choose" > «(0, I}.) 

(iv) For each number k > 0 the construct /Ifell (of metric spaces or diameter :Sk) 

is initially mono-complete. Let {x.6. (Y;. P;)} i<1 be a source ~eparating points. 

Define a metric on X as follows: 

o("x') ~ W,(!'(xl!.(x'il foral! x.x'eX. 
,,' 

Since P'(J~x).h(x' )) S k for all i . the supremum exists. and :x(x,x') < k ; it is also 
easy 10 see Ihat (l is indeed a metric. Each h is obviously a contraction. Lei (T, h) be 
a metric space {of d iameter S k~ and let h: T ..... X be a map such Ihat each };. h, 

i E: I , is a contraction. Thus, ror all I," e T we ha"e 

for each iel, 

which implies 

o(h(t), h(t'li = W.lfih(tll,J,(h(t'1il ~ J(t, <,), 
i. t 

Hence, h is a contraction. 
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5. Observation. Let (X , a) be an object. A subset 
(X, al iff the singleton source: oflhe inclusion map ( IFI) 

(Y-,-{X,,)} 

has an initial structure. 

y 5i: X is a subobjcct of 

• 

Bot h the initial structure 1;1' and the st ructure a~ which maki:::s Ya subobjecl are 
defined by the same condition: fOT tilch object (T,b ) and each map h: T __ Y, 
v, h: (T,,;) ..... (X, rx) is a morphism ilT h: (T. 0) ..... (Y, P) is a morphism for P = rx' 
orp_rx", 

Co roll ary. Each initially mono-complete construct is hereditary. 
Conversely. the a lgebraic constructs are no t initially mono-complete because 

they are nOI hereditary. 

6. Sp Ii tl i n g of poi n Is. In some constructs we can obtain new objects from the 
given ones by splitting Iheir points (and their corresponding structure~ For example, 
by splitting points x in a graph we obtain new points Xi' i e I(x); an arrow leads 
from xl lo YJ iIT in the original graph an arrow leads from x to y. Example : 

• 

Or, in a topological space, we can split points and then consider the topology in 
... hich Ihe open sets are precisely 1hc ,cIS 0, where U is op~n in I he origll1:ll tC\rology 
and 0 = {XI; x e V}. For example, by splitling the singleton ~pacc we obta in (all) 
indiscrete spaces. 

Note that wben splill ing the points of a set X we obtain a set g together with 
a natural surjective map j: g _ X defined by f(x.) = x. (Conversely, for each 
surjective map f : X ..... X we caD consider g as the resuh of a splitling of points 
of X : each point x e X is split into the points in r I (X~) Both the split graph and the 
splil topology are just the init ial structures with respect 10 j - Ihis can be easily 
derived from the examples in lA I and 2A2. 

D efinitio n . A splitting of an object (X,rx) is an object (X,a:) for which there 
exists a surjective morphism f: g _ X with a: the initial struct ure of the source 
{g.£. (X, oli. 

A construct is said to h.wt' splilling if each singleton source {X..£. {X , rxn with 
f surjective has an initial5lructure. 

, 
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Proposi ti on. A construct is initially complete iff it has spli tting and is inil13l1) 

mono-complcte. • 

Proof. It is OUf task to show that for each initially mono-complete construct 
with splitting and c:ar.:h i>Ourcc 

{X.e.(Y"P,il., 
an initial structure exists. (Its uniqueness then follows from the fact thaI an init ially 
mono-complete construct is transportable, sec Remark 2A3.) 

Define an equivalence ..." on X as follows: given x, x' E X , then 

x - x' iff fix) = J:{x') forall ie l , 

Denote by <p: X .... XI- the canonical map. For each ie / we can define J;': XI- ..... 
... Ii by 

/;'{[x])=JJ..x) rorall xe X , 

i.e., by 
i;'.!{J=fr (iel). 

The source 
f' {x /- -'-(Y,.P,)}., 

separates points : if [x). [x'] are distinct equivalence-classes then x + x', i.e., the~e 
exists i e I with f~x) "" fAx') or, in other words. /;'([x]) "" .1;'([ x']). Hence, th IS 
source has an initial structure fL l et i be the initial structure (the splitting) of the 

single ton source IX ..!. (XI-,rx)}. Then ti is initial with respect to the original 

source: 
(l) All /; ..: fro . qJ: (X. til ..... (Y" ,8;) are rnorphisms; 
(2) Given an objcct (T.';) and a map II: T ..... X such that all 

f,.h =/,'.(., h) , (T,,) ~(~,P,) (ie/) 

arc morphisms then, necessarily, 

is a morphism. This, in lurn. implies that 

h '(T,,)~(X ,.) 

is a morphism. o 
Exa mples. (i) The construct PmI" of pseudometric' spaces. A pseur/omrfrir 

on a set X is a map a: X ..... [0, + x: ) which fulfi ls the follo .... ~ng two conJition~ : 

Il(x, y) .., Il(Y, x) for all x, y EX; 
tr:(x, y) + a(y, z) ~ rx(x, z) for all x, y, eX, , 

• 

(The case of metric is extended to allow l:{x, y) - 0 when x "" y.) 

• 
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• 
The o bjects of Pmt!l are psc:udomctric spaces. Le., pairs (X . I'l) where X is a set and I'J. 

is a pscudomclric. :rhe morphisms from (X, a:) to (Y. ft) afC contractions, i .e. ~ maps 
f: X -.. Y such that 

flt[(» [(x)) s o(x. x ) forall x.x'eX. 

The construct Pml't has splitting. Let (X, al be a pseudometric space. By splitting 
the points x E X we obtain new polo{s X; and we define a pseudomelric Ii by 

a{x1. y) = x(x, y). 

More precisely, the initial pseudomcl ric of a source {X L.(X,::r:)} is defined by 

<i{x. x') • 0([(» [(x')) forall x,x'eX. 

(ii) The construct Pme'1' k E (0, + 00). o f pseudomelric s paces of d iameter '5. k. 
This is the full subeonstruct of Pme, O\'er spaces (X . x) with o:(x, x') ~ k for all 
x, x' EX. This construct is initially complete. Indeed, Pnm. has obviously splitting. 

And it is initially mono-complete - the proof is the same as for Mett above. 

7. P roposition. (Initial struct urcs arc transitive.) Let 

s = {X ~ P,;. PI)}loI 

be a sourcc. and for each f let PI be an initial structure of a source 

s; = {l; "J ,(ZII' l'ij)} .. J,' 

Thcn a slfucture III on the set X is initial with respect to S iff it is initial with respect 
to the "composite" source 

S ~{X """ ,(Z y)) I}' j } jol 

"" 
x 

s 
• • • 

·P roof. I. Let III be initial with respect to S. Then each h: (X. III) --- (Y;'#I) is 

a morphism; hence, each glj ./!: (X .111) ...... (ZIJ' Y;i) is a morphi sm. Further. if (T. 0) 
is an object and f; T --- X is a mapping such tha t 

9iJ .Ji.h: (T,o) ..... (ZIj'Yij) 

I 
• 

, 

• 
I. 

I , 
• 

I 

! 

I 

I 

I 
I 

I 
I 
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is a morphism for each i € I a nd j E l b then 

is a morphism fo r each i e I . Hence, 

/" (T. ') _ (X, ,) 

is a morphism. 
2 Let a be initial with respect to S. For each i e J, all gl)' /;: (X. tt) ..... (ZII' 1';j) 

are mo rphisms U E J I); hence, h: (X, a) ..... (~, P.) is a morphism. Further, if (T, 6) 
is an o bject and h:T-X is a mapping such that all /;. h :(T.o)-lY,~P,) a~ 
morphism then al\ 

9'j' jj. h: (T, 0) -. (z;)' l'lJ) 

are also morphisms. This implies that h: (T,o) ---- lX,~) is a morphism. 0 

8. Concludi n g re mark. By constructing the initial structures of sources, we 

obtain an important way of getting ncw objects from old. In some constructs this 
is always possible; in some it is possible for all sourccs separating points. And in 

the remaining constructs (notably. allthosc which are not hereditary) evcn simple 
sources can fail to have init ial structures. Nevertheless, ini tia l st ructures do appear 

e,'en in these constructs for some important special sources. This will be seen in 

the fo llowing sect ion. 

Exercises 2A 

a. Ini t i a l s tr uctu res in a subconstr ucl. (I) l et!T be a fu ll su bconstruct o f 

a construct [1'. Let {X L!. (1-;, fil)} be a sourct in 9". If CI is the initial structure of 

th is souree in the construct Y' and if :IE .. r [x]. ver ify that '1 is initial in Y . too. 

(2) Consider the lattice of I Gc(2~ Thc subposet :0. a J' a l' q is e\ idellt!y a latt ice. 
too; nevertheless, il is not a sublultice (consider oJ v (/2)' Conclude that (1) does 

not hold for non-full subconstruets. 

b. Inilial alg ebra ic stru c tur es . 
(I) Prove that the following constructs of parlial algebras: 

Gl"dp• J\fm. p• Latp 

an: initially mono-complete. 
(2) Prove that the add iti ve group o f complex numbers (K + ,0) is initial wi th 

respect to the SOUIU: 

{K!4(R.+.O)}J" u' 

where for each x + ij' E !K , 

Pl{X + iy) ""' x and Pl(X + iy) ". J'. 
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(3) Prove the analogous statement about the ring of complex numbers (in Rng ). 
Why does the corresponding statement fai l in Fld? 

(4) Prove that each finite-dimensional vector ~ ... acc is the initial object of a source 
of the following type: 

{X~(R, +'·))1-1 .....• . 

c. Splitting of morphism s. Let (X, Ii) be a splitting of an object (X,a) with 
rcspt:Ct to a surjective map f: ~ ..... X. Let (1', P) be a splining of ( Y, PI with respect 
to g: f ..... Y. By the splining ora morphism h: (X, IX) .... (f,P) is meant an arbitrary 
map h: g .... f such that g.1i '"' h.j. 

(1) Prove that Ii: (f,Il) ..... (f,P) is a morphism. 
(2) Prove that each morphism in the construct PrQ$ is a splitting of some morphism 

in Pos. 

d . A s p litti ng cove r o f a construct Y is a construct Y'" such that (1) Y · has 
spli tting and (2) !I' is a full subconstruct of !I'" and (3) eacb object in y o is a split­
ting of an object in Y, and each morphism in 1/* is a splitting of a morphism in 1/. 

(I) Prove that Pros is a splitting cover of POl. 
(2) Prove that Top is a splitting cover of Topo' 

H int: for each topological space (X,a) define the following equivalence - on X: 

x -7.' irr xefx'f and x'eTXI. 
Then the quotient space is To and (X.Il) is its splitt ing. 

(3) Prove th~ t Pmel is a splining cover of Met. 
(4) Prove that two splitting CO~'ers of a transponablc construct must be concretely 

isomorphic. 
(5) Pro\'e that each t ransportable conSlruC! !/ has a splitting cover : the objects 

are (X, ~,Il~ where X is a set, _ isan equivalence relation on X and ae.Y'[X/- ]; 
the morphisms from (X, -, a) to (y, :::::, p) are the splittings of morphisms 

h, IXI_,'I ~IYI~,PI in 9'. 

28, Cart~ian Products 

I. Various structures on !>ets X I and Xl arc naturally transferred to the Cartesian 
product X I )( X l' Let us illustrate this on the case of orderings. 

Given posets (X I' S I ) and (X l' ~ l~ define a n onkring of the Cartesian product 
-X I X Xl as follows: 

(X I,X2) ;S; (YI'Y l) ifTboth Xl ~JYI and X 2 S 1Yl ' 

This ordering is initial with respect to the source of projcctions, 

{X I )( X}::. (X i' SI)};.I.l' 

Initial and Finl ' Structure'! 

Recall that the projections arc defined as folloW5: 

Qearly. 

l't J : XI x X 2 .... X.; 
11:1: Xl x Xl --0 Xl; 

1t.(x.,x2 ) .. Xl 

;!ll(Xl>X1)-X1 ' 

1t1 : (Xj)( Xl,:S)-(XI'~I) 

is order-preserving : for all (xl'x1)'(Y\'Y2)EX j )( Xl 
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(X.,x1):S(Y"Yz) implies 1t1(x\,X1) = XI ~IYI =ltl(YI'YZ)' 

Analogously. It} is order-preserving. Nexl, lei (T,~) be a poset and let h: T ..... 
..... X I )( Xl be a map such that 

It I ·h:(T,5)--{X l':Sl) and 1t2.h : (T,5)--.(X 1' :S1) 

are order-preserving. Then 

h: (T,~)"",(X, x X1,:S ) 

is order-preserving. Gh'en t, t ' e T with t ~ t' we put hIt) - (.'( I ' Xl) and h(I') == 
- (X'I' x;). Since It l . h is order-preserving, we have 

XI = It"l(X I• Xl) = Itl . I~I) :S I n1 . h(l') - 1t1(x'WX;) = X'I 

and, similarly, 

hence, 

, 
• 

~. Definition. The Conesinn producl of objects (Xj>a:d and (Xl,a
l

) IS the 
object (X I x X l ' :X), where Il is the initial structure of the following SOurce 

{XI x Xl~(Xi, llli)}I_I:' 

Examp les. 

(i) Top : the Cartesian poduct of two topological spaces (X i' ~Il and (Xl' all 
is the space on X I )( Xl with the following subbase 

a., ={ UI )( U1;Ul ea l and U1EIll1}. 

In fact, by example 2A2(ii~ a subbase for the topology OD 

, 

Now, IXc !iii ao; and, on the other hand, each set in lXo is the in tersection of two Sets 
in :io> 
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Hence 0: and 0:' are two subbascs of the same topology. ," " For example, the product of two lines is the plane. 
(ii) Met : the Cartesian product of two metric spaces (X" :;(1) and (X 1, '1 2) is the 

set X I x X 2 with the following metric: 

o:((x J> x 2); (Yl' yz)) = max {:;(I(X 1'),,); o:l>;;2' Y2)} . 

It is easy to check that 0: is a metric. Furthermore: 
(1) The projection "lt l : (X I X Xl' 0:) .... (X 1,0:1) is a contraction, since 

:;.:((X I , X2): (YI'YZ)) > o:l>:I'YI) = il l (1l,(X p xz);"lt I(YP}'2))' 

Similarly,"lt2 is a contraction. 
(2) Let (T, il) be a mctric space and let h: T .... X I )( X 2 be a map such that 

both 11, . hand lt l . h are contractions. Then h is also a contraction: given t, t' E T 
then 

:l:1(lt, ' Il{t); TIl' W)} ~ il(t, t'), 

because It,, II is a contraction, and 

(l2(lt2, Il(t); lt2 . h(l'}} .:-::; 8(1, t'}, 

because lT2· h is a contraction, Thus, l., 

o:(h(I),h(t')} = max {il,(lT l . h(I).lt l1(t')); o:ilt~. h(I): 1t"l' h{l'))} < b(t, 1'). 

For cxample, if (X l' 0:,) = (X 2' '12) = (R. Q), thc line with the Euclidean 
thcn the product is the plane R2 with the following metric 

forall p,q€ Rl
. 

mctric, 

(iii) Crd: the Cartesian product of two groupoids (X " 0) and (X 2' .) is the groupoid 
(X, x X2 , · ), where 

(x" x2) , (.1'1' Y2) = (XI ° Yl'x 2 • yz)· 

(1) The projcction It,: (X I X X 2' .) .... (X l' 0) IS a homomorphism, since for 
all (x"x2) and (YI'J"l) in X, x Xl wchave 

Tlj((x" x2), (YI' Yl)} = ltlXI 0 Yi' Xl "Y2) 
=x ,oy, 
= It'((XI'Xz))"lT,((YI,h})· 

Similarly, ltl is a homomorphism. 
(2) If(T, +) is a groupoid and It: T ..... XI x Xl is a map such that TI,.h and 

• lT2. h are homomorphisms, then also h is a homomorphism: given I, r' € T put 

Then 

., 

because "It,. h is a homomorphism ; analogously, 

Tl 2·h(t + I') = X2 +Y2-

Thcrefore, 

h(1 + t'J = (ltl . h{t + I'). "ltz . 11(1 + t')) 
= (XI 0 Yjox1 • Y2) 
= (XI,Xl)·(Y,·yz) 
~ '('i'Wi· 
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(iv) Sgr, A/Oil. Grp: as in the case of groupoids, the operations arc dcfincd "cooc­
dinate-wisc". Thus, given groups (X J> 0. ell and (X z, .' ez). their Caflesian product 
is the group (X I X X 2' . , (ei' e2)), where· is the operation of the preceding cxample. 

3. More generally, we define the Cartesian product of a collection of objects. 
Recall that the Cartesian product of a family of ~ets {Xi; i E l} is the sct 

!lX, 
i.1 

of all collections x = {Xj; i E ! j, where Xi € X,. for each i € I, Thus, 

XI xXl = n XI> 
;~Il.l) 

XI X X 2 X X3 = n X j ..... 

"[I,2.l) 

H J '"" N is the sct of all natural numbers then 

nX;=Xo x Xl x X 2 X Xl'" ", 
is the set of all sequcnces the nth member of which is in X •. 

• 

For eaeh io € I we have the ioth projection from the Cartesian product X = 

= nXi into Xi" dermed as follows 

for each X€X. 

4. Definiti o n. The Carresian product of objects (Xi,il,.), i€ I, is the object (X , 0:), 
where 

and 0: is an initial strm:turc of the source of projections 

Rcmarks. (i) [feach collection of objccts has a Cartesian product, we say that 
thc construct has Cartesian producrs. 

(ii) The Cartesian product of objects Ai' i E I, is also denoted by nA
j
• 

"' 



• 
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Examp les. (i) Pos : given poscts (XI' ~,), i£O l , their Cartesian product is the 

pose! tnx" S~ where 

(x.),e n XJ. 

(ii) G,d: given groupoids (X" cl~ i E I, thei r Cartesian product is the groupoid 
mX , .. ), where 

x . y= {x/o,Y,};.,/ (x,ye n X,l. 

(iii) Top and Tope : the Cartesian product of topological spaces (XI,IXI~ ie l , 

is the space on X = rrX;. the subbase of which is 

olo" {ni '(U): le I and UElXI)' 

It is a non· trivial topological theorem thai Tope has Cartesian products. 

T ycho n ofr th eorem: the Cartesian product of compact spaces is compact. 
Clearly; the product of To spaces is To; analogously with Tp Tl . Hence, the constructs 

Topo, TOP l' Top2' Tope and Comp 

have Cartesian products (see 2Aa). 

Observa t ion. Each initially mono-complete construct has Cartesian products. 

Indeed, the source of projections 

{X ..!'. Xlt." where X = nX(. 
separates points: if X = {x;} and Y'"" {YI} a re distinct then there exists i e I with 
x, #- Yi - hence, 

Thu s, 

Gra, Top. I}(J.~. Met. 

have Cartesian products. 
On the o ther hand, algebraic constructs have Cartesian products though they 

are no t initia lly mono-compJc:tc; the operat ions are defined coordinate-wise. We 
have seen this in Grd; analogously with 

Sgr, Mon, Grp, Rng . 

For example, given rings . 
• • 

thei r Cartesian prod uct is the ring 

(X. +.0 •• •• ). 

, 

I 
I 

where X = nX, and ., 
(x + y), - XI +IYI 

(x ' yl l = X. ' IYI 

O-{O,}; , ~ {.,}. 

Initial and Final SlruClures 

for all X,yfiX and iel ; 

Let us mention some examples where Cartesian products fail. 
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Ex a mples. (iv) Met : let (Xi,ai), ie I , be metric spaces: for each X.yE X .. 
= n X1PUI 

atx,},) '" VIX,~XI.yJ· 

Then ox(x, y) is e ither a real number o r 00. If tr(x, y) is real fo r all X,)'E X, then (l is 
a metric. and (X.czl is the Cartesian product. This is proved as in 28 2{ii). If thcre 
exist xO, yO e X with rx(xo.yO) = 00 then the collection of metric spaces fa ils to 
have a Cartesian product. Let fJ be a metric such that (X, fJ) is the Cartesian product; 
then ll:; is a contraction, hence 

.B(xO. yO) Ii: IX~Xr, y?) 

This contradicts to 

foreach iE / . 

Vrx,{x? y?l = tr(xo, yO) = 00. 

"' (v) Hd: no two non-Iridal fields have a Cartesian product. Indeed, all morphisms 
in Fld are one-Io.:ooe or constant, but the projections a re nei ther. 

Note that, fo r two non-trivia l fields (X;. + /0 - " OJ. ell, I :z 1.2, the product in Rng, 

(Xl X X 2 ' +. ·,(01,02),(e"e1)) 

i~ not a field because the element~ (OJ, Xl)' Xl E Xl' fail to have a (multiplicat ive) 
JDwrsc. 

5. Th eorem. A fibre-sma ll construct i~ ini tially mono-complete iffi, has Carle­
sian products and is hereditary. 

P ro o f. Each initially mono-complete construct is hereditary (2A5) and has 
products (by the preceding observation). Convcrsc:lY,let 9' be a fibre-small, heredi tary 
construct with Cartesian products. For each source 

{X ~(XI,(ljl} "1 

which separa tes points we shall fi nd an ini tial structure. 
I. First, suppose J is a set (nol a large class). Then wc Can form the Cartesian 

product (Y, p) of the objects (XI' IX;), i E 1, and we define a map 

j: X ..... Y "" n X( 
by 

fIx) = {f,x)} roreach x e X , 

• 
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i.c .• by 
Pot 

./; = 1(;. f (i E n Since the wurce separa tes points. f is clearly one-Io-one. 

X' ~ i(X) s Y 

and denote by 

/': x ..... X' 

the bijection which is a re~trictjon of f. Then 

• • 

where v: X' -0 Y is the inclusion map. Since the const ruct 9' is hereditary, a ~ tructure 

II' on X' exists such that (X',Il') is a subobjecl of (l'. P); since!/' is fib re-small (hence. 
transportable). [here exists a structure II on X such thai I: (X ,a) ..... (X ', :l) is an 
isomorphism. Let us check that !l is ini tia l. 

(1) Each /;: (X,:I:) _ (X,~IlJ IE I , is a morphism since it is composed of three 
morpllisms: 

fr:z l'.i'/= tt;.v.!, for each ; e / . 

(2) Let (T, h) be an object and let II: T ..... X be a map such that eac h 

i E I , 

is a morphism. By the definit ion of Cartesian product, 

,.['.1" (T,') _ (Y,P) 

is a morphism. By the definition of subobjcct, 

is a morphism. I knee, 

is a morphism. 

II. If I is a proper class, we shall find a subset 105 1 such that the restr icted 
sou rce has the same ini ti:!1 structure as the original one. Note that all equil'alences 
on the sct X form a sct. Since the construct !/' is fibre·small, a ll objccts (X / .... , 7), 
where .... is an arbit rary equi'·alence. also for m a SCI. 

For each i ~ I ICI ...... i be the kernel equivalence of /;; then fr can be faClored as 

f. = Vi·l.·flli, 
.where 

11'1: X ..... X/_I 
is the canonical morphism, 

, 

, 
I 

, 

r 

I 

• 

I 

, 

, 
) 

, 

~ 
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is a bijection, aDd 

vi:fJX) ..... X I 

is the inclusion map. Lei (fAX). 2;) be a suhobject of {Xu a.) (recallth'at fI' is heredi­
tary), and let }'/ be a st ructure on Xl_. such that 

• 

is an isomorphism. l3y the fibre·smallness of.9", there exists a subset lo ::iii J such that 

(.) for each i e I we can find j E 10 with -, equal to .... J and Yj equal to "lr 

The restricted source 

{x I J .(X ./'Q)}Jolo 

separates points : Gi~'en distinct x, x' E X there exislS iE J wilh J.{x) #- J.{x'), i.e., 
with x + x': find j E J 0 as in (.), Ihen I)x) oF IJ..;o:'}. By I .. Ihis restricted source 
has an initial structure 11. 

To prove that a is initial with respect to the original source, it clearly suffices to 
prove that /,: (X , a) _ (XI,a l) is a morphism for each ie I . Find j as in (*). Sinu: 
!j: (X. 'X) --> (X J' (lJ) is a morphism and !j = vi '~' cP i' clearly 

1; .• " IX,")~(fjX\"I) 
is also a morphism : hence. 

I/'J = ~- I . (~. I/'J (X,:xl ...... (Xl ...... ./' r) 
is a morphism. In ot her words. 

•• ' (X,,)-(X!-,.r.) 

is a morphism. This implies thai 

/; = fIIl.k VI '" (X,~) ..... (Xi, a i ) 

is a morphism. 0 

6. Obser va t io n. The Cartesian product A = nAI has the following un il'l'rslli -, 
properly: the project ions form a collecl ion of morphisms 

i e I , 

such that for each collection of morphisms 

i e I , 

there cxists a unique morphism 

f: B ...... A 
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wi th 

f,=1ri.f for each ie [. 

, 
B • A 

~, ~ 
'\.. ~ ••• ; <, 

A; 

Indeed, if Ai = (X j. 011) and B = (Y, P) then f is defined by 

f(y) = {fb)};., for each ye Y . 

Th is is the unique map f: y ..... nXj wilh fi = 1t/./ {ie 1\, And f is a morphism 
because TIl'! = fi: B _ AI are morphisms for all if; I . 

7. We conclude this section by a proposition which shows that a lo t of constructs. 
though not hereditary, admit the formation of subobjects on all sets defined by 
the "coincidence" of two morphisms. 

Definition. Let 

be two morphisms wilh common domain nnd common range. By the equoli~er of 
f and 9 we mean a subobjccl of (X, a) on the set 

E ~ (XEX;!(X) ~ g(x)). 

Rem ar k. Let (E. O!') be the equa lizer, and let 

,,(E. a') - (X •• ) 

be the inclusion morphism. This morphism has the following unh'ersal properly: 
(i) f. rJ =g . I); 

• 

(ii) for each morphism h: (T, 0) ~ (X. (1;) with 

f·h=g.h. 

there exists a unique morphism h': (T, 0) ..... (E.:l') such tha t 

h = v.h'. 
, 

IE,..:.1 --"- •• I x,otI =~:: IY,~) , 

IT,15'I 

, 
• 

, 

, 

, 

• 

, 

, 
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Propos it ion. Let f/ be a Iransportable construct with intersections (l F4) and 
with Cartesian products of pairs of objects. Thcn for arbitrary morphisms 

the equalizer exists. 

P ro of. Let (X )( Y,),) be the product of (X, Il) and (y, p); the projections will be 
denoted by It" and Itr. 

1. The subset 

Mf = {(x,f(x));xeX} 50 X )( Y 

is a subobject of (X x Y, 'I). Indeed, define a morpnism 

;, (X •• ) _ (X •• ) x (f.P) 

by I(x) = (x,f(x)) for all xe X; i.e., by 

1t".l ", id T and Tf ,,,l=f· 

(Since idx and fare morphisms, so is f.J Since J is clearly one-to-one and 

we have 
I=v.jo, 

where v: M f .... X X Y is the inclusion map and 10 is a bijcction. Denote by Ii the 
st ructure transported by 10' i.e., such that 10: (X, Il) .... (M t' Ii) is an isomorphism. 
We shall verify that (M f' Ii) is a subobject of (X x Y, y). 

, 
IX,") :.:::;=-IX _v,rl 

" 

(I) Since J "" v. 10 and since 1 and 10- 1 aTC morphisms, 

v =1.10- 1
: (Mf,iX) ..... (X x Y,y) 

is also a morphism. 
(2) Note that 
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[because for each (x,f(x)) EMf ..... e have fo' 1!x' t{x,f(x)) = fo{x} = (x,f{x))]. Let 
(T, (i) be an object and let h: T ..... M f be a map such that 

v.h: (T,b) ____ (X x Y,y) 

is a morphism. Then 

h = fo ·1[x· t'.h: (T,b) ..... V,fI, ii) 

is also a morphism since it is composed of three morphisms: Jo. 11:x and v. h. 
II. The subset 

M.= {(x,g(x));X€X} s;: X X Y 

is a subobject - the proof is analogous. HCfH:C, the intersection 

M! n M~ = {(x,f(x)); X E E} 
• 

is a subobjcct, too. Dcnote by Yo the corresponding structure and by 

"0: (MrnM"yo) ...... (X x Y,;,') 

the inclusion morphism. 
Ill. We can rcstrict J to a bijection 

J: E -o Mf n M,. 

Lct 170 be the structure transported by], i.c., such that 

J: (E, 170) ..... (M f n M" Yo) 

is an i~omorphism. We shall verify that (E, (7 0 ) is a subobjcct of (X, a). Dcnotc by 
w: E ..... X the inclusion map. 

w 

First, observe that 

W = 1tx . Vo .J: E ..... X 

, 

, 

• 

, 

, 

, 

(I) The first of these equalities implies that 

w: (E,IXO) ..... (X,ctJ 

is a morphism. 
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(2) Let (T, ,;) be an object and let h: T ..... E be a map such that If. h: (T, ill ---0 

..... (X, 0:) is a morphism. Then both 
• 

1'1x'(vo./. 11) =w.h : (T,o) ..... (X,Il) 

1l: y. (vo.f. h) = f. 1'1::. VI).f . h = f. (w. h) : (T, 0) ---> (Y, PJ 
are morphisms. This proves that 

vo.J.h: (T,o) ..... (X x Y,y) 

is a morphism. Since Vo is the inclusion of a subobject, J. h: (T,o) -0 (M r n M" }'o) 

is also a morphism. Hence, 

is a morphism. D 
Examples. (i) Lat has cqualizers. Let /,g : (X. <) ..... (y, -<) be lattice homo­

morphisms. Then E is a sublattice of (X, <): Given x,, Xl E E then 

f(xi v x.J = fix,) v f{x 2 ) = g(x ,) v g{x 2 ) = g(x, v Xl), 

which means that x 1 v Xl E E; analogously, x, 1\ Xl E E. 
Analogously with other algebraic constructs (Grp, Veet, Rng). 
(ii) Comp has equalizers. Let f,g: (X,a) ...... (y,P) be continuous maps in Cump: 

then E is a subobject. i.e., a closed subset of (X, ell. Gh'en XE E then fIx) = g(x) 
(i.e., x E E): If not, choose disjoint open sets U, containing fIx), and V, containing 
g(x}. Since f-I(V) n g-I{V) is an open set, containing x but disjoint from E, this 
is a contradiction. 

Exercises 28 

a. Products 
(I) Lut: provc that the Cartesian product Il( X; . <;l of posets is a lattice whenever 

cach (X;. < J is a lattice; thc joins and mccts are formed coordinate-wise. Conclude 
that Lat has Cartesian products (2Aa). 

Does the same hold for C.~l and Cluf? 
(2) Veet : verify that the Cartesian product of vector spaces is a vector space with 

"coordinatc-wisc" operations . 
(3) Nor: verify that two normed vcctor spaccs have a Cartcsian product but lhat 

no infinite collcl:tioll of Ilon-trivialilormed VCl:tor spaccs has a Cartesian product. 
Hint: see Example 284(i,'); notc that since Ir 0 xl = Irlolxl. a norm is always un­
bounded. 
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h. Equalizers: (i) Grd: verify explicitly that for arbitrary homomorphisms 
J, g: (X, 0) ..... (Y,.) the sct E is a supgroupoid of (X, 0). Does the same hoig in Sgr 
and Grp? 

(ii) Clat: check the equalizers for complete lattice homomorphisms. 
(iii) Tope: find two morphisms which fail to have an equalizer. Hint: see Remark 

IF4; define j, g: X ..... X = {COl> co:} v {a, 1, 2, ... } by f(x) = g(x) for all 
xe{O,I,2, ... }.f(ool)= 001 =g(OOl) and g(ool) = 00 2 =1(002)' 

2C. Final Structures 

1. Final structures are defined "duaIiy" to the initial structures: tbe arrows lead 
from objects to a set. 

A sink in a construct 9' on a set X is a (possibly large) collection (l),Pi'f..), iel, 
where (l), Pi) are objects of !/' and f,: 1-; ---. X are maps. The following notation 
is used: 

II Y" P,)"'" Xi., ' 

Definit.cn. A final structure of a sink {(Y;,Pi)~ X}id is a structure et: on X 
such that 

(I) /;: (l), Pi) -> (X, et:) are morphisms for all j E I; 
(2) for each object (T,b) and each map h: X ..... T such that all h./;: (1(, PI) -. 

...... (T, il) are morphisms (i E n also h: (X, et:) ..... (T, 0) is a morphism. 

, . , 
(X,") 

Ih 
1T,5) 

Ex a m pi es. (i) Gra: the final structure of a sink {( l). Pi) ~ X} ;'1 is the following 
graph" on X: 

!I. = {(x, x') e X x X ; (x, x') = (J.{y), J,{y')) for some i E I and (y, .1") E pJ . 
Proof. 
(l) 1;: (l),,B;) ..... (X, (1) are compatible since (.I'. y'J E Pi implies {J,{y), j,{y')) E ct. 

(2) If(T, b) isa graph and 11: X _ T is a map such that all h.i;: ( yl,p;l ...... (T,b) 
• are compatible then h: (X. (1) _ (T, b) is also compatible. For each (x. x') E" we 

have (x, x') = (J,{y), f.V)), where I E I and (y, y') e Pi; then 

I~x), hlx')) ~ Ih . .!{y), h . .!{y')) E a 

since h. Ji is compatible. 

, 

! 
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A conuctc example: , 

iX,o<J 

(ii) Top : the final structure of a sink {(Y;,P,)!!.X} is the following topology a: 

forall leI. 

Proof: (1) f,: (Y;,PJ->{X,et:) are continuous, since Ueet: implies .t;-J(U)ep,; 
{2) If (T, b) is a topological space and h: X -. T is a map with each h. 11 con­

tinuous then f is also continuous. For each Ve b we have 

J,-' . Ih- '(VII ~ Ih ·f,t' (V)E p, 

Thus, h - I( V) e oc. 

forall iel. 

2. Remark. A construct is said to be finally compil'tf' if each sink has a un ique 
final structure. As in 2A3 it can be shown that a finally complete construct is trans­
portable. We are going to prove that initial and final c()mpletenes~ are equivalent 
properties. 

For each sink 

1(Y"P,)"",Xi" 
consider the (large) collection of all objects (T, b) and a1) maps h: X _ T such that 

each h.f..: (r;.,p;) -(T,b) isamorphism (iEI). 

This collection can be written with the use of indices, say, as (Ij, 0 i' II). j E J 

(where J is an auxiliary index dass; we assume that the triples (1j. 6 J' h) are painvise 
distinct). The source 

{X ~(1j.b)}joJ 

is called the dual source of the given sink. 

IYi,.BiJ tEl 

0.1/' .. 
x 

71"'. .. , 
(Ti'~jJ jd 
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Thus. the dual source ofa si nk {(l';,PI)i.!.X};'i is a source {X ~(Ti'Ii})Ij<J which 
is maximal with respect to the following propert ies: • 

(i) each hJ . fr: (1';. fl,) .... (T" hi) is" morphism (i E J and j E J); 
(ii) the triples (7j. hj. hi) are pairwise distinct. 

Analogously. the dual sink of a source {X~(1j.hj)J";'J is a sink {(Y;,Pi~X}ifj 
which is maximal wit h respect to (i) and 

(ii') the triples (1';, PI'};) are pairwise distinct. 

Duality The orem. A construct is initially complete iff it is finally complete. 

P roo f. Let 9' be initially complcte. and let 

{1Y;,P,)!!. x).., 

be its sink. We provc tbat the initial structure tI of the dual source 

{X ~ pj. h))},..} 

is final for the given sink. 

(I) For each ie l . 

/;,IY"P,)-IX,,) 

is a morphism. This follows from the initiality of '" since all h)./;: (Y;,PI) - (TpeS}) 
a rc morpbisms (j e J~ 

(2) Let (T, h) be an objcct and h: X .... T a map such that all II .J;: (Y;. PI) .... 
-> (T, 0) are morphisms (i e I). By the maximality of the dual source. there exists 

jeJ with (T,h, h) = (Ti'hi'hj~ This implies t hat h: (X, a) .... (T.b) is a morphism. 
The uniqueness ohhe final'Slruclure a. follows from the fact Ihat Y' is transportable 

(2A3): if 2 ' is <lnOlher final structure then. obviously, rJ. and (1' are equivalent and 
hence equal. 

Conversely Jet .Y be fi nally complete. Then each source has an initial structure: 

this is the final st ructure of the dual sink. And the uniqueness follows. again. from 
the fact tha t 9' is transportable. 0 

Exam p le: the construct Pros is init ia lly a nd hence also finally complete. For 
each sink of prcordercd sets 

(I Y" ~;)!!.X)"" 
let II be the final graph on X (:!:C~iJ). Lei .:-:;; be Ihe smallest preorder. containing iX. 

i.e .. for e~ch x. x' e X, 

(*) xSx' ilT x = x' or there are X "'to. IL , .... I. =x' in X 
with 'orJ.t l .' . llt 1 .... , I ._ .af •. 

Then ;i is the final preorder. Clearly, cach}; i5 order-preserving: J Sd implies 

J.{y) a:J.-(y"~ hence, fbI S J.{y') (for all i e I ; y,y' e Y~ If (T, =:;) is a preordered sct 
and h: X .... Y is a map ",j th h.i; order-preserving for a ll ie I, then II: (X ,a) .... 
..... (T. 5 ) is compatible; hence, h: (X. ii) --+ (T. =:;) is order-preserving - see {.). 

, 

t 

I 

I 

I 

I 

, 

I 

I 

I 
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Consider the following si nk, 

O.slandl~O: 

where each (1';. ;;:; i) is the poset ({O, I}, .:-:;;) with 

x 

T hen S is the rollowing relal io n : 

a ~ band b':-:;; c; e S b 

(while b i a). 

R em ark. The fOrmalion of quotient objects is a special case of final structures. 

For each object (X. a) and each equivalence _ on X consider the singleton sink 

((X,,)..!.X/-), 

Then an object (X I -.Ii) is final ilT it is the quotient object of (X. el) under the equiv­

alence -; this is similar to the situation with subobjects (2A5). 
Consequently, C\'ery init ially complcte construct is coheredita ry. 

3. A sink on a sct X can also be empty: the indexing class I is the empty set (so that 

no objcct (t;, {II) and no map J; are actually given~ A struCture a is final with reSpect 

to the empty sink iff fo r each object (T, oS) and each map h: X --+ T, 

h: (X,a:) ..... (T.OS) is amorphism. 

This is precisely the defin ition of a discrele object (I H4). 
Analogously, we can define an inJiscrell' object on a set X as an object (X. a) such 

that for each object (T. bJ every map h: T ..... X is a morphism. h: (T. h) ..... (X, a:). 
Equivalently: a: is the initial structure of the empty source on X.(This terminology is 
consistent with tha t for topologic-.lI spaces (IC6).) 

Observation. An initially complete construct has a discrele and an indiscrete 

object on each sct. 

Exa mp Ie: in Pmelk • the discrete psc:udometric on X is defined by 

(
k if x#oy 

a(x, y) ". o.r 
L x = Y 

for all 

the indiscrete one by :z{x,y) = 0 (x, ye X) . 

x,ye X ; 

" 
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Extrcises 2C 

• 
a . F i nal o rder. For which sinks in Pos does a fina l order exist? Hint : inspect 
the fina l preorder of the sink. 

b. Fina l pseudometric. (I) Let {(~,.8i).:S X} be a sink in Pmtt\. Given 
• 

x, x' in X, denote by et(x,x') the infimu m (i n [0, k]) of all the sums I .Bdy .. , y~) 

where 1o, ... , i.e I and y.,. y:" e ~~ fulfil the follow ing condition: 

Prove that ~ is the final pseudometrie of the given source. 
(2) Exhibit a sink in Pml'l which has no fi nal structure. 
(3) Exhi bit a sink in Mer, which has no fina l structure. 

.. , 

c. Th e Ira n 5i t i vit y of fi na 1 s t r ue l u res. Formulate and prove the statement 
analogous 10 2A 7. 

d . Di sjo i n I un io n. Let (X I' Cllh i e I, be objects with the sets X I pairwise disjoint; 
put X == UX ;. Then for eaeh i e l we have the inclusion map UI: Xl .... X. The 

"' disjoinl union of the given objects is the fin a l object of thc fo llowing sink: 

{( X l> Il,)..:!. X} io./· 

(I) Descri be d isjoint unions in PI'S, Top and JUn,. Hint: in 101ft, the distance of 
xe X, and Je X } iskwhcne\'er i#-j. 

(2) Show that d isjo int unions generally do no t exist in LDt. Comp and Met. 
(3) Verify that unary a lgebras ha ve d isjoint unions but that other algebraic 

constructs, e.g., Grp and Yeet. do not. 

20. Semifinal Objects' 

I. While initial completeness (or final completeness) is a rat hcr special property 
of constructs, we presenl a generalization which is encountered in a large number 
of current constructs; semifinal completeness. To explain the idea, we stan wit h 
si nks in Pas. 

For each sink of posets 

{(Y,. ~;) '"' X)., 

• we have the finai preorder ~. see Example 2C2. Let (X·, ~ -) be the antis),m­
metrization of (X , ~ ), i.e .. the posel which is the quoticnt of{X,::::) under the fol­
lowing equivalence (I Bb): 

x ..... x' iff both x ;S; x' and x':$; x (x,x'e X). 

Thcn the quotient map 

tp: X-X- - X/­
has the following properties: 

f\,SiiiJ ie:I 

'0,,1 / '" 
X l' • l){fv,::;: * ) 

h 

IT,:i] 
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(I) All ",.fj: (y;, :$;j)-(X· , :$; *) are order-preserving, i.e., morphisms in Po~ 
(i e l) ; 

(2) For each poset (T,;;::ii) and each map Ii: X _ T such that all h.k (y;, :$;;) _ 
..... (T, -<I arc order-preserving (i E I), there exists a unique o rder-preserving map 

with 

P roo r. (I) is clear. For (2) we use the fact thaI since ~ is the final prcorder, 
the map 

h, (X. 5) - (1; ';) 

is order-preserving. Then 

x-x' implies h(x) == h(x') for all x, x' E X 

(since x S; x' implies I~.\")::S lI(x·). x' ~x implies l1(x');;; J~:() and -< is antisym­
metr ic). Thus, we can define a map h*: X f - ...... T by 

h>([x]) = h(x} foreach xeX. 

This is the unique map with h = h· _ rp ; and h* is o rder-preserving sin~ [x] ~ . [x') 
implies x <x' and hence, h·{[x]) ::i h"'([ x'] ), for each x, x· eX. 

Rema rk . The poset (X ·, S; -) has two properties analogous 10 those defining 
a final object. TIle basic difference is the fact that the underlyi ng set is not the given 
set X but another set which is "connected" with X by a map X ...... X *; it is wilh 
respect to Ihis map that these properties are fo rmulated. 

We are going to generalize this conccpt now. 
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2. Defi n i tion. A semifinal objec! of a sink 

((~.P}''>X}", 
is an object (X*, a*) for which a map (called a connecting map) 

e: X -+ X* 

with the following properties exists: 
(I) all f..I;: (Y"PI) ..... (X·,a*) aremorphisms, ie/; 
(2) for each obje<:t (r,b) and each map h: X ..... r such that all 

__ (T, 0) are morphisms, i E I, there exists a unique morphism 

h·: (X*,a*) ..... (T, (j) 
with 

h , 

Remarks. (i) If X* = X and f. = idx then (X*, :x*) is the final object of the 
given sink: If all h. I; arc morphisms then also h is a morphism, since h = h- . E 

implies h = h*. Thus, "semifi nal" generalizes "final". 
(ii) Let (X·,a-) be a semifinal object with a connecting map ~: X ..... X-. For 

arbitrary morphisms h, k: (X*, :;t.) -+ (T, 0) 

h.E=k.E implies h=k. 

h 
X t • (X", ,,-"I =~k=:: (T,5"1 

This follows from the uniqueness of h· in the preceding definition. 

Example: Vector spaces. Let {( y;, +")!.:.X}"I be a sink of vector spaces, 
- Let (!?, + .. ) be a vector space with basis X. (For example. the vector space of all 

formal linear combinations r IX I + ... + r .x. where r I' ... , r. e lQ and X J>"" x. e X 
for some n = 0, 1, 2" ... ) Let M 0 s 5: denote the set of all 'vectors of the following 
type: 

, f.{y) + " f,{j) - f.b + ,'y') 

• 
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for i e I, y, y' e Y and r, r' E R. This set generates a subspace M ~ X, the linear 
span of Mo. Denote by 

(X', +. ') 

the quotient space of (X, +,.) under tP,. ." ~"5;l'ence .... M (see lGa). Note thaI", /d 

is the least congruence on (X, +.' \ Juch that 

(') r I;(y) + r' fAil .... p . y + r'y') . , 
holds for all ieI, y,yeY and r,r'e R. 

We claim that (X·, +, .) is the semifinal vector space with the connecting map 

e: X ..... X· 

dcfined as the restriction of the qUolient map rp: X ...... Xl- M = X*, i.e., 

foreach xeX. 

(1) All t..!;: (y;, +,.) -. (X*, +,.) an:: linear maps, iel. This follows immedi­
ately from (*). 

(2) Let (T, +,.) be a vector space and let h: X .... T be a map such that all 
h.I; are linear, iel. We extend h to.a linear map fi: (X, +,·) .... (T, +,.) by 

fi(rixi + ... + r.x.) = r t h(xl) + ... + r~h(x.) for each rixi + ... + r.x. e!? For 
each vector 

x = r j;{y) + r fb') ~ I;(ry + ri) 

in Mo we use the linearity of h.1; to verify that h(x) = 0: 

h(x) ~ 1h.f)(y) + ,(h ./;)Iy') - (h.J,)(,y + 'i) 
~ 1h . J,)(y) + ,(h. J,) (y') - (h . J,) i'Y + ,'i) 
= h .I;(r)' + r'y - ry ~ r'y) 
= O. 

Therefore, clearly, 

X E M implies ~{x) = o. 
In other words, 

x "','./ x' implies h(x) = h(x') roraU x,x'ex, 

Thus, we can define 

by 

h'([x]) ~ h(x) for each X€ X. 

In particular, 

h'([x]) ~ "Ix) roreach xeX, 

•• 
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hence, 
h+.f.=h. · 

The map h+ is linear because h+ . <p = Ji is linear. It is clear that h+ is the unique 
linear map with h = h+. E. 

3. Definition. A transportable construct IS said to be sernijillally complete if 
each sink has a semifinal object. 

Examples. (i) Vee! is !>emilinally complete. It can be similarly proved that 

other algebraic constructs are semilinaJly complete. Given a sink {(y;, P;)!..!. X}, 
we form the free algebra (X, &) generated by X. Then we lind the least congruence _ 
on X which "turns" aU J; into homomorphisms. The quotient object under this 

- congruence is the semifinal algebra. In this way we can prove that the constructs 

Mon, Sgr, Ab 

(which we know to have free objects) are semifinally complete. We shall see later 
that also other algebraic constructs, e.g., 

Grp. Lar. Rng 

are semifinally complete. 
(ii) Each initially complete construct (Gra, Top, Pros) is also semifinaJly complete: 

by 2C2, each sink has a final object. We prove now, that all initially mono-complete 
constructs (Pos, Met~ , TOP 2) are also semifinally complete. 

4. T heorem. Evcry initially mono-complete construct is semifinally complete. 

Proof. For each sink 

{(~,P,).4X}", 
considcr the dual source (2C2) 

{X ~ {1j, 0 ;)1..;';J . 

Denote by - the following equivalence on X: given x. x' E X, 

x - x' ifT hJ{x) = hAx') 

As in the proof of 2A6 we factor 

(j El)o, 

for each jeJ. 

where hj: X / - ...... T sends cach [x] to h )x). The source 

{Xl ~ !i. (Tj> b}}j<J 

separates points and hence, it has an initial structure I!. We claim that · 

(X/-,a) 

, 
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is the semifinal object of the given sink with respect to the quotient map 

<p: X -> X /- . 

h' , 

81 

(I) Each <p. J;: (Y" Pi) ...... (X / -, (X) is a morphism, i E I. To prove this it suffices 
to show tbat given iEJ, then al\ hj.(<p.J;l: (lI'pi) ..... (1j'O) are morphisms,jeJ. 
This follows from 

since the triple (1j, OJ, hA belongs to the dual source. 
(2) Let (T,o) be an object and h: X ...... T a map such that h .I;: (l';.p,) ..... (T,o) 

is a morphism for each i e 1. Then there exists j e J with (T, 0, h) = (1). OJ' h), and 

ht = hi: (Xl -, Il) --> (T, 0) 

is a morphism with 

ht.<p = h. 

This morphism is unique simply because <p is a surjection (thus, h. <p = k. <p 
h ~ ')o, 

implies 

o 
Remark. We have seen in the course of the preceding proof that initially mono­

complete constructs have the following property: the semifinal object of each sink 
on X can be found on a quotient set X/_ (with the quotient map <p: X --> X/­
as the connecting map). This fact simplifies considerably the task of finding the 
scmifinal object of a given sink. 

The mentioned property actually charactcrizcs initially mono-complete constructs, 
see Exercise c. below. 

Ex am p Ie: the semilinal partial groupoids. Let {(Yr oJ!"!' X} .. r be a sink in Grd
p

• 

Sincc this construct is initially mono-complete, a semifinal partial groupoid on 
a quotient sel of X can be found. Consider first an arbitrary equi ... ·alence _ on X 
and an arbitrary partial operation • on X/-. If each rp. J; is a homomorphism, 
we see that 

y'" y' ~ y impli" [f,(y')] ' [f,(y")] ~ [J,{y)] 
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for all i E I and y. y', y~ in y~ Thus, gillen j E J and z, z', ZW € Yj with 

the following holds: 

(.) fM - f~") "d fl,y") - fV) imply 1.0') - fJ' )· 

.'0.-_­- ,- - . , 

Thus, a candidate for the semifinal groupoid is determined as follows: let ~ be the 
least equivalence on X with the property (*). It is easy to see that the meet of all 
equivalences satisfying (*) also slu isfies it. Define an operation. on XI ~ as follows: 

[x'] , [x"] - x iff x' _ /'jy'): 

for some j E I and y"" y' "/ y" in Y. 
It can be easily verified that 

(X/~, ') 

is indeed a semifinal partial groupoid. 

5. Definition. A construct Y' is said to be frivial if for each object (X.ee ) of !/ 
the set X ha~ at most onc point, i.e., if 

9'[ X] #- 0 implies card X :i 1 (X a set). 

All other construCts arc called 11011-trillio/. 

Remark. A transformation monoid considered as a construct (lOa) is trivial 
itT its underlying set has at most onc point (and only the identity transformation is 
considered). With this exception, a ll the constructs mentioned in the preceding 
sections are non-triviaL 

The reason for introducing the concept of tri\'ia lity is to obtain free objects as 
special semifinal objects. Recall that the fina l object of the empty sink is the discrete 
object PC)); now we characterize the semifinal objects. 

. 
Pr o po sit io n. In a non·trivial construct. flU objects arc precisely Ihe semifinal 

objects of the empty sinks. 

P roof. I. lei X be a set and let (X* . .,;') be the semirtnal object of the empty sink 
on X. Let t: X - X' denote the connecting map. We shall prove thai (X' , %~) 
is free ovcr the subset M = c( X). The semifinality means that for each objcct (T, 0) 

---,'~-. (x ·,~' l 

• 

h 

(T,05'l 

, 

, , 

.' 

, 

I, 

, 

, 

" 

, , 

l 
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and each map h: X ..... T there cJtists a unique morphism h*: (X*, :z*) -. (T,,,) 
such that h = h* .t. Thus, if X iii X· and t is the inclusion map then (X . ,a· ) 
is free over X (since h = h- . t then means that h* extends h). For a general t fi rst 
obsent that t is one-to-one : choose an object (T. 0) with two distinct points I, t' E T. 
(This is possible since our t;:onslructs is non.trivial.) For arbitrary 

x,x'eX WIth x;l<x' 

choose any map II: X -- T such that h(x) _ / and h(x') ~ t'. The morphism h* 
fulfils h = h* . £ - thus, h(x) 'I' h(x') implies 

~x) ¢ ~x'). 

Now, we shall prove that (X -.«*) is free over 

First, denote by 

co: X .... M 

the bijection which is the range-restriction of e; i.e. , 

where v: M .... X IS the inclusion map. For each objcct (T,o) and each map 
k : M .... Tput 

h=k. t,, : X ..... T . 

There exists a unique morphism h* : (X* , «-) -0 (T. 0) with 

h = h* ,t = (h*. v) .f.o-

Then h* extends k since 

k =(k.to).~1 = h.tO l 
"" (h · .v).&o.to' "" h* .p . 

II. Let (X ' ,a-) be a free object O\'cr X ~ X*, Then (X*,«*) is the semifinal 
object of the empty sink on X with the inclusion map t·: X .... X' being the connecting 
map. Indeed, for each object (T,o) and each map It: X .... T there exists a unique 
extension to a morphism h' : p,", ::1*) _ (T. oj, i.e. , a unique morphism with 
h=h·.v. 0 

Corollary. Each non-trivial, semifinally complete construct h~ free objects. 

6. Since free objects are not unique, but only unique up to an isomorphism (I H3). 
it follows that semifinal objects arc IIlso not unique. We shan prove that they too 
are unique up to an isomorphism. The proof i ~ analogous to that for the free objects. 

Pro po si I ion. Let (X', «*) be a semifinal object of a sink. Then 
(i) each other semifinal object of this sink is isomorphic to (X*, «*); 

(ii) each object isomorphic to (X*, a'") is semifinal with respect to the given sink. 



P roof. Let {(~, P,) ~ X} .. t be a sink, and let (X* , a· ) be a semifinal object 
wi th a connecting map c: X ..... X· , • 

(i) If (X",/l+) is another semifinal object with a connecting map i.. we prove 
that (X · ,Il -) ~ (X+,a+). 

For each j E 1, 

i./,: (Y;,P,I-(X·,a+) 

is a morphism and hence, there exists a unique morphism 

f*: (X · ,a'") _ (X\Il+) 
with 

This follows from the scmifinality o f (X",o:"~ Analogously, there exists a umque 
morphism 

t+: (X +, a+) ..... (X·, a·) 
wit h . -t""t .Co 

It suffices to show thaI c· and t + arc inverse to each o ther. NOIe that for the map 
h "" t we ha\'c l'I unique (!) morphism II " : (X" , ;): .. ) ..... (X· , a ") such that t _ hO . c; 
by t he uniqueness, Ir° = idx~ Now, the morphism 

fu lfils 

( Il+ , c"). e :s c" . l .., c 

, and hence, 

• '. 'd Il.C = IX" 

Similarly, 

'r 

.. 

, 

r 

, 

, 

, 

, 

, 
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(iiI Let p: (X · ,:r· ) ..... (X .. ,a+) bean isomorphism. 

lYjllJi 1 

\\,.)/ 
X t 'IX .. , ..... ) 

h 

(T,6) 
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We shall prove that (X + , /1 +) is semifinal, with the connecting map i = p. t. For 
each object (T,o) and each map II: X ..... T such that all h.f. arc: morphisms, there 
exists a unique morphism 

h' , (X" , ')_(T,!) 

with h = h* . t. Then the morphi sm 

fulfils 

h" = h* . p- 1: (X", a+) _ (T. 0) 

h h' -, h' -= .p .p .C= .c. 

And h+ is unique : if 11.: (X+, 0:+) ..... (T, 0) also fulfils h. = k. E then h = (k. p) . t; 
therefore, • 

I.e., 

Thus, (X " ,a+) is semifinal. o 
7. Conc lu d ing rema rk . Semifinal completeness is a property o f construcls 

which we often meet in algebra, topology a nd elsewherc. We present a criter ion for 
semifinal completencs in the next section. T his is also a useful criterion for the 
existence of free o bjects. 

The other way round, the constructs which fai l to have free objects (Met, Clut, etc.) 
are not semifinal1y complete. Semifinal completeness can be viewed as a property 
characteristic of the "well-behaved" constructs, 

Exercises 2D 

a. Semifi nal algebras. (I) Describe the semifinal monoids and prove that Mon 
is semifinally complete. Hint: this is analogous to Example 202; here R = x· 
will be the word-monoid over X a nd .... will be the least congruence on X · such t ha t 
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the two-letter words f.4y) fAl) a re congruent to t he o ne-letter words fI,yO;),') (for 
all j e J and Y,J,' e Y,). Then the q uotient monoid is semifinal. 

(2) Check that the si tuat ion in Sgr is analogous. 
p) Describe the semifinal groups in Ab. Hint: similar In (1) ; denote by g the 

free Abelian group, see I H b. 

b. Semifi n a l topo logies and mctrics. (1) Describe semifinal objects in 
Topo' Top!. TOP l' Hint : use the final topologies and Remark 2D4. 

(2) Prove that in Ml'tl the semifinal metric of a sink {( 1";, P,)!..!.. Xl is obtained 
as follows: if cr: is the final pseudometric (2Cb) then x· = XI_ where x ~ x' 
iff ~x. x' ) = 0 and 11· ([ x], [y]) = a(x, y) for all x, y€ X, 

e. In itia ll y mono.complete eons tr uelS. P rove the fo llowing converse to 
Remark 204: if each sink in a transportable construct has a semifinal object with 
a surject ive connecting map, then the const ruct is initially mono-complele. H int: 
use dual sinks. 

2£. A Criterion for Semifinal Complctcness 

l. Theorem. Each scmifinally complete construct has Cartesian products and 
intersections. 

Pr oof. Let [/ be a semiflnally complete construct. Let (1), bj~j € J, be its objects. 

To show that !/ has Cartesian products. put 

and denote by PJ: X ..... ~ the projections. It is our task to show that the following 
source 

(0) 

has an initial structure. To show tha t !I' has intersections, assume that each (T .... bJ) 

is a subobject of a given object (t, J); put 

X = n7i ., 
and denote by P/ X ...... 1j the inclusion maps. Again, it suffices to show that the 
source (. ) has an initial structure 1.1 : then (X,.:x) is the intersection of the objects 
(Tl' oJ). Indeed, if v: X ..... t and VI: 1'; ..... t denote the inclusion maps, 1hen 

for each jeJ. 

Hence, v: (X, cr:) ..... Cr, J) is a morphism. Moreover, given an object (Z, 1) and a map 

h:Z ..... X such th at v. h =vj.W/.h):(Z,y) ..... (T,J) isa morphism, then each 
Pj' h is a morphism and hence, h: (Z, 1') _ (X, a) is a morphism. 
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To prove tha t (. ) has an initial SlrUClUre lei 

{(r..P,)"'- Xl. , 
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• 

denote its dual source (2C2). and leI (X · , tx· ) be the semifinal o bject with connecting 

t: X ..... X· . 

We shall prove t hat B is a bijmion. Then it transports the structure 01 "' to a structure cr: 

such tha t 

t: (X,OI)_{X· ,a·) 

is an isomorphism (since [/ is transponable by the defini tion of semifinal complete­
ness). It is then easy to :sec thai cr: is the initial structure or (0). ThUs. the proof will 
be concluded when we exhibit a map i: X · .... X in\'erse to e. 

(Yi ,P i I 

I) , , 
IX ~ p! J X • 

tT"lijl __ -- ........ 
..... IT,6] 

Given je J, all Prh are morphisms and thus we have a umque morphism 

pt: (X · ,tx· ) ..... (Tp bJl wit h 

(I) Pj=pj.t (jeJI· 
There is a unique map t: X ' ..... X with 

(2) (jeJ). 

This is clear in the case or products: define i by «x) "" {pj(."l:l!j<J for all x E X. 
In the case of intersections, the map v: X ..... t has the property that each t;.f; = 

= Vj' Pj' /;: {r.. ,8,) ..... (1", ~ is a morphism , hence. there is a unique (!) morphism 
v· : (X · , ,2.) ..... (t, J) wi th v". v· . t.. For each j e J, the morphism vj . p1 fulfil s 

(v j . p:) ~ - vJ • PJ - v and therefore, 

forall jeJ. 

Hence, for each x e X· the point prIx) is independent of j and it lies in ~ - thus, 

il lies in X = n ~. We can define i: X · ..... X by 

«x) ~ prix) 

Then (2) holds. 

roreach xe X, je J . 
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To prove thai t is inverse to r., lirst use Ihc equality 

pj.(iLt) · Pj.t=Pl 

to conclude that 

i.t=idl' 

(for all j E J) 

(which follows immediately both for products and for intersections). Next, the map 

(X · , IX*) ~ X belongs to the dual sink of(*} because each PJ' i _ pj ,j E J , is II mor­
phism. Hence, £. t: (X* , :x*) .... (X" , a-) is also II morphism. Since 

we conclude that 

r.. i; = id,r., 
• 

sec Remark 202(i i). o 
2. If we are to decide whether a certain construct is scmilinally complete, we 

should first check for Cartesian products (which is usually easy). Then we should 
study the generation of subobjc<'ls (I F5} 

D efi n itio n. A eonS!Tuct wit h imersect ions is said to hm;1! bOllnd.~d 9<'llerolion 
if fo r each C''!' rdinalll there is a cardinal n· such tha t each object on II generators 
has at most II - points (i .e., if (X, x) has 11 generators then ~rd X :S ". ). 

The following elementary properties of cardinals are used in the subsequent 
exa mples. 

(i) For each intinite set X 

card X = card X x X . 

(i) If card X "" n then card (exp Xl is larger than II; it is denoted by 2" (since 
it is the cardinality of the set {O, 1 IX). We have 

card R "" 2"". 

(iii) For e,\ch infinite sel X , 
. 

card X = card {M S X ; M finite}. 

(iv) If X and Yare disjoint sets then card (X v Y) is denoted by n + In. where 
card X = /I and card }' '" lit. If 11 is infinite. then 

• 

if 11 is finite, then 

n + ~o "" ~o-

• 

• 

• 

, 

: 
• 
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(,.) If infinite sets Xu, X J> X l' ... have the same C"drdma!iIY rI, then also 
• 

card ( U X t ) = II . .-. 
Exampl es. (i) Sgr has bounded genermion with 

for each cardinal" . 

In fact, let (X, . ) be II semigroup, generated by II set M ~ X with cardM ~ n. 
PUI Mo = M and 

M 1= {x o y; x,y e Mol v M il' 
M~ = {x . y: x,yeM L} v M 1 , 

• 
etc. The sel /If = UMi is II subscmigroup : siven X.YEJW there is an i wilh ,-. 
x,j' EMi;thcn x . ye M;~L.Sincc M 5O ';1,weconc!udethat X = M. Moreover. 
if At is finite then each M; is finite , hence. card ,\1 :iii :-':0: if M is infi nite then M 0, M" " 
have the same cardinality as M . Therefore, C',!.rd X ,.. card ,\1 S n + ~o· 

(ii) Other algebraic const ructs, e.g., 

MOil, Grp, RlIg, Lat 

have bounded generation with /I- = II + ~o for a ll II - the proof is similar to (i). 
(iii) The construct Veel has bou nded generation with n- = n + 2 ..... If a \'(!(; tor 

space has dimension S II, it has a basis M of cardinality SII. All elements arc linear 
• 

combinations L ,,,'(, (x; EM). The number of all linear combinations is clearly 
j " I 

caid R x card M < n + 2"0 . 

(iv) All hereditary constructs have bounded generat ion wi th 

n* = n for each cardinalI! . 

In fact, an object (X, IX) is generated by M 5i X on ly if M """ X , then card M = 

= card X . Thus, Top, Pos, ;\1 .. " ele .. have (tr ivially) bounded generation. 
(v) The construct C(Jmp (of compact T2-spaces) has bounded generation with 

for each cardinal 11 . 

Indeed, let (X, 7) be a space generated in Comp by M S X. Then A1 is a dense subset 
of X (1 FQ. For e3ch point x E X put 

A. = {U 5 M : .nD}. 

Then A~ 50 cxp .10,1 , and 

x ¥- x' implies Ax * A ~. fora)) x,x'e X. 

(If x ¢ x' then there exist disjoint oren ~e ts U, V with x E U and v' e F. Sim;c M is 
dense, we have U n MEA", but U n MfA ... since V n (Un M) =0.) 
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Thus, the number of points in X is smaller Ihan or equal to the number of subsets 
of exp M. Hence. 

• 

card M $ n implies card X ~ 2l " . 

Remark. An example of a construct without bounded generation is ClQt: there 
exist arbitrarily large complete lattices even on three generators. Another construct 
without bounded generation is Tope : this construct does not have intersections, 
hence. it docs not have hounded generation by definition (recall that it does not 
have generation (IF4 and lFb)). 

3. Theore m. Each fibre-small construct with Cartesian products and bounded 
generation is semifinally complete. 

Pr oof. For each sink 

we ~rc going to find a semifinal object. Put 

n =cardX; 

there is a cardinal n· such that each object on n generators has at most n· poi nts. 
for every cardinal k < n choose a set ~ with 

eard~=k. 

Let us consider all objects (1;, ii), k !i n and hE ,SP[T.J, with the following property : 

(e) there exists a map t : X ..... T, such that all t./;: (Y;,PI)-(ll.ii) are 
morphisms (i € I~ 

, . . 

All these: objects form a sct - a subset of 

U 9'[r.] .,-
(which is a set since the construct !I' is fibre-small!). Hence, all the triples ( r..ii.£~ 

• where (T" (j) is an object satisfying (*) and ~: X .... T, is the corresponding map. 
can be wrilten as a collection 

(T.v1' " J' fl) . 
where J is a set. 

j e J • 

• 
• 

I 
, 

I 

I 
I 
I 

• , 

• , 

l 

\011111 and Final Structures 

Let us fonn the Cartesian product of the objects (T..I,/l' hl 

(X,.) ~ n(r. ... 'I) . 
j~J 

Define a map 

i: X ..... X "" n T.(}) 
M 

as follows: 

i.e., by 
(x e Xl, 

roreach jeJ. 

The set 

generates a subobject 

(P.Il·) 

or(X. :x). Denote by 

the restriction of i; the inclusion map I): X· ---+ X fulfils 

97 

We arc going to prove that (X *, lle) is a semifinal object of the given sink with the 
connecting map t· . 

('i,~) 

I" 
" 

, 
IX"',,,,,"I (X, ;:) X • , , 

'. 

(I) For each ieI 

~e.f;: (Y,. pj) ..... (X *, :x*) 

is a morphism. By the property (el. all 

E)' J; = ndi ·Jjl: (l'j. Pj) -> (1;vl' iij) U<') 
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are morphisms. By the definition of Cartesian product, this implies that 

is a morphism. Since t = v. <::*, by the definition of subobject also 

is a morphism. 
(2) Let (T,b) be an object and h: X -+ T a map such that all h·fr: (Y;'{il) ..... 

..... (1:b), iEI, are morphisms. The set h{X) ~ T generates a suhobject (1",0') 
of (T, b); denote by 

h':X ..... T' 

the restriction of h, i,e" the map such that 

h=w.h' 

for the inclusion map w: 1" ..... T. 
Since 

card h(X) < card X = /I, 

the object (T', b') has /I generators which implies 

card T' ~ n* . 

Therefore, there exists a cardinal k ::::;; /1* such that T' and T" are isomorphic sets. 
Choose any bijection 

b : r ..... T", 

x 

IT',o'l 
b 

w 

11,5) 

Denote by J the structure, transported by h, i.e., such that 

b, (T', J') _ Cr., J) 

is an isomorphism. Then the object Cr.,3) has property (*) with respect to 

i; = b.h' = X ..... 7i . 

, 
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Indeed, h . fr = IV. {h' . fr): {Yr PI) -+ (T, b) is a morphism for each i El. Therefore, 
h' . fr: (~, Pi) ..... (T'. 0') is a morphism, and so is 

,.[. ~ b. (h' .jJ (y;, p,) - Cr" '). 
This implies that there exist jo E J with 

(~,3,t) = (~Uo),bj,,'cjo)' 
p" 

h* = w. b- I. 1tjo ' v: (X*,fl*) -+ (T,b) . 

This is a morphism since each of the maps composing h* is a morphism. And 

h=w.h' 

['~b.h'l 
[t = ek = 1tj".i:] 
[t=v,t*] 

To prove that h* is unique, lei 

k.t* =h. 

k: {X*,a:*) ..... (T, J) be another morphism with 

By P roposition 2B7, the set 

E = {XE X *; k(x) = h*(x)} 

is a subobject of (X* , 0:*), hence, of (X, i.1) (see 1 Fa). Since h*. c* = k . e*, we have 

E 3 "(X) ~ 'IX) ~ M. 

Since M generates (X*, fl *), this implics 

E = X* . 

Therefore, k(x) = h*(x) for each x E X·, in othcr words, k = h*. o 
4. Corollary. Each non-trivial, fibrc·small construct with Cartesian products 

and bounded generation has free objects. 
This follows from Corollary 205. 

Ex am p Ie s. The following constructs ha ve free objects: 

Lut, Grd, Grp, Rng, Comp . 


	scan000091
	scan000092
	scan000093

