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Preface

Different branches of mathematics, e.g, algebra, topology or combinatorics, use
different means to express their concepts and methods. It is thus surprising to see
how much they actually have in common. The fundamentals of a great number of
mathematical theories are built up on certain general principles. The study of these
principles 1s the aim of the theory of mathematical structures and, more abstractly,

the theory of categories.
Our book presents the theory of mathematical structures in a way comprchensible

to a reader having but little experience with any concrete structure. We explain all
the concepts used and exhibit a number of examples.

The concept of mathematical structures was introduced by N. BOURBAKI in the
Theory of Sets (Hermann, Paris, 195?]. Chapter 4 “*Structures”™ starts as follows:

The aim of the present chapter is to describe, once and for all, some of the con-

structions and proofs met particularly often in mathematics.

The description which Bourbaki used was, unfortunately, rather clumsy. Simul-
taneously, a more abstract (and more convenient) theory of categories was introduced
by S. Eilenberg and S. MacLane. The theory they presented in their pioneering
papers during the forties has been rapidly developed in the following decades.
Today, there is a number of mathematicians working in the field of category theory,
and still more those using categorical language in their work in other fields, ranging
from topology and analysis to computer science.

In our book we present a nontraditional view of categories by returning somewhat
to the concrete approach of Bourbaki. Our stress 1s on sets endowed with a structure
and on mappings preserving this structure: such a setup is called a consrrucr. We
investigate the basic concepts concerning constructs: subobject, free object, 1nitial
structure, Cartesian product, etc. This is the contents of the first two chapters.
Not until the third chapter do we introduce categories and functors, and we then
study the interrelationship of various constructs (and categoris) and present some
more abstract concepts. The lundamentals of the theory of categories are exhibited
in the third and fourth chapters.

The last two chapters are devoted to a deeper theory of embedding of constructs
and categories into special constructs: the algebraic and relational constructs and
the construct of sets. The character of these two chapters 1s somewhat different from
that of the preceding four. Most of the presented results appear for the first time
in a book. The exposition is quicker and the demands on the reader are greater;
e.z, we work here with ordinals and the transfinite induction.



X Prelace

Organization

Sections are denoted by capital letters, chapters and subsections by numbers,
Thus,

5D3

designates chapter 5, section D, subsection 3.
The exercises of each section are denoted by case letters. Thus,

5Da

.designalts exercise a in section 5D. The exercises are usually casy and they are [re-
quently referred to in the text.

A egreat number of names of constructs and categories 1s used (e.g., Top, Gra, etc.).
A list of these names, as well as a list of other frequently used symbols, can be found
at the end of the book. Also all historical comments are placed there.

Long proofs and arguments are concluded with the sign
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Chapter 1: Objects and Morphisms

1A. Sets

1. The purpose of this book is to study sets with a structure and structure-preserving
maps. Without going into unnecessary technical details, we want to explain now
what we mean by “sets”.

We use the term “set” naivcly, ie., we are not going to present a collection of
axioms of a set theory, but we assume that the notion of a set is known to the reader.

Each set X is determined by its elements, i.e., by the elements x such that xe X.
For example, the void set

0

has no elements; the set
X}
has just one element x.

We are using the standard operations on sets: union. intersection, complement,
Cartesian product, the power-set exp X (of all subsets of X), ie.,

expX = {M; M c X},
and the set of maps,
Y* = {f; fis a map from X (o Y}.
When a set is written with the use of indices, e.g.,
X={x;iel},

we call X a collection or family with the index set .

Two sets X and Y are equal if each clement of X is also an element of Y, and vice
versa. Two collections X = {x;; iel} and Y= {y;jeJ} are equal if | =J
and x; =y, for each iel. Thus, the set 181, a3} is equal to the set {a,.a,!, but
these two collections are different unless a, = a,. For each family of sets '.1.'-;] iel
we can form the union ( )X, and the intersection (X. - . |

il igd
nge standard symbols for sets are N = 10, 1,2,...}, the natural numbers; Z,
the integers and R, the real numbers.

2. Recall that a map is a triple*) consisting of a set X (the domain), a set Y (the

") Pairs, triples, etc. are always assumed 1o be ordered.
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range) and a relation f £ X x Y such that for cach xe X there exists a unique
ve ¥ with f(x) = y (i.e, with (x, y) e f). We write this triple as

f: X->Y.

For example, for each set X’ we have the r‘d.:fntff y map
idy: X - X

defined by
idyx) =x (xeX).

If X =0 then the void relation @ = @ x Y is a map (because a statement “for
each x€0..." is true by default); we call it the void map. Thus, for each set X we

have _
X*® = {void map]}.
but
=0 if X #0,
0% = {idy} = {void map}.
Given maps

f:X—Y and g: Y= 2
the composite map 1s the map
g-[: X—=Z
defined by
g.f(x) = gl[f(x)) for each xe X.

3. Some families are “too large™ to form a set, For example, we cannot form the
“set of all sets™, (This would lead to the famous Russel's paradox: denote by A the
set of all sets X such that X ¢ X. Then either 4 € A4, but this would imply A ¢ A;
or, A ¢ A, but this would imply A e A4.) In the theory of mathematical structures we
often work with such families. e.g., of all sets, of all vector spaces, etc. We need
a broader concept than a set — we call 1t a cfass. Thus, classes are famibes general-
1zing sets in the following sense:

(1) each sct is a class;
(2) for each property P of scts we can form the class {X; X is a set satisfying P|.

For example, all sets form a class A4; all sets X such that X ¢ X form a subclass 4,
of A. Neither 4 nor A is a set (thus, 4, ¢ A, and this leads to no contradiction),
A class which is not a set is called large. For contrast, sets are also called small
classes.

We extend some of the set-theoretical operations to classes. Given classes X
and Y, we form their Cartesian product, i.c., the class X x Y of all pairs (x, y) with
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xe X and ye Y. Then we can define class maps f: X — Y quite similarly as above.
We can also form the union of classes indexed by a class 1. That 1s, given a class C;
for each ie I, we can form the class )
C = UC[ "
iel
the elements of which are precisely the elements of C, for all i /. Finally, for each
set X and cach class Y we form the class Y* of all class maps from X to Y. No other
operations on classes will be used.
(Classes are also written as collections

X = {xz iel}.

If I is a proper class we call X a large collection, reserving the simple term collection

for the case of small index sets.
We use the axiom of choice for classes: if ~ is an equivalence relation on a class X,

then there exists a choice subclass, ie., a class Y € X such that each xeX is

equivalent to precisely one ye Y.

The reader acquainted with set theory will realize that we are working within an
arbitrary theory of two universes, e.g., Bernays-Godel theory or Zermelo-Fraenkel
theory with a fixed universum, assuming the axiom of choice.

1B, Constructs: Definitions and Examples

1. Before presenting the definition of a construct, we illustrate some of its features

on the case of (real) vector spaces.
In the theory of vector spaces there are two basic concepts: vector space and

lincar map. A vector space is a set X together with operations
+: Xx X=X and -1 RX X=X,
satisfying the well-known axioms. Formally, a vector space is a pair

(X,(+.-)

consisting of a set X and its “structure” (+, +).
Let
(X.(+,+) and (¥.(+%+)

be two vector spaces. A map
f:X-Y

is linear if it “preserves the structure”, i.t:., il
Sty + x5) = f(x) +" fx3) forall x,x,eX;
flrex)=rvf(x) forall xeX;reR.

Objects and Morphisms 5

I /s & inear map, we write f: (X,(+,+)) = (¥,(+", +')). Note the following proper-
ties of linear maps:

(1} The composition of linear maps is linear. ie., if

X (+:0) = (B (+,7))

and
g (Y (+, ) = (Z.(+".")
are linear maps, then
9-f1 (X, (40 ) = (Z,(+", ")
15 also a linear map.
(1) For each vector space (X, (+, -)) the identity map is linear:
iyt (X, (+,+)) = (X, (+.+))

These two properties of structure-preserving maps are encountered in numerous’

Istances of “structures”. Therefore, they serve as a basis for the following general
definition.

‘l Definition. A construct (or a concrete category of sets with structure) % is
given by the following data:

a) For each set X a class %[ X] is defined. Its elements are called the structures
of X, and pairs

A=(X,a),

where X 1s a set and « is its structure, are called objects.
b) For each pair of objects

A=(X,2) and B =(Y,f)
a set
hom{4, B) € Y*

?5 defined. Its elements are called the morphisms and, given a map [: X — Y then
instead of fehom,(A, B), we write

f: A= B.

The sets of morphisms satisfy the following axioms:
COMPOSITION AXIOM. The composition of two morphisms

J:A—=B and g: B> C
1s @ morphism
g.fi A=C,

IDENTITY MAP AXIOM. For cach object A =(X,a) the identity map is
a morphism -

idI:A—bA_
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3. Example: the construct Vect is given as follows. For each set X,
Vect[ X ]

denotes the set of all pairs (+,+) defining the structure of a vector space on X,
Given objects, ie., vector spaces, A = (X,(+,+)) and B = (Y,(+',+)). then

hom(4, B) c Y*

-

1s the set of all linear maps from A4 to B.

4. Terminology. Important constructs are denoted by an abbreviation of the

names of their objects (e.2.,, Vect). A list of these abbreviations can be found at the
end of this book.

It is usual to state what the objects of a construct are rather than to introduce
the classes & X']. For each object

A = {X,I]

we call X the underlying set of A.
For each morphism

ft A—-B

we call A the domain and B the range of f. The identity morphism of an object 4 =
= (X, a) is often denoted by

1,:A— A
in place of idy: A — A. We write hom(A, B) instead of hom (A, B).

Remarks. (i) Theclass X | of structures of aset X can be empty. For example,

if X is any finite set with at least two points then it does not carry the structure of
any vector space. Thus,

Veetl| X] = 0.

(ii) For technical reasons, the classes | X] are usually supposed to be pairwise
disjoint. In other words, each structure carries the information what underlying
set 1s considered. We shall use this harmless convention.

5. Examples ¢f constructs

(i) The construct Pos of posets (i.e., partially ordered sets) and order-preserving
maps. Its objects, called posets, are pairs (X, <), where X is a set and < is an or-
dering on X, ie., a binary relation which is

reflective (x < x for all xeX),
amisl'!rr‘nmetri:: (x <y and y < x imply x = y forall x,ye X) and
transitive (x <y and y <z imply x < z forall x,y,z e X).

Objects and Morphisms 7

The morphisms from a poset (X, <) to a poset (¥, =) are the order-preserving maps,
1.e, maps

XY
such that
x, x, implies [(x,) < f(x;)

for all x,,x,e X.
We must verify the axioms. First, let

[(X,5)=(Y,2) and ¢: (V.2)~(2Z, )
be order- preserving maps. Then

g*f: (Xi l——'::}"[z" E]
is also order-preserving, since for all x,,x, e X,

x, < x, implies f(x,)= f(x;)
and

flx) < flx,) implies g(f(x,) € o /{x).

id,: (X, )= (X, <)

Also,

is order-preserving since x, < x, implies x, < x, forall x,, x,e X.

The verification of the two axioms is usually quite routine and we leave it to the
reader.

(ii) The construct Gra of graphs and compatible maps. Itz objects, called graphs,
are pairs (X, a), where X is a set and « is a binary relation, i,

S A XA,
In other words,
Gra| X | = exp(X x X),

the set of all subsets of X x X,
The morphisms from a graph (X, %) to a graph (Y, B) are the comparible maps,
I.€., maps
f:X-Y
such that
x, xx, implies f(x;)f f(x,)

for all x,,x;€X

(iii) The construct Ser of sets and maps. Its objects are (non-structured) sets and
its morphisms are (all) maps. Formally, for each set X the class of structures Set[ X |
has just one clement, say »; that'is, '

Set[X] = {+}.
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Thus an object (X, «) can be identified with the set X. And for arbitrary objects X
and Y,

hﬂm(}f, Y)=Y?*,

Remark. The void set can, but need not, carry a structure. For example, each
vector space has at least one element (the zero vector), thus,

Vect[0] = 0.

On the other hand, the void relation defines a graph, in fact a poset, on 0. Thus,
both Gra[0] and Pos| (] are singlcton classes.

6. Definition. A subconstruct of a construct % is a construct .5 such that
a) each object of 7 is an object of ¥, i.e.,

F[X] < #[X] foreach set X

and
b) each morphism of 7 is a morphism of %, i.e.,

hom (A, B) < hom_(A, B)

for arbitrary objects 4 and B of .7,
And 7 1s a full subconstruct if

hom (4, B) = hom (A, B)
for arbitrary objects A and B of 7.

For example, Pos is a full subconstruct of Gra. Each poset is a graph, and given
posets A = (X, <) and B=(Y,=<) then a map f: X = Y is order-preserving
ifT it 1s compatible. Thus,

hom,, (4, B) = homg, (4, B).

7. Example: The construct Lat of lattices and lattice homomorphisms.

A lattice is a poset (X, £)in which each pair x,,x,& X has a join x, v x, (ie.
tlhl: least of all elements ye X satisfying x; < y and x, < y) and a meet X, A X,
(Le., the largest of all elements z€ X satisfying x y 22 and x, = z). For example,
on the set Z7 = {1,2,3,...} we can define the ordering by division:

x =Xy iffxdividesy (x,yeZ7).

Then (Z*, =) is a lattice: x v y is the least common multiple of x and v, while
- X Ay 1s their greatest common divisor (x,yeZ ™). Also the usual ordering g of Z*
defines a lattice (Z%, <): here x v y = max {x, 1! and x A v = min fx. vl

On the other hand, the discrete order on a set X, which is defined by X S x
il x, = x,, does not yicld a lattice (unless X has at most one element).

I'I':—# ;-‘J'f‘_.a"rl-ﬂi =yt

Objeets and Morphisms 9

The objects of the construct Lat are all lattices. The morphisms from a lattice
(X, =) to a lattice (Y, <), called lartice homomorphisms, are maps f: X — Y pre-
serving joins and meets, 1.e., such that

flxy v x,) = fix,) v flx,)
Flxy A x5) = flx,) A flx,)

forall x,x,eX.

Observations. (i) Lar is a subconstruct of Pes. Indeed, each lattice is a poset.
Also, given lattices (X, <) and (Y, <), then each lattice homomorphism

[ (X, 2) = (% 2)
is order-preserving: if x,,x,€ X fulfil
X S X5
then obviously x, v x, = x,. This implies
flxy) = S(x;) v flx2) = f(x, v X3) = f(x3).

(ii) Lat is not a full subconstruct of Pos. In other words, there exists an order-
preserving map [: (X, ) — (¥, =) which is not a homomorphism, though both
(X, <) and (Y, <) are lattices.

For example, consider the lattices (Z*, <)and (Z", £)defined above. The identity
map is clearly order-preserving:

idy 1 (27, S) {27, 5).

But it is not a lattice homomorphism since it fails to preserve the meet 2 A 3 = 1.

8. Example: The construct Clat of complete lattices and complete lattice
homomorphisms.

A poset (X, <) is a complete lattice if cach subset T = X has a join \/T (i.e., the
least of all elements y€ X satisfying t < y foreach t& T)and a meet AT (i.e, the
largest of all elements ze X satisfying t = z for each te T). For example. the set

X=expM

of all subsets of a set M ordered by the inclusion € is a complete lattice. For each
T € X (iLe., for each collection T of subsets of M) the union of all sets in T is the
join of T

VT= (M

M'eT
and the intersection of all sets in T 1s the mect:
AT= M.
M'eT

On the other hand, the lattice (Z7, <), defined in 1B7, is not complete: it does not
have, for example, the join of T=Z" (ie, it has no largest element).
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Note that in each complete lattice the join of @ is, by definition, the least element
(because any ye X satisfies t £y for each {0, by default) Analogously with
the meet of 0: AD = \/X and VO = AX. '

The construct Clat has as objects all complete lattices. Its morphisms from (X, =)
to (Y, =), called complete lattice homomorphisms, are maps

f: X ¥
which preserve the join and the meet of each subset T = X. Thus, denoting

S(T) = {f1); e X},

we have

VAI(T) = 7(VT)
AS(T) = fIAT).

Observation. Clar is a subconstruct of Lat which is not full. The affirmative
part is evident; thus, it suffices to find a lattice homomorphism between complete
lattices which is not a complete homomorphism.

Consider the usual extension of real numbers (R*, <), where

and

R*=Ru{+00, —oo}.
The map

£ (R, €)= (R,
defined by

flx)=0 (xeR);

f(—w)= —oo and f(+o)= 4+

1A

)

is a lattice homomorphism. But it is not complete

VR = +o,
but
V/(R) = 0.

9. Remark. A poset (X, £), in which each subset T < X has a meet AT, can
be called a complete semilaitice (more in detail, a complete meet-semilattice). This
term is, however, unneeded since each complete semilattice is a complete lattice.

Let T be a subset of a complete semilattice (X, <). The join of T is, by definition,
the least element of the following set

T ={yeX;t <y foreach teT}.
Therefore, \/T exists because \T* exists, and we have

\/T=AT*.

Objects and Morphisms 11

Nevertheless, the term complete semilattice is useful with respect to morphisms!
Given complete {semi-}lattices (X, =) and (Y, =) then a map

f: X=Y

1s called a complete semilattice homomorphism 1f it preserves all meets, 1e., if

fIANT)= N\f(T) foreach TgX.

Let Csl denote the construct of complete semilattices and complete semilattice
homomeorphisms. Then

(Cslis a subconstruct of Clat’ |

and these two constructs have the same objects. But Cs/ is not a full subconstruet *
(in other words, Csl # Clat). Choose any set M with at least two points and choose
mg e M define

f:lexpM, =) — (exp M, <)
as follows:

M if mgeM’

M) =
1) =1,
Then [ is a complete semilattice homomorphisms, 1.¢.,

7(()M) = ()1 (M)

1=

foreach M M.
glse

for cach collection {M,; iel} of subsets of M. On the other hand, f is not even
a lattice homomorphism:

S(§mo})-v f(M = {mp}) = {my};
flfmo} v (M = {me})) =M.

Concluding remark. The choice of objects of a construct does not determine
the choice of morphisms: two (naturally arising) constructs with the same objects
need not have Lhe same morphisms. We have seen several examples of non-full
subconstructs; [«

>

Clat < ﬁbg Lat = Pos .

That these subconstructs are not full is caused by the fact that their morphisms are
required to preserve less and less structure (from the left to the right). On the other
hand, Pos is a full subconstruct of Gra, since in these two constructs morphisms
are defined by the same “rule”. Finally

Pos and Veet

are incompatible constructs: neither is a subconstruct of the other one.
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Exercises 1B

a The constructs Lar, of partial lattices: its objects are all posets; its
morphisms are all maps f: (X, <) — (¥, =) which preserve all the existing joins
and meets of pairs, 1.,

x, v x, =x implies f(x,) v f(x;) = f(x)

forall x,,x,eX forwhich x, v x, ecxists; analogously with x;, A x,.

(1) What are the interrelations of the constructs Pes, Lar, and Lat?

(2) Let (X, £) be a discrete poset (i.e, x; S X, implies x; = x,); prove that
for each poset (¥, =) and each map f: X — Y we have a morphism f: (X, £) -
-+ (Y, <) of Lat,,

b. Preordered sets are pairs (X, =) where £ is a reflexive and transitive
(but not necessarily antisymmetric) relation. The construct Pros of preordered sets
is defined as the full subconstruct of Gra, the objects of which are all preordered
SCLS.

(1) Check that the “ordering by the norm™ in R":

(@) S (b)) T Y0P < YD

for (a.), (b,)e B") is a preorder.
( i i p
(2) Check that each equivalence relation is a preorder.
(3) For each preordered set 4 = (X, =) verify that the relation

x; ~x, iffboth x, £x, and x, < x, (x,,x,€ X)

1S an equivalence relation on X.

(4) In (3), let X/~ be the set of all equivalence classes [x] = {1e X1 ~ x}
for xeX. Verify that x <y implies ¢ <5 for all te[x] and se[y]. Define
a relation on X/~ as follows:

[x] =*[y] iff x Sy (foreach [x].[y]e X/~).

Verify that A* = (X|/~, £*) is a poset. Terminology: A* is called the antisym-
metrization of A.
(5) Find the antisymmetrization of the preordered setsin (1),(2).

c. Normed vector spaces. Recull that a norm on a vector space (X, +,+)
isamap [|: X - [0, +00] such that

(i) |x| =0 iff x =0 (the zero vector), for each xeX;
(i) |x; + 55| € x| + |x5] forall x,,x,e X;
(i) [rex| = |r|«|x| foreach xe X,reR

Denote by Ner the construct of normed vector spaces, ie., quadruples (X, +,+, )
consisting of a vector space (X, +,+) and its norm |, and the norm-decreasing

+
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linear maps. Thus, the morphisms from (X, +,-, [ ) into (¥, +°+, |) are those linear
maps f: (X, +,+) = (X', +',+') which fulfil the following condition:

if{ﬂlri |x[" foreach xe X.
2

(1) Verify that the Euclidean space (R", +,+) with its usual norm |a| = /) g,
for each a = (a,,...,a,)e R", is a normed vector space.

(2) For which ke R is the linear map f{x) = k- x amorphism f: (R", +,-.[) =
- (R, +,,|)?

(3) Denote by Mat, , the set of all (2, 2)-matrices. Verify that it is a normed vector
space under the usual addition and scalar multiplication of matrices and with the
following norm

IA| = la,,| + la,;| + |ayy| + lag;|  foreach A= [ﬂl’ﬂ”]EMEILI,
431923
Let K = (k;;) be a matrix with |k;| = 4; prove that the map f: Mat, , — Mat, ,,
defined by f(X) = K+ X, is a morphism.

1C. Isomorphisms

1. When studying the objects of a certain construct, it is important to know when
two of them are to be considered “esentially”™ the same. For example, two vector
spaces are “esentially” the same iff they have the same dimension. The exact for-
mulation of these considerations is expressed by the notion of 1somorphism,

Recallthatamap f: X — Y isa bijection if it 1s one-to-one and onto. Equivalently,
if thereexistsamap f~': ¥ — X with

f.f=id; and [.f V=id,.
Then 1 is called the inverse of .

2. Definition. An isomorphism is a morphism

f+(X,9) = (Y, §)

such that [ is a bijection and the inverse map 1s a morphism
(B =X, q).

Remark. Inthisdefinition we did not state explicitly what construct is considercd.
More precisely, the definition should be as follows: Let % be a construct, then its
morphism f: (X,2) — (Y, f}) is an isomorphism if .... Whenever an arbitrary (but
fixed) construct is considered, we leave its symbol out of defimitions or theorems.

Terminology. Two objects (X, a) and (Y, f) are called isomorphic if there exists
an isomorphism f: (X, o) — (Y, f): in symbols

(X,2) = (Y, 5).
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Note that a bijective morphism need not be an isomorphism. For example, the
morphism id- : (Z1,ZX)—(Z*, £) (in Pos) of Observation 1B7(ii) is bijective.
But this morphism is not an isomorphism, since the inverse map is not order-
preserving id-.: (Z1, £)—(Z7, Z).

Examples. (i) In the construct Pos of posets, isomorphisms are morphisms
fi (X, £) - (Y, =) such that f is a bijection “transporting™ the relation = onto
the relation = in the sense that

X S 1 =S40 Joreach, k. xieX .
Thus, two posets (X, <) and (Y, =) are isomorphic iff one is obtained by a “rela-
belling” of the elements of the other. For example, the posets

(exp{1,2,3},=) and (exp{ab.c}, )"

are 1somorphic.

{ii) Two vector spaces are isomorphic (in the construct Vect) iff they have the
same dimension.

(iii) Two finite sets are isomorphic {in the construct Set) iff they have the same
number of elements.

3. Remark. The relation =, to be isomorphic, is an equivalence relation on the

class of all objects (of any construct). Indeed:
(i} For each object (X, o),

idy: (X, o) = (X, @)
is an isomorphism (because idy = idy'); thus,
(X, a) = (X, ).
(ii) For each isomorphism
i (X, > (Y. )
the inverse map is also an 1somorphism
11 (1) = (%,
(because (f~')™' = f): thus
(X,2) = (¥, 8) implies (Y,p)=(X, 4.
(iii) The composition of two isomorphisms
(X, = (Y,B) and g:(Y.B)—(Z.9)
is an 1somorphism

g.f1(X,0)—=(Z,y)

———
i
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(because (g.f)™' = f~1.g71); thus
(X,2) = (Y, p) and (Y. f)=(Z,y) imply (X.a)=(Z,9).

4, Example: the construct Mer of metric spaces and contractions, Recall that
ametriconaset X isamap a: X x X — [0, +o0) such that for all x,,x,,x,€X,

[1) % %) =03 £, =36;
{“} oxy, x2) = x5, X,);
(i) alxy, x,) + afxy, x5) = ofxy, ;).

The construct Met has as objects all metric spaces, ie., pairs (X, x) where X is
a set and = is its metric. The morphisms from a space (X, «) to a space (Y, §), called
contractions, are maps

f: X—=Y
such that

B(f(xy) f(x;) S ofx,,x;) Torall x,,x,eX.

An example of a metric space is the n-dimensional Euclidean space (of n-tuples
of real numbers)

(R" o)

where given x, = (a,,...,a,) and x, = (b,...,b,) in R", we put
E{xn -Iz] = wﬁIZ[ﬂi = h:‘}z'

(In particular, in B = R' we have o(x, x,) = |x; — x,|.)

Remark. Isomorphisms in Met are called isometries. An isometry from a space
(X, o) to a space (Y, f) is a bijection
f:X->Y
which “transports” the metric « onto the metric f in the sense that
Blifl) T =alx%) forall x,.xneX.

For example, the lincar map f(x) = kx + ¢ is an isometry of (R, ¢) iff k¥ = 1. Thus,
the intervals

[0,1] and [5,6]

in R with the Euclidean metric o{x,, x,) = |x, — x,| are isometric, i.e., isomorphic
in Met. Indeed, the map

£: [0,1] - [5.6], |
defined by f(x) = x + 5 (x&[0, 1]), is an isometry.
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5. Example: the construct Tep of topological spaces and continuous maps.
Recall that a ropelogy on a set X is a collection « of its subsets (called open sets)
such that r

(1) @ and X are open, ic., {0, X} € «;
(ii) the intersection of two open sets is open, ie.,

M ,M,ea implies M, nM,ea;
(iii) the union of open sets is open, i.e.,
M;ea foreach iel implies (JMea.

gl
The construct Top has as objects topological spaces, i.e., pairs (X,a) where X is

a set and « is its topology. The morphisms from a space (X, a) to a space (Y, pB) are
all continuous maps, i.e., maps

[: XY
such that the preimage of each open set is open:
Mep implies f '(M)jea (McY).

Each metric « on X induces a topology d:a set M < X is defined to be open iff
for each meM there exists a number re (0, +c0) such that

afx,m) <r implies xeM (forall xe X).

If there is no danger of confusion, we use the same symbol for a metric and the
induced topology.

For example, the line (R, g) is a topological space in whicha set M = R is open
iff with each point me M it contains an open interval with the midpoint m. A set M

1s open in the plane (R, p) iff with each point me M it contains a disc with the
centre m.

Each contraction is continuous. More precisely, for each morphism in Mer
f: (X, a) - (Y, B)
we have a morphism in Tep
f(X,9) = (Y, D).

L.r.:t M < Y be open. To prove that f (M) is open, choose any point me f (M)
Since f(m)eM and M is open, there exists re (0, + oc) such that

‘ ply.flm)) <r implies ye M.
Then also

olx,m) < r implies xef~YM),
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because if a{x,m)<r then B{f(x).f(m)) <r (since f is a contraction); hence,
flx)e M.

On the other hand, a continuous map need not be a contraction. For example,
each linear map f(x) = kx + g is continuous

f: {Imi{?l e [H,Q}+
In fact, continuous maps from (IR, g) into itself are precisely the continuous functions
as delined in the calculus.

Remark. Isomorphisms in Top are called homeomorphisms. A homeomorphism
from a space (X, ) to a space (Y, f) is a bijection

fr X-Y
which “transports” the topology « onto the topology f in the sense that
Mex iff f(M)ep foreach Mg X.

For example, all closed intervals [a, b] in R, with the topology ¢ induced by the
Euclidean metric, are pairwise homeomorphic (ie., isomorphic in Top). Indeed,
given two closed intervals [a, b] and [, b] there clearly exists a linear map

f(x)=kx+q k#0,

mapping [a, b] onto [a’,b']. Then
f: ([a,b).0) = ([a' ], 0)

is a homeomorphism, because the inverse map is also linear (hence, continuous):
-1 :Fr - q r L
Y = (for each ye[a’,b']).
Note, for example, that
([0.1].8) = ([0,2].3) i Top

(0,130 £([0.21.¢) in Mer.
Indeed, we have

0(0,2) = 2
and no two points in [0, 1] have distance 2; thus, [0, 1] and [0, 2] are not isometric.

but

6. Example: the construct Topm of metrizable spaces and continuous maps.
A topological space (X, %) is said to be metrizable if there exists a metric y on X,

inducing the given topology, i.¢.,, such that

o=7.
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We denote by Topm the full subconstruct of Top, the objects of which are all metri-
zable topological spaces (and morphisms are, necessarily, all continuous maps
between metrizable spaces — this follows from the fullness). -

An example of a non-metrizable topological space is the indiscrete space (X, )
where « = {0, X}. If X has at least two points, then for cach metric ¥ we hf;ve
{0, X} ¢ 7: choose x,,x,€X with x, X33 then y{x,,x,) > 0 and the set

M = {xe X; y(x,x;) < y(x;,x,)}

i1s evidently open, M € 3. Yet, M # 0, because x;€M,and M # X, because x, ¢ M.
| An example of a metrizable space is the discrete space (X, o), in which each set
is open:

a=expX.

This topology is induced, e.g_, by the following metric:

?(xl,x;} = {

(Each set M is open in 7 because for every m e M we can choose r = |: then
X, m) < r implies x = me M)

' Dastinct metrics can induce the same topology. E.g., if y is a metric inducing the
discrete topology, then the metric 2y also induces it. Thus, the objects of the con-
structs Mer and Topm are basically different.

0 if x, =x,

I if x; #x, Xz € X))

?:. We have seen in the above examples that 1somorphisms are just those bijections
which “transport™ one structure onto another. It is an important property of most
of the usual constructs that bijections can Lransport structures in the following sense.

Definition. A construct & is said to be transportable if for each object (X, )

a:d cach bijection f: X — Y there exists precisely one structure BeS[Y] such
that

f: (X.2) = (¥, )
1s an isomorphism.,
Examples. (i) Grais transportable. The unique f is defined by
B=iy.y))eY x Y: there exists (x),X;)ea with y, = flx,)
and y, = f(x,)].

‘Mnrem:fen if o i§ an ordering, then so is § — hence, Pos is also transportable. If «
1S aii_amce ordering then so is B — hence, Lar is transportable.
(ii) Mer is transportable. The unigue f is defined by

By y2) = o(x,, x,) where flx,) = yi and f(x,)=y,.
This follows from Remark 1C4.

(iii) Top is transportable. The unique f is defined by
Mep iff f{M)ea.

This follows from Remark 1C5.
Let us mention an example of a construct which fails to be transportable.

8. Example: the construct Mtc of metric spaces and continuous maps. Recall
that a map f: X — Y is continuous from a metric space (X, «) to a metric space
(Y, B) if for each x€ X and each £e(0, +o0) there exists a d€({0, + o) such that

ofx,t) <& implies f(f(x),f(r) <& foreach teX.

This is equivalent to the continuity of { from (X, ) to (Y, B).
The construct Mte of metric spaces and continuous maps Is not transportable:
if two metrics a,, a0, on a set X induce the same topology, 1., 1f

-

II - 'iJ *
then
id,: (X, 11) = {X- 12)
is an isomorphism of Mte, of course. Assume «, # 2, (for example, o, = 22,);

then . .
ide: (X.2,) = (X,2)) and idy: (X, 2,) = (X, 2,)

are isomorphisms, in contradiction to the uniqueness of ff in the definition above.

9. Concluding remark. For each construct, the class of all objects is partitioned
into subclasses of pairwise isomorphic objects, Le., objects which are (up to a re-
labelling of clements) equal. Isomorphisms are bijections which “transport™ the
structure. In most of the usual constructs, bijections conversely “transport™ structure

uniquely, thus determining the isomorphisms.

Exercises 1C

a, Isomorphisms of lattices. Prove that each isomorphism f: (X, <)
— (Y, =) in Pos, where (X, =)and (Y. =)are lattices, is already a lattice isomorphism
{i.c., an isomorphism in Lar). Does the samc hold for complete lattices?

b. The line is homeomorphic to intervals. Prove that ([%, ¢) is homeo-
morphic to each open interval (a, b), the topology of which 1s the restriction of p.
Hint: the continuous map f(x)=tanx maps (—n/2,7/2) onto R; its inverse
f~Y(x) = arctan x is also continuous. Thus, (R, g) = ((=n/2, n2), o).

¢. Closure in a topological space. Let (X, 2) be a topological space. The
closure of a subset M < X is the set M of all points xe X such that

xeU implies MnU=#0  (foreach Uea).
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If M = M then M is said to be closed.
(1) What is the closure of (0, 1).(0, 1] and [0, 1] in the line (R, ¢)?
(2) Prove that a set M is closed iff X — M is open.
(3) Prove that the closure operation is
isotone: M, © M, implies M, € M, (M, M, eexp X};
idempotent: M =M (M eexp X);
additive:0 =0 and M, UM, = M, UM, (M, M, ecexp X).
(4) Given topological spaces (X, a) and (Y, f), prove that a map f: X =¥ is
continuous iff it respects the closure in the scnse that

f(M*) c f(My) foreach Mg X.

(5) Prove that a map is continous ifl the preimage of each closed set is closed.
(6) Characterize M in a discrete space and in an indiscrete space.

d. Constructs of topological spaces. Topological spaces can be classified
by properties related to the possibility to “separate” points and sets. For each of
these properties we obtain a full subconstruct of Tep, the objects of which are all
spaces with this property (and morphisms are all continuous maps).

(1) Top,, the construct of Ty-spaces. A topological space (X, «) is T if each pair
of distinct points x,ye X can be separated by an open set, i.e., if there is Uea
such that xeU and y¢U,or x¢ U and yeU.

Is the indiscrete space a T,-space?

Consider the following space, which is called the Sierpinski space: X = {a,, a,|
and the open sets are 0, X and {a,}. Isit 7,?

(2) Top,, the construct of T,-spaces. A topological space (X, ) is T, if each finite
subset is closed.

Prove that a space is T, ifl each pair of distinct points x, ye X can be separated
by open sets U, V in the sense that xe U, yé¢ U and x¢ V, ye V.

Prove that the Sierpmski space is not T,.

Define the space of finite complements on each infinite set X as follows: a set M
is open iff X — M is a finite set, or M = (). Prove that this is a T|-space.

(3) Top,, the construct of T,-spaces (or Hausdorff spaces). A topological space
is T, if each pair of distinct points x, ye€ X can be separated by disjoint open sets,
ie, there exist disjoint open sets U, V with xeU and yel.

Prove that a space of finite complements is not 7.

Prove that each metrizable space 1s Ts.

e. Compact spaces. Let (X,x) be a topological space, and let M = X be
_asubset. An open cover of M is a collection U, i € I, of open setssuch that M £ Uu.

=l
The set M 1s compact if for each of its open covers U, i e [, there exists a finite open
subcover, i, afiniteset J < [ suchthat M = | JU,. The spaceis compactif M = X
i)

is a compact set,
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(1) Prove that each indiscrete space is compact, while a discrete space 1s compact
iff it 1s finite,

(2) Prove that the line (R.¢) is not compact. A non-trivial proposition: a sct
M < R is compact iff it is bounded (ie., M € |a,b]| for some «. b e R) and closed.

(3) Let (X, a) be a compact T;-space. Prove that a subsct of X is compact ifl 1t 1s
closed. Hint: if M is closed and U, i=/ 1s its open cover, then X — M and U,
i € 1, form an open cover of X. Conversely, if M is not closed, pick some xe M — M
and for each me M choose disjoint open sets U, ¥V, with me U_, xe V. Then
U, me M, is an open cover of M with no finite subcover.

(4) Prove that for each continuous map f: (X,x)— (Y, ) and each compact
set M € X theset f(M)= Y isalso compact.
M = R is compact iff it is bounded (ie., M < [a, b] for some a, beR) and closed.

. Dense subsets. A subset of a topological space is dense if its closure is all
of the space.

(1) Prove that a set M is dense iff it meets each nonvoid open set.

(2) Prove that the set of all rationals forms a dense set in the line (R, o).

(3) Which subsets are dense in a discrete space?, in an indiscrete space?, in a space
of finite complements?

(4) Prove that a subset M of a metric space (X, «) is dense (in the topology d)
iff for each xe X

Axlx,m)=0.

e A

1D, Fibres ")
1. Definition. Let o, fe¥[X] be two structures on the same set X. We say
that a is ﬁ"f—'if!,h“ﬂ f (or that fis cr?ufrl_sleithan a) if
idy: (X, ) = (X, B) |
is 2 morphism. We write
xS B
or, more precisely, x £, .
Examples. (i) Gra: given relations a, f on a set X, then
a<p Ul acf.

Thus, a relation =z is finer than f iff it contains fewer pairs. In particular, the finest
relation is the void one, and the coarsest relation is all of X x X,

Since Pos is a full subconstruct of Gra, the analogous statement holds for posets.
As an example, consider the orderings =< and < of the set Z* (Example 1B7). In Pos

=< 15 finer than £ .
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'However, in Lat

=t 18 not finer than <. -

(ii} Top: given topologies o, f on a set X then « < f iff each a-open set 1s f-open, '

ie., iff B S o (as subsets of exp X).

The finest topology is the discrete one, and the coarsest 1s the mdiscrete one.
Another example: consider the line R with the Euclidean topology ¢; each finite
set is closed (i.e., the line is T, ), hence, its complement is open — thus, g is finer than
the topology of finite complements (1Cd(2)).

2. Definition. A transportable construct 5 is said to be fibre-small if for each
set X the class [ X] (of all structures on X) is small. In other words, if for each
set X the collection of all objects with underlying set X is a set,

Proposition. Let % be a fibre-small construct. For each set X the relation
“to be finer™ defines a poset

(#[x]. 5).
called the fibre of the set X in the construct .%.

Proof, The relation < is
(1) reflexive since for each xe % [X],

idy: (X, o) = (X, )

is a morphism;
{2) transitive since given o, f, y in #[ X] such that

idy: (X,2) = (X, ) and idy: (X,8) - (X,7)

are morphisms, then so is
idy = idy . idy: (X, %) = (X, 7);

(3): antireflexive/since given &, # in & [ X] such that J A r,,-*“-w /_ 7

idy: (X,a) = (X,B) and idy: (X, ) = (X, )

are morphisms, then
idy: (X, a) = (X, §)

18 an isomorphism. Since
idy: (X, o) — (X, )

s,

1s also 1somorphism, the definition of transportability (1 C7) implies
x=4§. L]

Remarks. (i) In all the constructs which we have introduced above, the classes
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S [ X | are small. This is further true in all the constructs usually met in mathematics.
Thus, for all practical purposes “fibre-small” and “transportable™ are equivalent
(and extremely mild) conditions on a construct.

(ii) A fibre-small construct is called fibre-discrete if all its fibres are discretely
ordered, i.c., if for arbitrary =, fe #[X]

a # f implies idy: (X,2) — (X, f) isnota morphism .

A fibre-small construct is called fibre-complere if all its fibres are complete lattices.

Examples. (i) Gra is a fibre-complete construct. The fibre of a set X is the
set of all subsets of X x X ordered by inclusion (see the example (i) above),

(Gra| X], <) = (exp X x X, <).
(1) Top is a fibre-complete construct. For each collection of topologies
T < Top[X]
define a topology « as follows:
o« = (\T = {M < X: M is open in each topology feT}.
(This is easily seen to be a topolegy.) Then
x=\/T in Top[X].

* (i1} Pas is not fibre-complete: for each set X with at least two elements there
exists no coarsest ordering on X. On the other hand, Pos 1s also not fibre-discrete
(see the example (i) above).

(1v) Lat 1s fibre-discrete. If

idy: (X, <) > (X, <)
is a lattice homomorphism then the meets (as well as joins) in the posets (X, <)
and (X, =) coincide:

= X ) A 2 Bdylx;) = X AL X,
Hence, for all x,, x, e X,
Xj =g M oxp=2x vz M g =xs

—
——

In other words, the orderings = and = are equal.

3. Algebraic structures. A number of important fibre-discrete constructs
are the constructs of algebras. We review some of them briefly,

An operation of arity n on a set X 1s a map [rom the n-fold Cartesian product X™
(of all p-tuples in X) into X,

a: X"+ X.
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In particular, we have the following:
a unary operation «: X — X;
a binary operation «: X x X - X

(we usually write x+y or x + y, etc., instead of a{x, y));
a ternary operation a: X x X x X = X,
We also consider n = (, the nullary operations.

Convention. For each set X put
X®=1{0};
we often write 1 = {0}; thus,
X%=1.
A nullary operation is a map o: {0} —+ X, which is usually identificd with the

element a(0) of X.

A set endowed with a collection of operations is called an algebra. A map
fﬂ X—=-Y

is said to preserve operations o (on X) and f§ (on Y) of the same arity n, if for each
n-tuple (x;) in X"

ox;) = x implies f(f(x)) = f(x).

Maps preserving all the given operations are the morphisms in various algebraic
constructs — they are usually called homomorphisms.

4. Examples. (i) A groupoidisan algebra (X, o), where o is a binary operation. *)
The construct of groupoids and homomorphisms is denoted by Grd; a homo-
morphism from a groupoid (X, <) into a groupoid (Y,+)is 2a map f: X —» Y such
that

X;eX, = x implies f(x,)-f(x;) = flx) (x,,x;,x€X).

As an example, consider the set R of real numbers with the addition + and the
multiplication .. The exponential function f(x) = e* is a homomorphism

fH(R+) = (R,).
(ii) A semigroup is a groupoid (X, =) satisfying the associativity law:
Xy o(Xy 0x3) = (X, 0x5) 0 x5 (1,25 %, € X).

“The Construct Sgr of semigroups is a full subconstruct of Grd.

*) The term groupoid appears also in a different context: as a construct (or category) in which each
morphism is an isomorphism. We do not use this concept 1n our book.
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Both (R, +) and (R, -) are semigroups. But R™ = (0, + o0) with the exponential
operation x,*Xx, = x¥* is not a semigroup since for example (2%2)%3 = 2(2#3).
(iii) A monoid is an algebra (X, ¢, e}, where (X, <) is a semigroup and e is its unit
element, 1.e., an element such that
eox=3% and xece=x (xeX);

e 1s considered as a nullary operation. The construct of monoids and homomorphisms
is denoted by Mon. A monoid homomorphism from (X, ¢, e} to (Y, », &) is a semigroup
homomorphism f preserving the unit,

fle) = é.

For example, (R, +,0) and (R, 1) are monoids. And f(x) = ¢* is a monoid
homomorphism.

Another example: for each set X (called an alphabet) denote by Z* the set of all
words, or finite sequences, over X, The elements are 0, the void word; o,, the one-
letter words (for each o, € Z); 0,0, the two-letter words (for each a,,0, € Z) etc.
Then (X*, -, @) is a monoid, where - is the concatenation of words:

ﬂ-lﬂ.i %8 JH‘ TITI P TM == ﬂrlﬂ-z —_— E"Tltz e Tm

{for each 0,0,...0, and 1,;1,...1, in Z*).
(iv) A monoid (X, ¢, ) is a group if for each element x e X there exists an inverse
element x 1, i.e., an element such that

1 1

XeX "=e¢ and x ‘ex=-e¢,

Denote by Grp the full subconstruct of Mon, the objects of which are all groups.
Note that each homomorphism in Grp

fi(X,0e)=(Y,-,8)
preserves the inverse elements:
f(x™")=f(x)"' foreach xeX.

In fact, inverse elements are easily seen to be unique (if xey =¢ then y=x""
because y = gey=x"'oxey=x"1oe =x""') and we have

Sx ™ flx)=flx"tex)=fle) =2 (xeX).
Therefore, we could consider groups as algebras
(X, 0. e,in)

where in is the unary operation of inverse element. This would result in a formally
different construct which is, however, “essentially” the same. We make these con-
siderations precise in the next section.

(R, +, 0) is a group; (R, +, 1} is not a group, since 0 has no inverse element;

(R — {0},+,1)is a group.
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(v) The construct Vect of vector spaces can be naturally viewed as an algebraic
construct: each vector space on a set X is given by the binary operation + and by
a collection of unary operations

re(): X=X [rEH)g

assigning to each vector x € X its scalar multiple r- x.

5. Observation. All the algebraic constructs in the preceding examples have
discrete fibres. More generally, given n-ary operations «, # on a set X which are

preserved by idy, then

o(x) = x implies Blx)=x  foreach (x)eX";

in other words, « = f.

6. A different situation occurs with the fibres in constructs of partial algebras.
A partial algebra is a set X together with partial operations, i.e., maps from subsets
of X" into X. The definition of a homomorphism of partial algebras has several
natural variants — we present one of them, not going into general considerations

(and restricting ourselves to a few examples only).
A partial groupoid is a pair (X, <), where X is a set and e is a map from a subset

“of X x X into X; thus, x, o x, is either an element of X or is undefined (for all

X, X5 € X). A homomorphism from a partial groupoid (X, o) into a partial groupoid
(Y,-)isamap f: X — Y such that

Xy ox; = x implies f(x)« f(x;) = f(x)

Thus, whenever x, o x, is defined, so is f(x,) f(x,). Denote by Grd, the construct
of partial groupoids and homomorphisms.

(X152 %3 € X).

Obscrvation. The fibres in Grd, are not discrete. Given partial operations o
and » on aset X then o is finer than - 1iff

X; X, =X, *X, Wwhenever x,-x, isdefined (forall x,,x,€eX).

Thus, the finest operation is that which is nowhere defined.

7. We conclude this section by a notion needed in the third chapter: a partial
monoid. (This rather special concept is introduced for the purposes seen below.,
The term partial monoid is not currently used in algebra; thus our terminology
does not contradict any current usage.)

A partial groupoid (X, ) is said to be weakly associative if for arbitrary x,,x,,x;e X
such that x, x, and x,ox; are defined, we have =

(3‘-'1 "Iz}‘:‘xs = X D{xz "-“:3)-

The equality is understood in the sense that both sides are defined.

)
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A unit n a partial groupoid (X, <} is an element e€ X such that for each xe X,

if xee 1sdefinedthen xce= x;
if eex i1sdefinedthen eox = x.

A partial monoid is a triple (X, «, E), where (X, ¢) is a weakly associative partial
groupoid, E € X is a set of units and for each xe X there exist units ¢, E and
€ E such that

xee, =X and ,eox =X.

A homomorphism from a partial monoid (X, . E} into a partial monoid (Y, E)
is a map f: X — Y which 1s a homomorphism of the partial groupoids preserving
units, i.e.,

ecE implies fle)eE.
The resulting construct is denoted by Mon,,

Example. Let X be the set of all {real) matrices, let « be the usual multiplication
of matrices, and let E be the set of all the unit matrices. Then (X Lo, E] 1s a partial
monoid: for each (n, k)-matrix xe X the unit e, is the unit (k, k}-matrix and _e is
the unit (n, n)-matrix.

*

Observation. The fibres in Mon  are not discrete. For example, on the set X
of all real matrices define an operation o which is the usual multiplication x-oy
if x or y is a unit matrix, and which is undefined otherwise. Then (=, E} is finer than

(-, E).

Exercises 1D

a. Transformation monoids. A map from a set X into itsell (i.e.. an clement
of X*) is called a transformation. A transformation monoid is a set T < X* con-
taining id, and closed under composition (f,ge T implies f.ge T).

(1) Verify that (T, .,1dy) is a monoid. :

(2) Prove that each monoid (X, ¢, e} is isomorphic to a transformation monoid.
Hint: for each xe X dcfine a transformation t. e X* by 1t (y)=xey (yeX).
Then t_.t_, =1, . andf, =1d,.

X

b. Abelian groups are groups (X, +, 0) satisfying the commutativity law,

Xy + Xy = X3 + Xy (x5, %2 € X).

The construct of Abelian groups is denoted by 4b; it 1s a full subconstruct of Grp.
{The operation of an Abelian group is usually denoted by + and 1ts unit by 0.)

(1) Verify that the addition of integers defines an Abelian group (Z, +,0). What
about the multiplication of integers?
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(2) Two integers x, ye Z are said to be congruent modulo k = 1,2,3,... il k divi-
des |x — y|; in symbols, x = y (mod k). Put

Z,={0.1,...k — 1}

and define the addition on Z; as follows: x @ y is the unique element of Z,, con-
gruent to the usual sum x + y modulo k. Analogously with multiplication Q.

Prove that (Z,, @, 0) is an Abelian group.

Prove that (Z, — {0}, ®,1) is an Abelian group iff k is a prime.

(3) Find a non-Abelian group. Hint: the largest transformation monoid defining
a group.

c. Rings and fields. A (unitary) ring is an algebra (X, +,0,+, 1), where (X, +,0)
is an Abelian group and (X,-, 1) is a monoid such that the following distributive
laws hold:

xey+z)=(x-y) + (x-2)
(¥ +2)ex=(yex) +(z+x)

A field is a ring such that (X — {0},+, 1) is a group. The construct of rings is denoted
by Rng; its morphisms are the ring homomorphisms which are monoid homo-
morphisms with respect to both of the operations + and «. The full subconstruct
of fields is denoted by Fid.

(1) Verify that (R, +,0,-,1) is a ficld.

(2) Verify that (Z,, ®,0,®, 1) is a ring which is a field iff k is a prime.

(3) Verify that the map

f: (Z. +1ur':1) _'{Zh @'-;01 O, 1)

which assigns to each integer ze Z the remainder of the integer division |z|: k is
a ring homomorphism.
(4) Prove that for each ring (X, +,0,+, 1)

|l =0 implies X = {0}.

forall x,y,ze X.

Such a (singleton) ring is called trivial.
(5) Prove that each morphism in Fid,

[ (X, +,0,4,1) = (Y, +,0,+,1)

is either one-to-one or constant; the latter case occurs iff (Y, +,0,+, 1) is the trivial
field. Hint: If x;, — x, # 0 then the (multiplicative) inverse to x = x, — x, exists.
Then x~'+(x, — x,) = 1 implies f(x)™ "'+ f(x, — x,) = 1. Thus, f(x,) — f(x;) =0
- implies 0 = f(x)+(f(x,;) — f(x,)) = L

d. The constructs Tepe and Comp. The full subconstruct of Top, the objects

of which are all compact spaces (respectively all compact T,-spaces) is denoted by
Topc (respectively Comp).

Iy
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(1) Prove that Comp is fibre-discrete. Hint: If 1dy: (X,2) = (X, B) is continuous,
then for each M ea the set X — M is closed, hence, compact. Thus X — M 1is
compact, hence closed, in f (see 1Ce(3),(4)). Thus, « < f,and f S a is clear.

(2) Verify that the indiscrete topology is compact. Conclude that Tepc does not
have discrete fibres. Is Tope fibre-complete?

1E. Isomorphic Constructs

I. A topological space can be defined by its open sets (see 1C5) or by its closure
operator (see 1Cc). Thus, we could define a construct

Top',
of topological closure operators and continuous maps, as follows. Objects are pairs
(X,7)
where ~ is a map from exp X into itself which is isotone, idempotent and additive.
Morphisms from (X, ~ ) to (¥, 7 ') are the maps

fiX=+X
such that
f(M) < f(M) foreach M<X.

The constructs Top and Top' are closely related — so closely, in fact, that we are
tempted to consider them as identical. We shall make this precise.
For each topology = on a sct X denote by

I (=)
the corresponding closure operator. This defines a map
I,: Top[X] — Top'[X]

which is easily seen to be a bijection. The important property of these hijecliﬂns Iy
is that they “transport™ morphisms in the following sense: given topological spaces

(X,x)and (Y, f)and a map f: X — Y, then
f:(X,a) = (Y,f) isa morphism of Top
iff
2 (X. I d2)) = (Y, I{B)) s a morphism in Top'.
(See exercise 1Cc{4).)
3 Definition. Constructs & and  are said to be concretely isomorphic 1

there exist bijections

Iy: [X] = F[X] (X aset)
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satisfying the following condition:

(R) given arbitrary objects (X, «) and (Y. f) of & and an arbitrary map f: X - ¥
then f:(X,a)—(Y.f) is a morphism of & iff f: (X, I(2)) = (Y, T {B)) is
a morphism of 7.

Thus, Tap and Tep’ are concretely isomorphic constructs.

3. Example: lattices as algebras. Let (X, <) be a lattice. Forming all joins
(of pairs) we obtain an operation

VviXxXx X=X

which is clearly
(i) commutative: x, v x, = x, v x; (x,,x, € X);
(ii) associative: x; v (x; v x3) = (x; v X3) v x3 (%, x5, x5€ X);
(iii) idempotent: x v x = x (x& X).
Also the meet is a commutative, associative and idempotent operation

At X xX—-X.
These two operations are related by the so-called absorption laws:

XxX=xv(ynax

X3 %) for each x,ye X .

All this is quite easy to verify.
Still easy, though more technical, is the verification of the converse: lel v and a
be binary operations on a set X such that
i) v and A are commutative, associative and idempotent, and they satisfy
the absorpuion laws.
Then there exists a unique order relation £ on X such that (X, <) isa lattice with v
and a as its join and meet, respectively. (This order is, necessarily, defined by

It must be verified that this is really an order and that
Xy VX=X, vx, and x, AX,=x; AX, forall x,x,eX.)

We conclude that lattices can be considered as special algebras rather than special
posets. Let us formalize this.

Observation. The construct Lat is concretely isomorphic to the construct
Lax’ of algebras (X, v, a), where v and a are binary operations satisfying (*),
and their homomorphisms.

Indeed, for each ordering < in Lat[ X | denote by 1,(<) the corresponding pair
(v, A) of the join and the meet operations. This defines a bijective map

Iy: LEI[X] — Lﬂ!"[X] _

It is obvious that morphisms in Lar and Lar correspond under these bijections.
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4 Definition. A realization of a construct % in a construct .7 is a full sub-

construct & of F which is isomorphic to &.

Thus, .% has a realization in 7 ifl there exist one-to-onc maps
Iy: X[ X] - T[X], Xaset,

such that the condition (R) of Definition 2 holds. The full subconstruct %" of 7"
then has as objects all the pairs (X, I (@), 2 € #[ X ]; its morphisms are all 7 -mor-
phisms between these objects.

Example: the construct Pros of preordered sets (1Bb) has a realization in the
construct Top of topological spaces. For each preorder = on a set X denole by
I { £) the following topology on X: a set M £ X 1s open iff for x;,x,e X with
x, £x, and x, e M we have x, e M. This dcfines a map

I,: Pros[X]| — Tep[ X].

which is cearly one-to-one: the relation < can be retracted [rom the topology
I, (=) since x £y 1s equivalent to ye F for all x,ve X, We shall prove that
also the morphisms correspond,

Let f:(X,<)—(Y.=) be an order-preserving map. Then f:(X.1(=))—
— (¥, I{X)) is continuous, i.e., for each open set M £ Y the set /(M) is open.
(If x, <x, and x,ef (M), then f(x,) = f(x,) and f(x,)e M which implies
flx,)eM.ie, x,e f~(M))

Let f: (X, 1)) = (Y.I{=Z)) be a continuous map. Then x, < x, imphes

x; € {x,}, hence f(xz) e f([x,}) € 1f(x,)} (see 1Cc); in other words. f(x;) = flx;).

Remarks. (i) Note that, for each preorder <, the topology I{ =) has the fol-
lowing special property: the intersection of an arbitrary collection ol open sets is
open. Such topological spaces are called quasi-discrete. It 1s rather easy to prove
that, conversely, every quasi-discrete topology « has the form 2 = I(=) for the
following preorder: x, < x, iff x, € {x,}. Thus, the realization of Pros in Top is the
full subconstruct of all quasi-discrete spaces.

(ii) The construct Pos of posets has a realization in Top, (1Cd(1)): given a preorder
< then the topology I (<) is T, iff < is an order.

5. We conclude this section with an observation explaining the role of transport-
able (1C7) constructs among all constructs. The reader who finds these considerations
too abstract can skip this part without breaking the continuity of the text.

Let us call two structures a and  on the same set X equivalentif «x = f and f = «;

in other words, if
idy: (X, 0) - (X, f)
is an isomorphism. We write

a=§.
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In a transportable construct. ¢ = f mmplies o =

& to f3; since the transport is unique and id,:
this implies o = §.

f. Indeed, the bijection id x transports
(X, 2) — (X, a) is also an isomorphism,

Let us say that a construct & js multi-transportable if for each object (X, %) and

cach bijection f: X — ¥ there exists
. Xisls a . !
such that structure -ﬂ = ,_‘EF[ YJq not I]ElCESEEI'II}’ unique,

f: (X,a) = (V, )

15 an 1somorphism. Note that given an
other , :
property, then SIFUEEL[IF-_‘ ﬁ €5 { Y] with the same

B=p.

For, both - — of 4 ; ‘

Sﬂmi's oth f77: (¥, f) - (X, o) and f: (X, %) = (Y. #) are isomorphisms ang hence,
idy = £./7% (¥, ) > (¥, ).

(Conversely, for each structure : _
_ _ ’ , equivalent ' . ,
is an isomorphism F'. equivalent to §, it is clear that [ (X, 2) = (Y, 8)

the same

which satisfy condition (R)
lowing sense:

() if Ty(or,) = I'la;) then o, =
e J= :EE! fﬂr ﬂﬂﬂh X ﬂ.ﬂd Oy O E{gﬁ X .
(ii) for each X and each feT[X] there exists ::Eé‘”’[)f]l w?th ﬁ[EJI}I{mj

p i :
mchrﬁlp:::;tmn.fach multi-transportable construct & has a full subconstruct &
al & and . are nearly isomorphic and 7 is transportable. |

p . . :

; t;}nf: For each set X, the relation = is clearly an equivalence relation on F[X]

{31;5,35 ?xmn[]I of choice (1A3) there exists a choice class F|X] for = Finding chnicf;

or all sets, we obtain a full subconstruct 7 of &- ™

T i e e Ko < OF 7 1ts objects are the pairs

s phisms are necessarily, all & 1S
o . ; : -morphisms.

) yiiajd:}fﬂ X let I: #[X] - 7[X] be the canonical map, assigning lo each

s ke UH.IE]I.iE Structure f = I,(x) such that » = fand feT[X] Then I

f cEanfa{m)j} nTirl}' onc-to-onme. Let f: (X, o) — (Y,B) be a morphism in '5” Th ;
- WA dxde)) = (Y, Iy(8)) is a morphism (in & or : : it | of the

. : ") because it is

i s ) 8 or € 1t 15 composed of the

phisms: idy: (X,1(x))—(x 2), f:(X.a !

— i ] LS ER - = - K . & . ; i
{?,I r{ﬁ]]:ﬂ.ma]ugnusly In the converse direction. Bl s e
Fma]l.y, /15 transportable. For each object (X, =)

there exists be#[X] suchthat f: (X,a) = (¥

e S[X] and & is multi-transportable)

:'.‘Jf 7" and each bijection X-Y
,3} 15 an isomorphism in % (because
Let f° be the unique structure in F¥]

——
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with § = f. Then f: (X, a) — (Y, §) is an isomorphism in 7. Since in . equivalent
structures are equal, the uniqueness of fi' follows. ]

Example. The construct Mrtc of metric spaces is nearly isomorphic to the con-
struct Tepm of metrizable spaces. Consider the maps

I'o: Mte[X] — Topm| X ]

assigning to each metric o the topology Iy{a) = & induced by a.

6. Definition, A skeleton of a construct & is a full subconstruct %, of .% such
that for each object 4 in % there exists precisely one object A, in & 1somorphic
with A4 (in &#). Two constructs & and F are said to be concretely equivalent provided
that 5 has a skeleton &; and .7 has a skeleton 7 such that %, and 7 are concretely

1somorphic.

Remark. Each construct has a skeleton. This follows from the axiom of choice:

T

a skeleton of & is nothing else than a choice class of the equivalence relation =
(Remark 1C3) together with all 5-morphisms.

Examples. (i) Cardinals are sets which form a skeleton of the construct Ser.
This means that for each set X there exists a unique cardinal, denoted b;.'

card X ,

which is isomorphic to X. Thus, two sets X and Y are isomorphiciflf card X’ = card Y.
For finite sets this means that X has the same number of elements as Y. The usual

choice of finite cardinals are the natural numbers,

0=0 1={0} Z=101} F={0,12}); &o.
The statement

card X = 2

means that X is isomorphic to 2 = {0, 1}, i.e, that X has precisely two elements.
All countable infinite sets have the same cardinal; the usual choice is the set of
all natural numbers, denoted by “aleph zero™:

Ry =140,1,2...1.

(ii) Euclidean vector spaces. Denote by Vect,, the full subconstruct of Fect formed
by finite-dimensional vector spaces. All Euclidean spaces

(R +,-) r=0,1,2..

form a skeleton of Vect,: each vector space 4 of dimension n is isomorphic to
(R +,- ), and two distinct Euchdean spaces are non-isomorphic.

Proposition. Each construct is concretely equivalent to a transportable con-

struct,
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Proof. Let & be an arbitrary construct. We shall exhibit & multi-transportable

construct &, concretely equivalent to .%. Then we shall use the preceding prop-
osition: .7 is nearly isomorphic to a transportable construct 7", It is obvious that &
and 9 are also concretely equivalent, and this will conclude the proof.

The definition of 7. Its objects are quadruples

(X,X,ap)

where X is a set, (X, o) is an object of & and p: X — X isa bijection. Its morphisms
from (X, £, 2, p) 1o (Y, ¥, B, q) are maps f: X — Y such that

g " f.p: (X9~ (V. B)

is a morphism of .%°. Let us verify the axiom of composition., Given morphisms
[ (X, X,a,p) = (Y, ¥, B,q) and g: (Y.Y,B.q)=(Z.2,3,7)

then ¢~ '.f.p and r *.g.q are morphisms in ¥, hence, also

" tg.g).@t fon)=rtg.0).p: (X, 0) > (Z,7)

is 2 morphism in %. We see that & is a well-defined construct.
J is multi-transportable: for each object (X, X, «. p) and each bijection f: X — ¥
we obtain a new object (Y, X, &, f. p), and clearly,

I {X,f,u,p]—-(hf,a,ﬁp]

is an isomorphism.
F is concretely equivalent to .%. Let %, be an arbitrary skeleton of .%. Denote
by .7, the full subconstruct of 7, the objects of which are all the quadruples

(X, X, 2 1y)

with (X, 2) in &%, Then &, and F, are obviously conretely isomorphic; hence, it
suffices to show that 7 1s a skeleton of 7. First, no two objects of .7, are isomorphic
(since this holds for %,). Next, for each object

(X.X,a,p)

in 7 there exists an object (Y, f) in %, isomorphic to (X.2); let f: (Y,8) = (X.2)
be an isomorphism. Then

p.f: (Y Y.5.1,) = (X, X,2p)

is an isomorphism in & (because both p~' .(p.f).1, and 1;'.(p.f)" .p are
morphisms in %), ]

7. Example: One-object constructs, Let .% be a construct which has precisely
one object 4 = (X, a). The symbol « is somewhat superfluous: since the structure
15 unique, it is only important to know what the set X is and what the morphisms
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are. Each morphism is a transformation of X (see 1Da). By the axioms of compo-
sition and units, |

hom(4, 4) = X*¥ .

is a transformation monoid.

Thus, we can identify transformation monoids and one-object constructs.

For each such construct & we obtain a transportable construct & concretely
equivalent to & as follows, Its objects are (Y,a), where Yisa setand a: ¥ - X
is a bijection. (Thus, ail objects in  are on sets isomorphic to X .) The morphisms
from (Y, a) to (¥, «') are those maps

f:YaY

for which a'. f.a«™': X = X is an eclement of the transformation monoid.

1F. Subobjects and Generation

1. Each subset of a poset is also ordered: by the restriction of the given order. On
the other hand, subsets of a vector space need not carry a structure of a subspace,
We are able to formulate a general concept of subobject using morphisms.

Let Y be a subset of a set X. We define the inclusion map

v ¥+ X

by »(y) = y foreach yeY.
. Il X 1s ordered by a relaiion <, denote by <’ its restriction to Y: y; Sy in Y
f y, =y, inX (forall y,y,eY) Then

(1) v: (¥, £) = (X, £) is order-preserving.

Note that, however, this condition alone does not determine the order <'; if <
denotes the discrete order then v: (¥, <) — (X, <) is also order-preserving. The
order <'is determined by the following property (easy to verify):

(2) for each poset (T, <) and cach map h: T— ¥ such that ¢_h: (T, =) -
— (X, <) is a morphism. h: (T, <) - (Y, £*) isalso a morphism.

Conditions (1) and (2) do determine <’ since (1) is fulfilled by all orders fine

than <’, and (2) is fulfilled by all orders coarser than <'. '

2. Definition. Let (X, 2) be an object and let Y be a subset of X. An object
(Y. ) is a subobject of (X, a) if the inclusion map v: ¥ = X fulfils the following:

(1) v: (Y, B)— (X, ) is a morphism;

(2) for cach object (7. d) and each map h: T — Y such that v. h: (T, 0) = (X, %)
is 8 morphism, also h: (T,6) — (Y, ) is a morphism.

[T,5]
h

(Y,p) ——s= {Xs4)
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Examples. (i) Top: for each topological space (X, «) and cach set ¥ € X the
following is clearly a topology on ¥:

*={MnY, Meaj.

Then (Y, o) is a subobject of (X, x), called the (topological) subspace.
Proof. (1) v: (Y.«)— (X, B) is a continuous map because
0} (M)=MnVYead  foreach Meax.

(2) Let v.h: (T,8)— (X, ) be a continucus map. Then for each M Yex,
where M e o, we have

™ (MnY)=h Yo ' (M) =(v.h)"" (M)ed.

Hence, h: (T, 8) — (Y, «) is continuous.

(i) Comp: for each compact T,-space (X.a) and each closed subset ¥ < X the
topological subspace (Y, «') is also compact T,. Then (Y, «’) is a subobject of (X, )
in Comp; the proof is as in (i).

Conversely, if (¥,«) is a subobject of (X,) in Comp then Y X isa closed
subset — see 1Ce(3).

For example, the interval [0, 1] with the Euclidean topology ¢ is compact, T,.

The interval (0, 1) does not carry a structure of a subobject of [0, 1], ie., there is
no compact T, topology a on (0, 1) such that the space ({0, 1), ) is a subobject of

([0, 1], ¢) in Comp.
(iii) Met: for each metric space (X,a) and each set Y £ X, denote by o' the

restriction of the metric « to Y. Then (Y. «) is a subobject of (X, x) in Mer. The proof
is analogous to that in (i).

Remark. A construct is said to be hereditary if for each object (X, a) and each
set Y = X there exist a subobject (Y, ) of (X, «). Thus, Pos, Top and Met are
examples of hereditary constructs, while Comp is not hereditary.

3. Observation, Let (Y, B) be a subobject of (X, ). Then f is the coarsest of all
the structures 7 on Y such that v: (Y,y) - (X, %) is a morphism.

Proof. Since
Ny idy e =u: (Yy) - (X, q)
is a morphism, the definition of a subobject implies that also
idy: (Y.7) = (Y. B)
is a morphism. That is, f is coarser than y. ]

Corollary. In each transportable construct, the subset ¥ £ X determines the
subobject (Y, f) of (X, a): if (¥, B') is also a subobject of (X, ) then f = £

Remark: It is usual to call a subset ¥ € X a subobject of (X, z) if there exists
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a structure fi such that (¥, §) is a subobject of (X, ). This leads to no contradiction
in transportable constructs — this is the message of the preceding corollary. For
example, we can say that the subobjects in Comp are precisely the closed subsets.
The algebraic constructs have discrete fibres, as we have seen in the section 1D.
Therefore, subobjects can be defined by the condition that the inclusion ¢ be a homo-
morphism alone. (By the observation above, this determines the structure f.)

Examples. (i) Vect: a subobject, or a (vector) subspace, of a vector space
(X, +.+)isasubset ¥ £ X which can carry a structure of a vector space (¥, +',+)
such that the inclusion map is linear. The latter means that +' is just the restriction
of +:

yt ya=uy; +'y;) =oly) + oya) =y + »; (forall y,,y;€Y).

Analogously, ' is just the restriction of .

Therefore, a subspace of a vector space (X, +,+)isasubset ¥ & X, closed under
the addition,

y; + y,€Y whenever y,y,eY,
and the scalar multiplication,
r+yeY whenever yeY  (foreach reR).

For example, the subspaces of the two-dimensional Euclidean space (R?, 4, -) are

1. all the lines going through the origin, 2. the trivial subspace {(0,0)} and 3. R?
iself.

(ii) A sublattice, 1.e., a subobject in the construct Lat, of a lattice (X, <) is a subset
Y € X, closed under joins and meets, in the sense that for all y,.y,€ Y we have

Y2 vVv,eY and y, A y,€Y.

For example, in the lattice (Z*, <) (1B7) the set Y £ Z" of all even numbers is
a sublattice: given two even numbers y, and y,, their least common multiple y, v v,
and their greatest common divisor y, A y, arealsoeven. Incontrast,theset P Z*
of all primes 1s not a sublattice — in fact, the order < on P is discrete!

(i) The set N = {0,1,2,...} is clearly a submonoid (a subobject in the construct
Mon) of the additive monoid of real numbers (B, +, 0).

Note that, however, N fails to be a subgroup {a subobject in Grp); indeed, (M, +,0)
is not even a group.

In general, a submonoid of a monoid (X,-,e) is a set Y= X containing ¢ and
closed under the operation -+, i.e., y,«y,€ Y whenever y,, y, € Y. Whereas, a sub-
group of a group (X, -,¢) is 2 submonoid Y = X, which is also closed under the
inverse-clement operation, i.e., such that

yeY implies y 'eY.

4. Definition. A construct 1s said to have intersections if the intersection of any
collection of subobjects of a certain object 1s also a subobject. More formally, if
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for each object (X, ) and each collection (Y, §,). i € I, of its subobjects the set ¥ =
= (Y, also carries a structure of a subobject of (X, «).

ief

This property is commeon to most of the constructs encountered in mathematics.
Each hereditary construct (e.g., Top, Met, Gra, Tos) has intersections, of course.
Let us mention some other examples.

Examples. (i) Algebraic constructs have intersections. For example, if ¥, ie
are sublattices of a lattice (X, <) then so 1s ¥ = [Y. Given y,,y,e Y, then for
all iel we have y,.y,€Y, hence, y, v y,e ¥, and y, A v, e Y. This implies

yi vy,eY and y, A y;€¥.

Thus, Lar has mtersections, It can be similarly shown that Clat, Grd, Mon, etc.
have intersections.

- (ii) The construct Comp of compact Hausdorfl spaces has intersections: the
subobjects are precisely the closed subsets, and an intersection of closed sets is
always closed (because a union of open sets is open by the definition of a topology).

Remark. The construct Tope of compact topological spaces fails to have inter-
sections. Consider the following space (X, o):

il‘.'ﬂl

0 1 23

[ 5]

¥ Oy
i

X =t i0: 2003
o« ={U g X;either X —U isfiniteor {oc,,cc,} nU =0},
Then (X, ) is easily seen to be compact: if U, i€, is its open cover then ¢, is an

element of U, for some iyel; then X — U, is a finite set, which can be covered
by U,ieJ, for some finite set J < I, hence,

U, ieJ v {iy}
15 a finite cover of X. It is evident that
Y, =X —{o0,} and ¥, =X — {o0,}

are also compact subsets. Thus, the subspaces (Y}, #,) and (Y}, £,) of (X, «) are sub-
objects in Tapc.
The set

V=79 n¥={0,1,3,..]

is not a subobject of (X, &) in Tope. Indeed, the induced topology ' = [M ~ ¥: Mea)
is discrete, o = exp Y. If y is a topology such that (¥,7) is a subobject of (X, o) then
the fact that the incusion map

B {Yh") _'{X’E}a
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15 continuous clearly implies o' < v, i.e, &' = v But (¥, m’} is not compact since the

—

open cover {0}, {1}.{2},... has no finite subcover. Therefore, y does not exist.

5. Remark. Let (X, a) be an object of a construct with intersections. For each
set M S X there exists the least subobject Y of (X, 2) with M < Y: indeed, Y is
the intersection of all subobjects of (X, ) containing M. We say that the set M
generates the subobject Y. If ¥ = X we call M a set of generators of (X, a). Thus,
M 1s a set of generators iff no subobject of (X, «), except all of (X, a), contains M.

An object (X, @) is said to have n generators if there is a set M = X of generators
with n = card M.

Examples. (1} In the construct Men of monoids, the additive monoid of integers
(Z, +,0)

has two generators: 1 and — 1. If a submonoid Y = Z contains both | and —1, 1t
contains 2=1+4+1, —2=(—-1)+(—1),3=1+1+1,-3...; thus, Y =Z

(ii) In the construct Grp of groups, (Z, +, 0) has one generator: 1. If a subgroup
Y € Z contains 1 then it contains also the inverse element — 1, hence Y = Z.

Note that | generates the submonoid {0, 1,2,...} of (Z, +,0) (in the construct
Mon).

(iii) A vector space has n generators iff its dimension 1s at most n. Each set M
generates the subspace of all linear combinations of elements of M (the linear span

of M).

"(iv) Generation is trivial in hereditary constructs. For example, each subset M
of a topological space (X, a) generates the subspace (M. %').
(v) In the construct Cemp, the interval [0, 1] (as a subspace of (R.g)) has N,
generators: the set M of all rational numbers in [[}, 1] is dense; hence, it is a set
of generators.

Exercises 1F

a. The transitivity of subobjects. Let (Y,f) be a subobject of an object
(X, ).

(1) Prove that each subobject of (Y, f) is also a subobject of (X, a).

(2) Conversely, prove that each subobject (Z,7) of (X,a) such that Z< Y is
also a subobject of (¥, f).

(3) In Comp this means thal given aclosed set ¥ = X thenaset Z < ¥ is closed
in X iff Zis closed m Y. Is it true for each topological space (not necessarily compact)?

b. Generation implies intersections. Let % be a construct such that for
each object (X, «) and cach set M the least subobject of (X, «) containing M exists.
Prove that then % has intersections; compare Remark 1F5. Hint: if Y, are subobjects
and M = ()Y, generates a subobject Y, then, necessarily, ¥ < Y, for each i; thus,
M=Y.
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¢. Unary Z-algebras are sets X together with a collection (using £ as an index
set) of unary operations, i.e.,

o, X = X cel.

We usually identify unary algebras with pairs (X, «), where X is a set and
a: X x2Z—=X

is a map (related to the above operations by #(x, o) = 2 (x) for xe X and o€ X)
This gives rise to the construct Un; of unary X-algebras and homomorphisms (for
each set Z).

(1) Verify that Un, is a fibre-discrete construct.

(2) Using the word-monoid Z* (see 1D4(jii)), define o*: X x IZ* = X as follows:

a¥(x, Q) = x;
0*(,0,0, . 0) = 1 it - (2, () )

foreach xe X and 0,0, ...0,€ Z*. Prove that in Ungeach subset M S X gencrates
the subalgebra a*(M x I*) c X.

d. The subalgebras of integers. (1) Verify that the additive group (Z, +, 0)
has precisely the following subgroups:

kZ = {kz; zeZ} k=0,1,2,...

(2) Prove that the monoids (Z, +,0) and (Z, -, 1) have uncountably many sub-
monoids. Hint: use an arbitrary set of primes as a generating set.

e. A subbase of a topological space (X, o) is a colection «, of its open sets such
that « is the coarsest topology on X for which o, € o

(1) Prove that the intervals (—oco,a) and (a, + o) for all ae R form a subbase
of the line. Prove that the strips J x R and R x J for all open intervals J € R
form a subbase of the plane.

(2) Let (X, 2) be a topological space with a subbase x,. Let f: T— X be a map
and let & be a topology on T with [~ U)ed for cach U ea, Prove that then
f: (T.6) = (X, a) is continuous. Hint: verify that {V = X; f~'(V)ed| isatopology
containing x, and hence, also «.

[. Generation in Cemp. Prove that each subset of a compact T,-space gen-
erates its closure in the space. Conclude that dense sets are precisely the generating
sets. Does the same hold in Tep? Hint: subobjects are precisely the closed sets in

Comp.

1G. Quotient Objects

L. Quotient objects of an object (X,a) are induced by equivalences on the set X
(in a manner similar to the subobjects induced by subsets of X).

el L
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Let ~ be an equivalence relation on a set X. For each xe X we denote by [x]
its equivalence class, i.e., the subset of X containing all points equivalent to x:

[x] ={t; teX and x~t}.

All these equivalence classes form a new set, called the quotient set of X under ~
and denoted by X/~ :

defined by
p(x) = [x] foreach xeX

is called the guotient map or the canonical map.

Before giving the general definition of a quotient object, let us consider the construct
of graphs. For each graph (X, z) and each equivalence relation ~ on X we obtain
a new graph @ on the quotient set X | ~ : for arbitrary equivalence classes 1,1'€ X[~

tai ifthereexist xet and x'et with xax'.

(Note that xet is equivalent to [x] = t.) For example, consider the graph (X, a)
depicted below (where an arrow from x to x’ indicates that x z x’) and the equivalence
~ on X with the equivalence classes indicated by dotted lines:

N — T
B i i RS S 2

T bolt B l TI

| it
i 4| b g

biweal ] [T | {x' 'I)

m_ 21 13 6 17

¢ Ay O

“x_,_____-__..—f"’!

The quotient map is clearly compatible:
0: (X,2) - (X]~,).

Moreover, for each graph (T, 8) and each map h: X/~ — T suchthat h.¢: (X, a)—
— (T, d) is compatible, h: (X/~,a) — (T, ) is also compatible. If t&¢ then there
exist xer and x'et’ with xax'. Then [x] = 1, ie, ¢(x) = t; analogously, ¢(x') =
= t". Since h.¢ is compatible, we get (h.p(x)) & (h. (X)), ie.,

h(t) 8 h{t').
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2. Definition. Let (X,a) be an object, and let ~ be an equivalence relation on
the set X. An object [};J.’_,, &) is called a quotient object of (X, x) under ~ provided

that

(1) ¢: (X,o) = (X/~,&) is a morphism;

(2) for each object (7, 6) and each map h: X[~ — T such that h.¢: (X, ) -
— (T, &) is a morphism, h: (X|~,&) —(T,d) is also @ morphism.

(%, ) er/m &)

h

(T.&)

Examples. (i) Gra: the quotient graphs have been described above.

(i) Top: for each topological space (X, «) and each equivalence ~ on X denote
by & the topology on X/~ in which a subset of X~ is open iff the corresponding
subset of X 1s open, i.e., 2

g={Uc X/~; ¢ {U)ea}.

Then (X[~, &) is a quotient space of (X, «). Clearly, ¢ is continuons. For each space
(T.6) and each map h: X/~ —» T with h.¢ continuous, k is also continuous:
Ved implies (h.o) ' (V)=¢ '(h (V) exie, h (V)ed

For example, let ~ be the equivalence on the real line (R, ) with two classes:
(—20,0) and [0, +o0). The quotient space has two points, a, = [0, +4c) and
a, = (—o0,0), and the topology on {a,,a,} has three open sets: @, {a,} and
{a,,a,} — this is the Sierpinski space (1Cd(1)).

(ifi) Sgr: on the additive semigroup of integers (Z, +) define an equivalence ~
as follows:

Z, ~2z, T 2z, —2z, iseven (forall z,,2,eZ).

Then Z|~ has two classes: [0] — the set of all even numbers, and [1] — the set of

all odd numbers, Define an operation @ on Z/w as follows:

[P]@[o] =[1]@[1]=[0] and [0]® [1] =[1] & [0] = [1].
Note that for arbitrary z,,2,€/Z, .

[z2] @ [z2] = [z + 2]
In other words,

@: (Z, +) = (Z|~, ®)

* 1$ a homomorphism. It is easy to sec that {Z ~, @) is a quotient semigroup of (Z, +).
Deline another equivalence on Z as follows:

zy ~:Zy Mieither 2,51, 2>1 or z; 21, z; 51
(for all z,,z, e Z).
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Then Z/~ also has two classes: [1] = {1,0, —1, —2,...} and [2] =1{2,3,4,...}.
But there exist no operation « on Z/~ such that ¢: (Z, +) = (Z/~, ) is a homo-
morphism: 1 + 1 = 2 forces us to define [1]2[1] = 2, whereas 0 + 0 = 0 forces
us to define [1]=[1] =[1]. |

Remark. A construct is said to be cohereditary if each equivalence on each
object induces a quotient of this object. Thus, Top and Gra are cohereditary con-
structs.

For those constructs which are not cohereditary, for example Sgr, 1t 1s important
to know which equivalences do induce quotient objects.

3. Definition. A congruence on an object (X, o) is an equivalence ~ on X such
that there exists a quotient object of (X, «) under ~.

Examples. (i) Grd: a congruence on a groupoid (X,+) is an equivalence ~
such that, for all x,x’, », ¥ In X,

r

(%) x~x" and y~y mmply x.y~x"=).

Proof: If (=) holds, we can define an operation o on the quotient set X/~ as
follows:

[x]e[y]=[x+y] forall x,yeX.
It is easy to verify that (X[~ ¢) is a quotient groupoid of (X, -).
Conversely, if (X/~,<) is a quotient groupoid then ¢: (X,+)—= (X/~,2) is
a homomorphism, thus,

[x] e [v] = o(x) o 0y) = ¢lx-y) = [x ]
(forall x,ye X).If x ~ x’ and y ~ y' then

[x]o[¥] = [xT-[y]=[¥¥],
therefore, x « y ~ x'» y'.

(i) Sgr, Mon, Grp: the condition (*) characterizes congruences.

[iii} Rng: a congruence on a ring (X, +,0,+,¢) is an equivalence ~ with the
property (*) both with respect to + and with respect to «. For instance, on the ring
of integers (Z, +,0,+, 1) consider the equivalence = (mod k) of 1Db(2). This is
a congruence because given x,x’, y,y' €Z such that |[x — x'| and |y — y| are
divisible by k then

(x +y) ="+ )| and |xy— Xy

are also divisible by k. The quotient ring has elements [0],...,[k — 1] and its
operations are induced by those in Z: ¥

[2.] 5 [22] =[z1 + 2] and [z,]-[z] = [z,2,]
(for all z,,z,€Z).
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4. Observation. Let ~ be a congruence on an object (X, a). Then (X/~, Q)
is a quotient object of (X, a) under ~ ifl x is the finest structure on X/~ for which
the quotient map is a morphism i

P: (X,2) = (X/~.3).

Proof, Let (X/~, %) be a quotient object. If £ is a structure such that ¢: (X, z) —
— (X [~, f) is a morphism then ¢ = idy,. .¢ implies that

idy)~ 2 (X]~,8) = (X[~, f)

is a morphism. Thus, & is finer than §. -

Conversely, let a be the finest structure with respect to the property above. Since ~
i$ a congruence, there exists a quotient object (X/~, a,); then ¢: (X,a) = (X/~, ;)
is & morphism, thus, & < x,. Since @ = idy,. . ¢: (X,a) - (X/~,3) is a morphism,
we have «, < & Hence, the structures @ and «, are equivalent. Consequently,
(X/~, &) is a quotient object of (X, ).

Corollary. In each transportable construct, the congruence ~ determines the
quotient object (X/~, &) of (X, «): if also (X/~, f) is a quotient object, then f = &.

Examples. (i) Pos: let ~ be an equivalence on a poset (X, £). The finest
relation on X/~ for which ¢ is compatible, is the following: for each tyy baE X/~

t, =t, iffthereexist x,€er,, x,et, with x, < x,.

The relation < is easily seen to be reflexive and transitive’but it need not be anti-
symmetric. * P

‘The equivalence ~ is a congruence on (X, <) ifl the relation < is antisymmetric;
if s0, then (X[ ~, <) is the quotient poset of (X, <).

Proofl. Assuming =< is an ordering then (X/~, <) is a quotient poset — this
follows from the preceding observation. Conversely, let ~ be a congruence. Then
there is an ordering <* of X/~ such that (X/~, <*)is a quotient poset. By the
preceding observation, =* is finer than < ; it follows immediately that < coincides
with =<*. Hence, =< is antisymmetric. '

For example, let (R, <) be the set of all real numbers with the usual ordering.
The equivalence with the two classes a; = [0, + o0) and a, = (- x=.0) isa congru-

ence: the quotient poset is ({ay, a,}, =), where a, < a,. The equivalence
ry ~ r, ifithe integer parts of r, and r, are equal

. I8 another congruence; the quotient poset is isomorphic to (Z, £). But the
equivalence

ry~ry Mt r,re[-1L1] or ryr,eR—[=1,1] (r,r,€R)

is not a congruence: the above relation =< is not antisymmetric.

}
b |
E.L

n
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(ii) The construct Pres of preordered sets is cohereditary. For each preordered
set (X, <) and each equivalence ~, the above relation < defines a quotient object
(X/~, =<)in Pros.

5. An important example of an equivalence is the kernel of a map f: X = ¥;
this is the equivalence ~ on X defined by

x, ~ % Ml flx))=flx;}) (x,x;€X).

While equivalences often do not induce quotient objects, the kernels of morphisms
usually do.

Definition. A construct is said to have kernels if for each morphism f: (X, %) —
— (¥, B) the kernel of f is a congruence on (X, x).

Example. (i) The construct Grd has kernels. Given a groupoid homomorphism
f:(X,+)—(Y,c) then the kernel equivalence ~ is a congruence, since x ~ x'’
and y ~ y' imply

flx=y) = flx)ef(y) [ / is a homomorphism],
=f(x)ef(y) [S(x) = f(x) and f(y) = f(¥],
= f(x'+y) [ f is a homomorphism |,
thus, x=y ~ x" = ¥,
The same holds for Men, Grp and other algebraic constructs. |
(ii) The construct Pos hf-?. kernels: given an order-preserving map /7 (X, <) —
- (¥, <), then the relation = of the preceding examples is antisymmetrnic. if ¢, =,
then there exist x,et, and x,er, with x, £ x,;if also 1, = 1, then there exist
xX,;et, and x,et, with x| 2 xj. Then x, ~ x}, ie, f(x,) = f(x}), and f(x,} =
= f(x5) Hﬂnm < x, implies

Flxy) € flxy)

and x, < x| implies

fix;) = fixs) € f(x)) = f{x,);

therefore, f(x,) = f(x,). In other words, x, ~ x,; equivalently, {; = t,.
(i) Tep, Gra and all other cohereditary constructs have kernels, of course.

Remark. In a construct with kernels each morphism f: (X, a) — (Y, ) can be
factored as f = f'.¢p, where ¢: (X,a) = (T,d) is the quotient morphism and
J': (T, 8) = (Y, B) is a one-to-one morphism. In fact, let (T, 6) be the quotient object
of (X, &) under the kernel equivalence of f. Define f: X[/~ — Y by

f([x])=f(x) foreach xeX.

This is a map such that f = f".¢@; since f".¢@: (X,a)— (Y, f) is a morphism, so
is f": (T,8) — (Y, f). Moreover, f* is one-to-one since [x,] # [x,] is equivalent

to flx,)# f(#;)-
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6. Another factorization of morphisms i1s possible in constructs such that the
image of each morphism is a subobject. For each map

[t X—=Y
we denote by
imf=f(X)g Y
its image.

Definition. A construct is said to have images if for each morphism f: (X, ) —
— (¥, B) the set im f is a subobject of (Y, ).

Examples. (i) The construct Grd has images: given 2 groupoid homomorphism
f:(X,+) = (Y,¢), the set im f is a subgroupoid of (Y,e). For each y,,y,eim f
there exist x,,x,€X with f(x,) = y, and f(x,) = y,;then

Vieya = flx)) e f(x2) = f(x; » x;)eim .

Similarly with other algebraic constructs.

(ii) The construct Comp has images: given a continuous map f: (X,a) — (Y, f)
with (X, &) a compact space, then im f is a compact (1Ce(4)); if (Y, p) is a T,-space
then im f is a compact T,-subspace.

Remark. In a construct with images, each morphism f: (X.a) = (Y, f) can be
factored as f=v.f, where f: (X, %) = (7,d) is a morphism with [ onto and
v: (7,0) — (Y, ) is the inclusion morphism.

For example, the construct Gra has images and kernels. Consider the following
morphism f:

=
v
\
\
A
—\

e\

,3‘-{
7
/

E
l
!

The factorization f = ', ¢ is the
following one:

i TN e Tl

Crn e i

et

-
—

- T e -
- P —
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The factorization f = p. [ is the following one:

; 1
S B r-m S 7
Ky o

i'y.l
W, &
: e ]
X, * —-——-—&E}'——-—-—-H—Oﬁ |
o R R . (Y, p]
Exercises 1G

a. Congruences defined by subobjects.
(1) Ab: for each subgroup Y of an Abelian group (X, +, 0) define the following

equivalence on X':
X, RyXxy, ff x, -x,6Y (x,,x,8X).

Prove that ~, is a congruence and Y = [0]. Conversely, prove that for each con-
gruence ~. the class [0] = Y is a subgroup such that =, coincides with ~.

(2} Describe all quotients of the additive group (Z, +,0) of integers and prove
that they arc isomorphic to the groups of 1Db. Hint: see 1Fd(1).

(3) Vect: prove that, analogously, the congruences on a vector space are precisely
the equivalences = ,, where Y is an (arbitrary) subspace.

(4) Describe all congruences on the two-dimensional Euclidean space (R?, +, )

(5) Grp: a subgroup Y of a (non-Abelian) group (X, +, ¢) is said to be normal if
foreach yeY and xe X we have x-y-x 'eY. Prove that the congruences on
a group are precisely the equivalences =, where Y is a normal subgroup.

(6) Rng:a subring Y of a ring (X, +,0,,¢) is called an ideal if for each ye ¥ and
xeX we have x-«ye Y. Prove that the congruences on a ring are precisely the
equivalences =,, where Y is an ideal.

(7) Describe all congruences on the ring of integers. Hint: see Example 1G3(iii)

(8) Fid: prove that no non-trivial equivalence on a ficld is a congruence.

b. Congruences in Top,. Let (X, ) be a T;-space. Prove that an equivalence ~
is a congruence in Top, iff each of its classes [x] is a closed subset of X.

c. Congruences on posets and lattices,
(1) Let (X, =) be a lattice. Prove that an equivalence ~ on X is a congruence
in Lat iff forallx,. , p,y'eX with x ~ x" and y ~ y we have

(xvy)~(x'vy) and (x Ay ~(x" AYy).
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(2) Let (X, <) be the poset with the following Hasse diagram

(This means that X = {0,a,,a,.b,,bg,b,, 1}, and = is the least ordering such that
for each edge x — y in this diagram with x lower than y we have x < y.)

Prove that (X, £) is a lattice. Denote by ~ the least equivalence with b, ~ b,
(i.e., the only non-singleton class of ~ is |b,.b,}). Prove that ~ is a congruence
mn Pos but not a congruence in Lat.

(3) Prove that in Clar a congruence on a complete lattice (X, <)is an equivalence
~ such that for cach collection (x,x)e X x X, iel, of pairs of clements with
x, ~ x; (for all iel) we have

Vx; ~ Vx; and Axi . M
iel iel el iel

(4) Consider the complete lattice [0, 1] (with the usual order). Let ~ be the
equivalence with the classes {0} and (0, 1]. Prove that ~ is not a congruence in
Clat though it is a congruence in Lat, where the quotient lattice is complete!

d. Factorization of morphisms. Prove that in each construct which has
both images and kernels, every morphism f: (X,a) — (¥, f) can be factored as
f=v.f*%. ¢ where ¢: (X, x) — (T, d) is the quotient morphism, f*: (T, 8) — (T, &)
is a bijective morphism and v: (7", &) = (Y, ) is the inclusion morphism. Illustrate
this on the example in Gra in Remark 1G6.

1H. Free Objects

1. Definition. An object (X, a) is said to be free over aset M = X provided that
for each object (Y, f) and each map f;: M — Y there exists a unique morphism
f: (X, 2) - (Y, f) extending f, (ie., with f(m) = fy(m) for all me M).

Examples. (i) The four-clement lattice 4 = ({0,a.b,1}, <), where 0 €a <1
and 0 £ b =1 and a and b are incompatible, is free in Lar over {a, b}.

-
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Let B = (Y.<) be a lattice and let f,: {a.b} = Y be a map. Since in A we have
asnb=0 and avb=1,

the extension of f, to a homomorphism f: A — B must fulfil

(1) £(0) = f{a) A f(b) = fola) ~ f(b)
and
@ S0)=1(a) v £(5) = fula) v folb)-

On the other hand, when extending f, to f by (1) and (2) we clearly obtain a homo-
morphism f: A — B. |

(i) The additive monoid of natural numbers (N, +, 0) is the free monoid over {1}.
Let (Y,+.e) be a monoid and let fo: {1} = Y be a map: put yo = fo(l). Th"-’-‘ﬁ_fu
has a unique extension to a monoid homomorphism f: (N, +,0) = (Y, e), viz,,

f(0) =e,
f(l) =¥Yp5
f2)=/0+1)=r(1).1(1) = yo- Yo,
@)y =/(1+ 1+ 1)=f(1).f(1).f(1) = Yo- Yo Vo:
E“Ei{] For each set M the word-monoid (M*,+,0) (see 1D4{iii)) is free over the

set M. where each me M is considered as a one-letter word. Let (Y, o, ¢) be a mnn.n:rid
and let fy,: M — Y be a map. Then f; has a unique extension to a homomorphism

f: [1"14*1 ‘,ﬂ) - {Y: Y E)a vil“}

£10) =0,
f(m,) = folm,) foreach m;eM,

f(mym;) = fo(m,)e folm,) for each m,.myeM,
flmymams) = fo(m,) < folm,) o fo(ms) foreach my, mymyeM,

etc.
(iv) Every vector space is [ree in Vect. In fact, if M 1s a basis of a vector space

(X, +.,+) then each vector x€ X is a unique linear combination
" i
Yorm, rnelR; meM(i=1..n).

Let (Y, +,+) be another vector space, and let fo: M = Y be a map. The unique
extension to a linear map f(X, +,+) — (Y. +,+) is defined by

flx) = 2r, folmy)
for each linear combination x = Y rum, of the base vectors. .

Remark, If (X, z) is a free object over M < X then morphisms on (X, ) are
determined by M. That is, if two morphisms

Jogh [X,GE)—I-[Y, ﬁ)
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-y

fulfil

flm)=g(m) forall meM )

then f = g. Denote by f,: M — Y the (joint) restriction of f and g; then fandg
are both extensions of f, to morphisms. Since the extension of f; is unique by defi-

nition, then [ = g.

2. Terminology. If (X, r::) is a free object over M then M is called a set of free
generators. We also sav that (X, e) is a free object on n generators il card M =n. Let
us prove that this terminology is consistent with that of 1F5.

Proposition. Let (X,a) be a free object over M < X. Then M is a set of gen-
erators of (X, o).

Proof. We are to show that for cach subobject (Y, f) of (X, z)
Mg}" implies Y=X.
Denote the three inclusion maps as follows:

nmMoX; v:M-Y and w Y- X.
Thus,

v=w.0,,

The map v,: M — ¥ can be extended to a morphism #,: (X,x) (Y, B). The
morphism

w.: (X.2) - (X, )
fulfils, for each me M,

w. i,(m) = w(o(m))
— w{o,(m)

j v{m)

Thus, w. 6, coincides with idy on the set M. By the Remark above, this implies
w.p, =idy: (X,2) = (X,q).

Hence, for each x= X we have

x=w)eY, T |
which proves that X = Y. []

3, Remark. A free object over a set M is not unigquely determined by the set M.
For example, in {H1 we saw that (N, +,0) is a {ree monoid over {1}, and also the
word-monoid ({1}*,+,0) is a [ree monoid over {1}. Note that the elements of {1}*

e B LI, 17 = 11,1 (n-times), ...
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It is clear that (N, +,0) is isomorphic with ({1}*, -, §) under the following bijection
f: N {1}
0)=0; f(1)=1; f(2)=11; ...; f(n) = I",....

We shall prove that this is no coincidence.

Proposition. A free object is uniquely determined up to an isomorphism
by its number of free gencrators, That is,

(1) if A and A’ are free objects on n generators then
A 1s 1somorphic to A';

(2) if A is a free object on n generators then each object 4, isomorphic to A, is
also free on n generators.

Proof. (I) Let 4 =(X,x) be free over asct M and let A’ = (X', ') be free
over aset M". I M and M’ have the same cardinality, there exists a bijection f,: M —
—+ M'. Denoteby v: M - X and ¢': M’ — X’ the inclusion maps.

fo
M " M
fa
v v
f v
[xlf-]..ﬁ — = [x:'h
f

The map v'. f;: M — X' has an extension to a morphism
(X, o) = (X', o). ‘
And the map o.f,”': M’ = X has an extension to a morphism
[ (X o) = (X, ).

To prove that [ i1s an isomorphism, it suffices to show that f and [ are inverse to
each other.

The morphism

[ (X, 2) = (X,0)
fulfils, for each me M,
S.f(m)=f.v. folm) =
v.fo ' Solm
= y(m)
=m.

i
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By Remark 1H]1, this implies

f-f. — ldx i
Analogously,
fif =ity

Hence, f = f~' and thus, f: 4 —» A4’ is an isomorphism.
(2) Let g: (X,a) = (X',0') be an isomorphism, and assume that (X, a) is free
over M < X. It suffices to prove that (X', &) is free over the set

M’ = g(M).
Yo
Mo ~ M
9&‘/
to
v R v'

(el = (X&)
san

Let (Y, ff) be an object and let f;: M — ¥ be a map. We extend f, to a morphism.
To this end, denote by

go: M = M’

the domain-range restriction of the bijection g. The map f,.g,: M — Y has an
gxtension to a morphism

f: (X,0) = (Y, ).

Then the morphism
f=f.g7" (X', &) (V.5

is an extension of f,: foreach me M’ we have g~ '(m)e M; thus,
flm) = flg~'(m))

= fo-golg™ 1[111}}
= folm).

[t remains to prove that f is unique. If f,: (X' ') = (Y, ) 13 also an extension of
fo, then the morphisms

f.g.fi-90 (X,0) = (Y, B)

ciearly coincide on M and, hence, by Remark 1H1,

f.g=1.g.

I_I:
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This implies
f=fg.97v=f.g-8 "=fi ]

4. Delinition. A construct is said to have free objects if for each cardinal number #
there exists a free object on n generators.

Examples. (i) The construct Mon of monoids has free objects, as we have
seen in 1HI.

We shall later prove that other algebraic constructs, Grd, Grp, Lat, ctc., have free
objects. Free objects in algebraic constructs are usually interesting algebras, and
the investigation of their properties is an important part of modern algebra.

(il) The construct Top has free cbjects: for each set X the discrete space (X, exp X)
1s free over X. Given a topological space (Y, ﬁ], then each map f;: X — Y is con-
tinuous, i.e,, fi: (X, exp X) — (Y, ) is a morphism. .

(1ii) The construct Pos has free objects: for each set X the discrete poset (X, =)
(where x; < x, is equivalent to x, = x,) is free over X. Given a poset (Y, <),
then each map f;: X — Y is order-preserving, fy: (X, =) — (¥, 2).

Generalizing the situation in Top and Pes, we call an object (X, ) discrete if for
each object (Y, f), all maps f: X — Y arc morphisms f: (X,«)— (Y, ). Equi-
valently. an object (X, «) is discrete iff it is free over all of X.

Further examples. (iv) The construct Mer does not have free objects on two
or more generators. Il card M > 1 and if (X, %) is a free metric space over M < X,
consider the space (X, 2x): the inclusion f, = v: M — X has, of course, no extension
to a contraction f: (X, a)— (X, 2a).

For each rcal number &k > 0 denote by

Met,

the full subconstruct of Met, the objects of which are the metric spaces (X, x) with
diameter at most k, i.e., such that

wxy, %) <k forall x,x;eX.
Then Met, has free objects, in fact, discrete objects: for each set X define a metric a by

E i ox #x (e X
ﬂ'f(-’in-‘fz}:{n . x:=x2‘(l : € X)

Then (X, «) is discrete in Met,.
(v} The construct Clat of complete lattices does not have free objects on three
or more generators. The proof is beyond the scope of this book (seec A. W. HALES,

Fundamenta Mathematicae 54 (1964), 45 — 66).
In contrast, the construct Csf of complete semilattices has free objects. For each
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set M consider the poset (expM, <), where M, s M, it M, c M, (M, M eexp M),
This is the free complete semilattice over

M = {{m}; me M} S expM.

Let (Y, =) be a complete semilattice and let
for MY
be a map. For cach set M, € M we have, of course,

M, = | {m};

me My

thus, in the poset (exp M, <)

M, = A{m]

revie M

To extend f, to a homomorphism of complete semilattices, we must define

fiIM)= Afliml) foreach M,c M,

meM
Conversely, it is easy to check that the map f: expM — Y defined by the rule
above is indeed a complete semilattice homomorphism extending f,.

5. A special case of the free object is the inirial object, which is an object 4, such
that for each object B there exists precisely one morphism from A, to B. The initial
object is the free object over the void set (i.e., the free object on 0 generators): for
each object B = (Y, f) there exists precisely one map from @ to Y, the void map.
This map can be uniquely extended to a morphism f: 4, — B; thus, hom(4,, B)
1s a singleton set. |

Examples. (i) @ is the initial object in Ser.

(ii) In constructs which have a structure o on (), the object ((, &) is usually initial,
This is so in Gra: the void subset of @ x 0 = (0 is the unique relation on 0. Similarly
in subconstruct of Gra: Pos and Pros. Also in Top we have just one topology on
0: 2 = {@}. And the void groupoid is the initial object in Grd and Sgr.

(iif) The initial vector space is the trivial space ({0}, +, +): for each vector space
(X, +,-) the unique linear map f: ({0}, +.,+) = (X, +,+) is defined by f(0) = 0.

Analogously, the singleton monoid (respectively group), is the initial object of
Mon (Grp).

(iv) The ring of integers (Z, +,0,+, 1) is the initial object of Rng: for each ring
(X, +,0,+,¢) the unique ring homomorphism f: (Z, +,0,+,1) = (X, +.0,+.¢) 15
defined as follows:

fll)=e and f(0)=0
(because f preserves the two nullary operations); hence

fQ=fl+1)=e+e, fB)=f1+1+1)=e+e+e,..

== =

—_ - ——————
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(because f preserves + ) and

fl=1)= —e, f(=2)=~(e+e), f(-3)=—(e+e+e)..
(because f preserves the inverses),

Concluding remark. Since free objects are determined only up to an isomor-
phism, it is often not so important to know their precise inner structure: their
“universal” property is all that matters. Thus, in some situations we are mainly
interested in the existence of free objects. In all the constructs we considered above,
a free object on one generator exists (see Exercise a. below) and also an initial object
exists, But with more generators the problem is not so easy.

One of the major achievements of the theory of structures is that a powerful
criterion for the existence of free objects has been obtained. We introduce it in the
next chapter.

1Exertises 1H

a. The free object on one generator. Verify that in.each of the constructs
below the described object is free over the singleton set {x}.

(1) Top, Met, Gra: the singleton object, i.¢, the underlying set is {x}. The same
holds in all full subconstructs containing this object, e.g., Comp and Pos.

(2) Rng: the ring of all polynomials with integer coeflicients and with the in-
determinate x, The operations + and - are the usual addition and multiplication
of polynomials; the nullary operations 0 and 1 are the constant polynomials. Hint:
for each ring (X, +,0,-,¢) and each f;: {x} = X, folx) =t, we can “evaluate”
all polynomials, i.e., we can extend f, as follows:

fola) =e+e+.. +e (atimes, where aeZ),
folax) =(e+e+ ...+ e)+t,
folax?)=(e + e+ ...+ e)-t-t,

etc.

(3) Grp and Ab: (Z, +,0) is [ree over x = 1.

(4) Lar: the singleton lattice {x}; Clat: the three-element chain ({0,x,1}, £},
where 0 < x < 1. What about Csl?

(5) Grd: the groupoid (T, =) of all formal expressions x, x o x,.x o (x o x), {x o x) o x,
(x o x)o(xox), etc. Thus, T is the least set, containing x and such that ¢,,1,eT
implies r,o1,€ T — {x}, while t,of, =rjef) fl t; =1, and t, =1, (for all
tlalataeT)

b. Free Abelian groups. For cach set M denote by (M, +, p°) the group of
all integer functions p: M — Z of finite support (i.e., such that the 5ct of all me M
with p(m) # 0 is finite) with the usual addition of functions:

(p+ p)(m)=p(m) + p(m) forall ppe M, meM,
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and with p“ the constant function with value 0. Prove that this is the free Abeclian
group over M’ = {p.} s Where p, is the function assigning 1 to m and 0 to all
other elements of M. .

c. Free semigroups are the semigroups of non-void words (see 1H1(iii)):
(M* = {0}-).

Prove it. '

d. Free unary algebras. For arbitrary sets £ and M a free unary X-algebra
over M is the algebra

(M x Z* o)

where z is defined by ofm, 6, ...0,; ¢) = (m, 60, ...6,) and where me M is identi-
fied with (m, 0). -

e. Free partial groupoids are the discrete objects of Grd,,: these are the pairs
(X, +) where « is nowhere defined.

f. Factors of an object A are the objects which are isomorphic Lo quotient
objects of 4. In algebraic constructs (Mon, A4b, Ung, ctc.) prove that B is a factor
of A T there exists a surjective morphism f: A — B. Conclude that each object
15 a factor of a free object.

g. Embedding. An object B can be embedded into an object A iff B is isomorphic
to a subobject of A. Prove that in algebraic constructs this 15 the case il there exists
a one-lo-one morphism f: B — A,

h. The poset of all equivalences. For each set X, denote by Eg(X) the set
of all equivalences on X and define an ordering on Eg(X) as in the fibre Gra[ X],
1.e.. an equivalence x is smaller or equalto fiif x = fi

(1) Prove that the poset (Eg(X), <) is a complete lattice; describe the least and
the largest clement. Hint: a set-theoretical intersection of equivalences is an equi-
valence.

(2) Prove that each poset (X, <) can be embedded into (Eg(X), =) Hint: for
each x & X consider the equivalence with only one non-trivial class: {ye X'; y < xi.

(3) Prove that in Csf each complete semilattice can be embedded into the lattice
of all equivalences. Hint: the embedding in the previous hint preserves meets.

Chapter 2: Initial and Final Structures

Many constructions in mathematics are of the following type: we are given objects
A; (iel)and a set X and we create a new object on X using maps from X into the
underlying sets of A, or, conversely, maps from the underlying sets into X. For
example, the Cartesian product of two objects A4, = (X,,2,) and 4, = (X,. ;)
1s created on the set X = X, x X, by the projections. A subobject of an object
A, = (X ) is created by the inclusion map v: X — X, (if X < X}, and a quo-
tient of A, is created by the quotient map ¢: X, —+ X (il X = X,/~).

The present chapter is devoted lo a general investigation of such constructions.
We first study initial structures, i.e., the case of maps leading from X, and particularly
the Cartesian products. Then we turn to final structures, 1.¢., to maps leading into X.
An important generalization of the concept of final object 1s the “semifinal object™;
while initial and final objects often fail to exist, it turns out that semifinal objects
exist in most of the constructs used in mathematics,

ZA. Initial Structures

1. Let
2 K=, iel,

be a collection of maps with the common domain X If on each of the sets ¥, a graph
f. = ¥ x Y is defined, then a natural graph a can be defined on X:

x,ax, il fix,) B filx,)  foreach iel.

For example, consider the maps and graphs depicted below (where an arrow from
yto y indicates y B,y in Y for i =1,2):
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»The resulting graph on X is

e 7]

==z

Npte that
(1) fi: (X, o) = (Y, B;) are compatible maps for all ie]. This follows immediately

from the defimition of 2. Moreover,

(2) for each graph (7, 8) and each map h: T'— X such that f;.h: (T,é) - (¥, 5)
are compatible for all iel, also h: (T.d) — (X, =) is compatible.

Proof: let t,,t, € T be elements with 1, dt,; for each iel we have

f{h(t,)) B, fih(r,)). Therefore,
hit, )2 hit,);

hence. i is compatible.

Properties (1) and (2) determine the relation x: (1) is fulfilled by « and all the finer
structures: [2] is fulfilled by « and all the coarser ones. We call « the initial structure
of the given collection of maps and graphs.

2. More generally, we can introduce initial structures in an arbitrary construct 5.
A source (in &) on a set X is a collection (Y, f,, f), i € I, where (Y, f,) are objects of
& and f;: X — Y, are maps (for all ie ). The collection is allowed to be large, ie.,
I can also be a (large) class (see 1A). We usually denote sources as follows:

X% B)

Definition. An initial structure of a source [XL[Y, Bi)}icr 18 a structure o
on X such that

(1) fi: (X,«) = (Y. B;) are morphisms for all ie[l;

(2) for each object (T, 6) and each map h: T— X such that all f,.h: (T,4d)—
— (Y, §;) are morphisms (ie[), h: (T,d) - (X, «) is also a morphism.

(T,5)
lh
, [ X, ot
74 N
'[‘I"'l.l’i‘rl]'

A construct is said to be inirially complete 1f each source has a unique nitial
" structure.

Remark. Conditions (1) and (2) can be restated more compactly as follows:

for each object (T,0) and each map h: T — X,
h: (T, ) — (X, a) is a morphism
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(F]

iff
fi-h: (T, 8) - (¥, B,) are morphisms forall iel.

(If this holds, then put h = id,: (X.o) — (X.g} to conclude that f; are morphisms.)
We also call (X, o) the initial object of the source. |

Examples. (i) Grais an initially complete construct.

(ii) Top is an initially complete construct: for each source [X L(}’; g}, the
initial topology has the following subbase (1F¢)

g ={fi7(M); iel and Mep;}.

In fact, if o denotes the topology with the subbase «, then

(1) fi: (X.a) > (Y, B;) are continuous for all iel since for each iel and each
MeB; wehave f,"'(M)ea, € «;
(2) assuming that f,.h: (T,6) — (Y. ;) are continuous maps for all iel, then

h: (T, ) — (X, o) is also continuous. This follows easily from IFe: for each
1Y (M)ea, wehave h~'(f;” (M) = (f;.h)™' (M) o because f;.h is continuous.
As a concrete example, consider the two projections on the plane,

T, RP— R,

and the Euclidean topology ¢ on R (with respect to both 7, and m,). The subbase a,
consists of all the sets

MxR=n{'M) and Rx M =n;'(M) (Meg);

hence, the initial topology  is the Euclidean topology of the plane (see 1Fe).

3. Proposition. Let
!
{X=(Y.5);
be a singleton source such that f1s a bijection. A structure o 1s initial iff
fi (X o) = (Y. )

is an 1sormorphism.
Hence, each initially complete construct is transportable.

Proof: (1) If s initial, then f is 2 morphism, and since
idy = ./ (Y, ) = (V. f)
is a morphism, so is f ~': (Y, ) = (X, ). Thus, f is an isomorphism.
(2) If f is an isomorphism and if f.h: (T,d) -+ (Y, f) is a morphism, then
h=f""'(f.h):(T,6)—(X,a)
is also a morphism.

Observation. If « is an initial structure of a source |X i'#[‘r’i, $.)}.; then a is
the coarsest structure on X for which all f, i I, are morphisms.
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Prool. Let @ be a structure such that f;: (X, &)—(Y, §,) are morphisms (ie1).
Since all idy. f;: (X,a) —= (Y, B;) are morphisms, i€/, also

idy: (X,a) = (X, )

is a morphism. In other words, a is coarser than &.

Remark. The observation above simplifies the task of determining whether
an initial structure exists, and of finding it: it suffices to inspect all structures on X
for which each f; 1s a morphism,

Example: initial ordering. Let
(X5 (Y, <)y

be a source in Pos; does it have an initial ordering? |
If =< happens to be the imtial ordering then it must be coarser than each ordering
=%* on X for which all f; are order-preserving, more precisely, for which

x X*x' implies fix) <, filx) (ief) forall x,xeX.

This condition suggests the following definition of <:
x=<x iff fix)=E; f{x) (iel) for all x,x'eX.

This relation = 15, obviously, reflexive and transitive: it need not be antisymmetric,
however.

A. If = 1s antisymmetric, then it is the initial ordering.

Proof: let (T, <) be a poset and let h: T— X be a map such thatall f;. h: (T, =)—
— (¥, <,) arc order-preserving. Then r < ' implies f{h(t)) <, f{h(r')) (i € I), hence,
h(1) = h(t'). Therefore, h: (T, <) — (X, =) is order-preserving.

B. If =< is not antisymmetric, then the initial ordering does not exist. Proof: it
suffices to show that if =< is the initial ordering then < is a coarser relation than =<
(thus, if = 1s not antisymmetric, then < is also not antisymmetric, which is a con-
tradiction). Given x,, x; € X' with x, =< x;, we want to show that x, £ x{,. Define
an ordering =* on X as follows:

¥

x=2*x" Heithar x=x oril x=x; and x' = xj
(for all x, x" € X). Since each
fi=dy fi (X, =%) = (Y, 5), el

is clearly order-preserving, also idy: (X, =*) = (X, <) is order-preserving, ie.,
Xq = X

Observation. The above relation =< is antisymmetric iff the source separates
points in the sense that given x,x e X then

(*) x #x' implies fix)# f(x')  for some iel.
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If the source separates points and if x,x'e X are points such that x = x’ as well
as x* < x, then for each iel we have ffx) <, f{x) as wellas f{x') =, f{x); hence,
fix) = f{x'). This implies x = x". _

Conversely, if the source does not separate points, then there exist distinct points
x, x' € X suchthat f{x) = fx') forall ie]. Then x = x' and x" = x and therefore,
the relation = is not antisymmetric.

4. Definition. A construct is said to be initially mono-complete if each source
{X £1*(1'}, B}, separating points (i.e., fulfilling (+) above) has an initial structure.

Examples. (i) Pos is initially mono-complete.
(ii) Top, (the construct of Hausdorff spaces) is initially mono-complete. Let

(X i‘v{Yi, B)l..: be a source of topological T,-spaces which separates points. Then
the initial topology « is also T,: given distinct points x,x'& X there exists iel
with ff{x) # f{x’); let U, V be disjoint open sets (in fi;) with fi{x)e U and f(x')eV.
Then £~ (U)and f;~ (V) aredisjoint open sets(ina),and x € f;~'(U) and ye ;" (V).
(iii) Met is not initially mono-complete.
For example, define metrics o, on X = {0, 1} by

20,1) = n, ne=12.3....
Then the source
{X s, (X, 3 |

does not have an initial metric. In fact, there is no metric x on X such that idy: (X,%)—

— (X, a,) is a contraction for all n. (We can choose n > 0, 1))
(iv) For each number k > 0 the construct Met, (of metric spaces of diameter k)

is initially mono-complete. Let [X i&(Y,-, B)l.; be a source separating points,
Define a metric on X as follows:

afx, x') = 'V; Blfix) flx)  forall x,x'eX.

Since B{f{x), f{x')) £ k for all i, the supremum exists, and x(x,x’) = k: it is also
easy to see that o is indeed a metric. Each f; is obviously a contraction. Let (T,0) be
a metric space (of diameter <k), and let h: T— X be a map such that each f.h,
iel, is a contraction. Thus, for all #,t'e T we have

BLAH), fAA()) = ot 1) foreach iel,
which imphes
b0 1) = \IBLAHO). (b)) S 8.0

Hence, h is a contraction,
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5. Observation. Let (X,a) be an object. A subset ¥ = X 1s a subobject of
(X, a) iff the singleton source of the inclusion map (1F1)

Y= (X, 1)}

has an initial structure.

Both the initial structure «' and the structure «” which makes Y a subobject are
defined by the same condition: for each object (T,48) and each map h: T— Y,
v.h: (T,8) - (X,a) is a morphism iff h: (T,8) — (¥, B) is a morphism for f = «
or i = o,

Corollary. Each initially mono-complete construct is hereditary.
Conversely, the algebraic constructs are not initially mono-complete because
they are not hereditary.

6. Splitting of points. In some constructs we can obtain new objects from the
given ones by splitting their points (and their corresponding structure). For example,
by splitting points x in a graph we obtain new points x;, i€ I(x); an arrow leads
from x; to y, iff in the original graph an arrow leads from x to y. Example:

Q N
Y,
O

}.I

C':

t

N
-

-— t- &
N ,

Or, in a topological space, we can split points and then consider the topology in

which the open sets are preciscly the sets U, where U is open in the ariginal topology

and U = [x;; xe U}. For example, by splitting the singleton space we obtain (all)
indiscrete spaces.

Note that when splitting the points of a set X we obtain a set X together with

a natural surjective map f: X = X defined by f (x;) = x. (Conversely, for each

surjective map f: X — X we can consider X as the result of a splitting of points

of X: each point xe X is splitinto the points in f ~*(x).) Both the split graph and the

split topology are just the initial structures with respect to f — this can be casily
derived (rom the exampies in 2A1 and 2A2.

I'I
M
%3

Definition. A splitting of an object (X, ) is an object (X, &) for which there
¢xists a surjective morphism f: £ — X with & the initial structure of the source
{X —‘rr{}{ o)},

A construct is said to have splitting if each singleton source {X 4 (X, )} with
f surjective has an initial structure.

[ T
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Proposition. A construct is initially complete iff it has splitting and is initially
mono-complete.
Proof. It is our task to show that for each initially mono-complete construct
with splitting and each source
I
{X = “':'r ﬂr)}i’e!
an initial structure exists. (Its uniqueness then follows from the fact that an initially

mono-complete construct is transportable, see Remark 2A 3.)
Define an equivalence ~ on X as follows: given x,x’€ X, then

x~x" iff flx)=f{x) forall iel.

Denote by ¢: X — X/~ the canonical map. For cach iel we can define f;': X[~ —
- Y; by
fx])=flx) forall xeX,

1.c., by

foo=f i€l
The source

{Xfr"" ﬂ"[?e ﬁi}}m

separates points: if [x], [x'] are distinct equivalence-classes then x 4 x', i.e., there
exists iel with ffx)# f{x’) or, in other words, f/([x]) # f/([x"]). Hence, this
source has an initial structure «. Let & be the initial structure {the splitting) of the

singleton source {X - (X/~,a)l. Then & is initial with respect to the original
source: |
(1) All f; = f;'.@: (X,8) — (Y, B;) are morphisms;
(2) Given an object (7,0) and a map h: T — X such that all
fioh=f (o 1) (T,8)= (V) (iel)
are morphisms then, necessarily,
@.h: (T,0) = (X/~,x
is a morphism. This, in turn, imphes that
h: (T,0) —(X,d)
is 2 morphism. []

Examples. (i) The construct Pmet of pseudometric spaces. A pscudomerric
on a set X is a map a! X — [0, +3c) which fulfils the followdng two conditions:

afx,y) = afy,x)  forall xyeX;
ofx, y) + ey, 2) Z ofx,z) forall x,y,eX. ;

(The case of metric is extended to allow 2(x,y) = 0 when x # y.)
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The objects of Pmet are pseudometric spaces, L.e., pairs (X ! a) where X 1sasetand a
is a pseudometric. The morphisms from (X, «) to (¥, fi) are contractions, i.e., maps

f: X - Y such that
B f(x), f(x)) £ afx, x') forall x,xeX.

The construct Pmet has splitting. Let (X, «) be a pseudometric space. By splitting

the points x& X we obtain new points x; and we define a pseudometric & by

#x, y) = Ax, ).

More precisely, the initial pseudometric of a source |[X L(x, x)} is defined by

i{x,x') = o f(x), f(x) Tforall x,xeX.

(ii) The construct Pmet,, k=(0, + ). of pseudometric spaces of diameter <k.

This 1s the full subconstruct of Pmet over spaces (X, x) with alx, x’) £ k for all
X x € X ! Th:s construct is initially complete. Indeed, Pmet, has obviously splitting.
And it is initially mono-complete — the proof is the same as for Met, above.

7. Proposition (Initial structures are transitive.) Let
S = {X '&'{}:- .ﬂi}}dﬂ
be a source, and for each i let §, be an initial structure of a source
Si=1{¥% _EL(ZW }'ij}}if.h ‘

Then a stfucture o on the set X is initial with respect to § iff it is initial with respect
to the “composile” source

§= { M(ZU* }'uj'}:gr

Jed,
’ - X
f
54
_1 ¥ T
LY. | A1\
Z4j 1y

‘Proof. 1. Let o be initial with respect to S. Then each f: (X, o) — (Y.f) is

f'i mgrp}}iSm; hence, each gii+ Ji: [X, ::) — I_'ZU, }'u} is a morphism. Further, if {Ta o)
is an object and f: T — X is a mapping such that

g:;- fi-h: (T,8) — (Z: 745)

-
_—

e R ) . — -

e —————
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is a morphism for each iel and jeJ, then
fi-h: (T.8) = (Y, )

1s a morphism for each ie I. Hence,
h: (T,8) = (X, %)

is a morphism.

2. Let « be initial with respect to S. For each iel, all g;;. fiz (X, o) = (Z,, Viy)
are morphisms (jeJ)); hence, f: (X,a) — (¥, B) is a morphism. Further, if (T, 0)
is an object and h: T— X is a mapping such that all f.h: (T, 6) = (Y, B,) are
morphism then all

gij'.ri‘h: (T- d) — (‘zijr* 'k’u}

are also morphisms, This implies that h: (T, 6) — (X, ) is a morphism. ]

8 Concluding remark. By constructing the initial structures of sources, we
obtain an important way of getting new objects from old. In some constructs this
is always possible; in some it is possible for all sources separating points. And in
the remaining constructs (notably, all those which are not hereditary) even simple
sources can fail to have initial structures. Nevertheless, mitial structures do appear
even in these constructs for some important special sources. This will be seen in
the following section.

Exercises 2A

a. Initial structures in a subconstruct. (1) Let .F be a full subconstruct of

a construct &, Let -[Xiir{?}, )} be a source in 7. Il a is the initial structure of
this source in the construct & and if axe 7 [X]. verify that z is initial in 7. too.

2) Consider the lattice of 1Gc(2). The subposet 0, a,.a,. 1] is evidently a lattice,
too: nevertheless, it is not a sublattice (consider a, v a,). Conclude that {1} does
not hold for non-full subconstructs.

b. Initial algebraic structures.
(1) Prove that the following constructs of partial algebras:

Grn'P. Mon, Lat,

are initially mono-complete.
(2) Prove that the additive group of complex numbers (K, +.0) is imtial with
respect to the source

K= (R, +,0)} ;1.2
where foreach x + ivelK,

p]{x 4 ;.1.,} = x and ﬂ;{I o i}’} = J.
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(3) Prove the analogous statement about the ring of complex numbers (in Rng).
Why does the corresponding statement fail in Fld? .

(4) Prove that each finite-dimensional vector -pace is the initial object of a source
of the following type:

{Xﬁ"(& +, ']}frl.m.n .

¢. Splitting of morphisms. Let (£, &) be a splitting of an object (X, ) with
respect to a surjective map f: X — X. Let (¥, B) be a splitting of (¥, f) with respect
to g: Y- Y. By the splitting of a morphism h: (X, a) — (¥, f) is meant an arbitrary
map h: £ - ¥ suchthat g.h=h.f.

(1) Prove that h: (X,&)— (¥, B) is a morphism.

(2) Prove that each morphism in the construct Pros is a splitting of some morphism
in Pos.

d. A splitting cover of a construct & is a construct * such that (1) &* has
splitting and (2) & is a full subconstruct of * and (3) each object in &* is a split-
ting of an object in &, and each morphism in &* is a splitting of a morphism in %,

(1) Prove that Pros is a splitting cover of Pos.

(2) Prove that Top is a splitting cover of Tap,,.

Hint: for each topological space (X, a) define the following equivalence ~ on X

x~x il xem and J:'Em-

Then the quotient space is T, and (X, a) is its splitting.

(3) Prove that Pmet is a splitting cover of Met.

(4) Prove that two splitting covers of a transportable construct must be concretely
1Isomorphic. )

(5) Prove that each transportable construct % has a splitting cover: the objects
are (X, ~,a), where X is a set, ~ is an equivalence relation on X and xe [ X/~ ];
the morphisms from (X, ~,a) to (Y, =, f) are the splittings of morphisms
h: (X]~,2) = (Y/~, p) in &.

2B. Cartesian Products

1. Various structures on sets X, and X, are naturally transferred to the Cartesian
product X, x X,. Let usillustrate this on the case of orderings.

Given posets (X |, £,) and (X ,, £,), define an ordering of the Cartesian product
X, x X, aslollows:

This ordering is initial with respect to the source of projections,

{Xl X x:::"(xi- 51‘}}1-1.1-
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Recall that the projections are defined as follows:

Zy Xy XX, (%), %) =%,
“1: Xj % X:—'X:; ﬂ;(I;,Ig)=I; ’ for all [I“xz)E.Xl X X:.

Clearly,
m (X x X, 2) = (X, £)
is order-preserving: for all (x,,x,),(y,,y,)e X, x X,
(x1%2) = (v1,¥,) implies 7 (x,,x;) = x, £,y = my(yy, 33

Analogously, r, is order-preserving. Next, let (T, <) be a poset and let h: T —
-+ X, x X, be a map such that

ny b (T, 2) = (X, <) and 7y he (T, X)) = (X, €,)
are order-preserving. Then
hi (T, 3) = (X, x X, £)

is order-preserving, Given ,t'e T with t <t we put h{t) = (x,, x,) and h(t') =
= (x}, x5). Since n,.h is order-preserving, we have

xy = my(xy, X3} ==, . t) <, n, - h(t') = my(x], £3) = x|
and, similarly, b

Xy S5 X5

hence,

(x5, x;) = {Iﬁl.--t.fl}'

2. Definition. The Cartesian product of objects (X,.2;) and (X, 2;) is the
object (X, x X,, x), where « is the initial structure of the following source

{X, X Xzir‘(xi-f‘i”hl I

Examples.

| i) Top: the Cartesian rioduct of two topological spaces (X, x,) and (X, o,)
is the space on X, x X, with the following subbase

2o ={U, x U,;U,ea, and U,ex5,).
In fact, by example 2A2(ii}, a subbase for the topology on X,x X; 38
d = {U; x X,;U e} u{X, x Uy;Uyea,}. -

Now, o, € «,; and, on the other hand. each set in g 18 the intersection of two sets

in g,
U, xU, =(U, x X,)n(X, x Uz}.
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Hence, &, and o, are two subbases of the same topology.
For example, the product of two lines 15 the plane. y
(ii) Met: the Cartesian product of two metric spaces (X,.2,) and (X,,a;) is the
set X, x X, with the following metric:
o (3 s X2) (15 ¥2)) = max {a,(x;, ¥ ) (x5 ¥a)} -
It is easy to check that « is a metric. Furthermore:
(1) The projection =: (X, x X,,a) = (X,,a,) is a contraction, since
(x4 X2): (¥1s ¥2)) 2 oy (xys ¥y) = wy(m (X %5) 57 (¥4, 7)) -

Similarly, n, 15 a contraction.

(2) Let (T,0) be a metric space and let h: T— X, x X, be a map such that
both =, .k and m,.h are contractions. Then h is also a contraction: given f,t'e T
then

o, (=, - h(t); m, - A1) = ot 1),
because m, .h is a contraction, and
%51, - h(t); My . A(E) < (L, 1),
because m,.h is a contraction. Thus, ’
ofhit), h(1")) = max {x (x, . h(r), 7, ﬁ]} oo, . B(t): 7y . B(E))} S 6t 1),
For example, if (X, o) = (X, 2,) = (R, ). the line with the Euclidean metric,
then the product 1s the plane B? with the following metric
ofp, q) = max {|p, — q,|;|p, — g2}  forall p,geR®.
(iii) Grd: the Cartesian product of two groupoids (X ,, o) and (X ,, *) is the groupoid
(X, x X3,-), where
(%15 X2) = (V12 ¥2) = (X1 2 ¥ X2 % 33).
(1) The projection m;: (X, x X,,+) = (X,,¢) is a homomorphism, since for

all (x,,x,)and (y,,y,)in X, x X, we have

“1{(:"11 X3) (J"U J"z}] = 7,(x; 0 ¥y, X, * 35
i R

e HI[{Ip Il}] . “1[{}’13 .Fl}}'
Similarly, m, 1s 2 homomorphism.
(2) If (T, +) is a groupoid and h: T— X, x X, isa map such that =, .k and
T, .h are homomorphisms, then also h 15 4 homomorphism: given (. T put
h[f) = {Il, xl] and h{i‘r] - L}Jl’ 1}1] .
Then

T e+ ) = [y b)) e[y B()] = xg e,
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because w,.h is a homomorphism; analogously,

Ry R+ 1) =x,%75,.

Therefore,
Wt +t) = (m, . h{t + 0), 7, Bt + 1)
= (x; @ Vi: X3 * }’z]
= (%13 %3} = (¥1. )
= h{r) - h{t’] -

(iv) Sgr, Mon, Grp: as in the case of groupoids, the operations are defined “coor-
dinate-wise™. Thus, given groups (X, =.e,) and (X ,, . e,). their Cartesian product
is the group (X, x X,, -, (e, e,)). where « is the operation of the preceding example.

3. More generally, we define the Cartesian product of a collection of objects.
Recall that the Cartesian product of a family of sets {X,; ie I} is the set

[1x,

i=]
of all collections x = {x;;iel}, where x;€ X, for each iel. Thus,

X xX, =[] X Xenxid= [] %

fon s
ief1,2} (1,2, 3]

If I =M 15the set of all natural numbers then

[ =, %X, % X% X

(T4

is the set of all sequences the nth member of which is in X .

For each ijel we have the ijth projection from the Cartesian product X =
= | [X; into X, defined as follows

=)

i X =X mlx)=x

in L]

for each xe X.

4. Deflinition. The Cartesian product of objects (X, o), i € 1, is the object (X, ),
where

X=X,

i=f

and x 18 an mmitial structure of the source of projections

{X 25 (X5 -II.]}H . |

Remarks. (i) If each collection of objects has a Cartesian product, we say that
the construct has Cartesiun products.

(i) The Cartesian product of objects A, i€ I, is also denoted by [ ]A4..
=l
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Examples. (i) Pes: given posets (X, <), i€, their Cartesian product is the
poset (|| X, <), where

x<y iff x, <,y foreach iel (x,ye]]X).

(ii) Grd: given groupoids (X, <), i€/, their Cartesian product is the groupoid
(I [X, *), where

Xey= {x:"z}’i}ier lx-J’EI-IXJ-

(ili) Top and Topc: the Cartesian product of topological spaces (X, o), i€l,
is the space on X = [ ] X, the subbase of which is

2o = {n; (U); iel and Uea;}.
It 1s a non-trivial topological theorem that Tepc has Cartesian products.

Tychonofl theorem: the Cartesian product of compact spaces is compact.
Clearly, the product of T, spaces is T,; analogously with T,, T;. Hence, the constructs

Top,, Top,, Top,, Topc and Comp
have Cartesian products (see 2Aa),
Observation. Each initially mono-complete construct has Cartesian products.
Indeed, the source of projections
(X3 X .}, where X =][]X,,

separates points: if x = {x;} and y = {y,} are distinct then there exists ie ] with
x; # v; — hence,

EI(I} -‘;'!' ﬂr{_‘.?] :
Thus,
Gra, Top, Pos. Met,

have Cartesian products.

On the other hand, algebraic constructs have Cartesian products though they
are not initially mono-complete; the operations are defined coordinate-wise. We
have seen this in Grd; analogously with

Sgr, Mon, Grp, Rng .
. For example, given rings
(Xi +.,0,5¢) i€l
their Cartesian product is the ring

{Xt +1D|'1 E}r
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where X = [ |X, and
iel

(x+ ¥ =X+,
(I'.ﬂi =X Wi
0={0}; e={e}.

Let us mention some examples where Cartesian products fail.

forall x,yeX and iel;

Examples. (iv) Met: let (X, o), iel, be metric spaces; for each x,ye X =

= []X; put
odx, y) = Yﬁjl:xn Fi} '
ig

Then =zdx, y) is either a real number or oc. If afx, y) is real for all x, ye X, thena is
a metric, and (X, «) is the Cartesian product. This is proved as in 2B2(ii). If there
exist xY,y"eX with a(x’ )°) = oo then the collection of metric spaces fails to
have a Cartesian product. Let § be a metric such that (X, f) is the Cartesian product;
then x, 1s a contraction, hence

Bx° y°) = afxP, y}) foreach iel.
This contradicts to
Vafx?, 1) = afx®, 5°) = oo.
i=l
(v) Fld: no two non-trivial fields have a Cartesian product. Indeed, all morphisms

in Fld are one-to-one or constant, but the projections are neither.
Note that, for two non-trivial fields (X, +; +, 0, ¢), i = 1, 2, the product in Rag,

(X x X3 +,+,(0,,0,) (e €2))

is not a field because the elements (0,, x,), x, € X,, fail to have a (multiplicative)
inverse.

5. Theorem. A fibre-small construct is initially mono-complete iff it has Carte-
sian products and 1s hereditary.

Proof. Each initially mono-complete construct is hereditary (2A5) and has
products (by the preceding observation). Conversely, let ¥ be a fibre-small, hereditary
construct with Cartesian products. For each source

{x i."{Xﬁr %)} e

which separates points we shall find an initial structure.
I. First, suppose I is a set (not a large class). Then we can form the Cartesian
product (Y, f) of the objects (X, ;), i € I, and we define a map

f: X — Y= ]._[Xi'
by
f(x) = {f{x)} for each xeX,
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e, by f,=m,.f (iel). Since the source separates points, f is clearly one-to-one.

Put . )
X'=f%)s ¥

and denote by
el X

the bijection which is a restriction of f. Then

f=v.f",
where v: X' — Y istheinclusion map. Since the construct & is hereditary, a structure
o’ on X" exists such that (X", ') is a subobject of (Y, B); since # is fibre-small (hence,
transportable), there exists a structure « on X such that f: (X,a) - (X", ) is an
1somorphism. Let us check that « 1s initial.
(1) Each f: (X,2) = (X, a), i€, is a morphism since it is composed of three
morphisms:
fi=m.f=un.v.f" foreach iel.
(2) Let (T, 6) be an object and let h: T — X be a map such that each
fiih=m.(v.f . h): (T,8) = (X.0), iel,
1s @ morphism. By the definition of Cartesian product,
v.f".h: (T,é) - (Y, )
1s a morphism. By the definition of subobject,
1.k (T,8) = (X0)
1s a morphism. Hence,
h= ()74 (F - B): (T, 8) = (X, )

1S a morphism,

IL. If I is a proper class. we shall find a subset I, < I such that the restricted
source has the same initial structure as the original one. Note that all equivalences
on the set X form a set. Since the construct & is fibre-small, all objects (X~ 3),
where ~ is an arbitrary equivalence. also form a sct.

For each iel let ~; be the kernel equivalence of f;; then f; can be factored as

jl - ﬂi"j:" Pi
‘where

P X > X|~,
1s the canonical morphism,

.ﬁ: XJII""’E _".ﬁ{xl |

P

",-
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is a bijection, and
vz f{X) - X,

is the inclusion map. Let ( f;{X), %) be a subobject of (X, 2,) (recall that & is heredi-
tary), and let y, be a structure on X[~ such that

fio (X[~ p) = (X))
15 an 1somorphism, By the fibre-smallness of ., there exists a subset I, < I such that
(*) for each iel we can find jeI, with ~, equal to ~ and y, equal to y,.
The restricted source

I

X (X ),
separates points: Given distinct x, x'e X there exists i€ ] with f(x) # f{x/), ie,
with x £ xX'; find jel, as in (*), then f(x)+# f(x'). By L, this restricted source
has an initid] structure o.

To prove that « is initial with respect to the original source, 1t clearly suffices to

prove that f;: (X, ) — (X, &) is a morphism for each ie[l. Find j as in (*). Since
fit (X,%) = (X;,a) is a morphism and f, =v,.f}. ¢, clearly

fi 0 (X,2) = (f{X) o)
is also a morphism; hence,
;=1 AJ-0) (X, 2) = (X~ 7)
1s 2 morphism. In other words,
@t (X, 3) = (X~ p)
1s a morphism. This implies that
Ji= o fiovp= (X, ) > (X, )
is a morphism, ]
6. Observation. The Cartesian product 4 = [[A4, has the following universal
property: the projections form a collection of rnurp‘tl':i;ms
ni: A= A, iel,
such that for each collection of morphisms
fi: B> A, iel,
there exists a unique morphism

f:-B-A



74 Constructs

with
fi=mn.f foreach iel.

f

B L

Indeed, if 4; =(X;a;) and B = (¥, f) then f is defined by

fly) = {f.{}')}i,; for each yeY.

This is the unique map f: Y- |]X, with f,==x,.f (i€]). And f is a morphism
because =,.f = f;: B— A, are morphisms for all iel

7. We conclude this section by a proposition which shows that a lot of constructs.
though not hereditary, admit the formation of subobjects on all sets defined by
the “coincidence™ of two morphisms.

Definition. Let
fig: (X,a) = (Y, })

be two morphisms with common domain and common range. By the egualizer of
f and g we mean a subobject of (X, «) on the set

E={xeX, [(x)=g(x)}.
Remark. Let (E, o) be the equalizer, and let
v: (E, o) — (X, 2)

be the inclusion morphism. This morphism has the following universal property:

(i) f.o=g.0v
(ii) for each morphism h: (7, ¢) — (X, «) with

f.-h=g.h,
there exists a unique morphism h': (7T, d) — (E, «') such that
| h=v.k.
f

(Y,pl

9

[, v f X )

\

(1.5

h
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Proposition. Let & be a transportable construct with intersections (1F4) and
with Cartesian products of pairs of objects. Then for arbitrary morphisms

fig: (X,0) > (Y, )

the equalizer exists.

Proof. Let (X x Y, y) be the product of (X, «) and (Y, f); the projections will be
denoted by 7, and ny.
I. The subset

Me={(x.f(x))ixeX} s X x Y

is a subobject of (X x Y, y). Indeed, define a morphism
7: (X.a) = (X.0) x (%.)

by f{x) = (x.f(x)) forall xeX:ie,by
. f=idy and mny.7=71.

(Since id, and f are morphisms, so is f.) Since f is clearly one-to-one and

f(X)=M,,
we have

f=v/o,

where v: M, — X x Y is the inclusion map and f; is a bijection. Denote by a the
structure transported by f,, ie., such that f,: (X,a} — (M, &) is an isomorphism.
We shall verify that (M ,, &) is a subobject of (X x ¥, 7).

f
l:{'ﬂ'—j o — [x“?:ﬂ"}

(T,8)

(1) Since f = v.f, and since fand f; ' are morphisms,
v=/[.fo " (My,2) - (X x Y,9)

is also a morphism.
(2) Note that

_ﬁ}.ﬂxqﬂ — idur
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[because for each (x, f(x))e M, we have f,.my.u(x, f(x)) = filx) = (x, f(x))]. Let
(T, ) be an object and let h: T — M, be a map such that "

v.h: (T,0) = (X x Y.y)
is a morphism, Then
h=fy.nx.v.h (T,08)—=(M,q)

is also a morphism since it is composed of three morphisms: f, n, and v. h.
II. The subset

M,=1{xglx)) xeX} =€ X x Y

q

is a subobject — the proof is analogous. Hence, the intersection
M, M, = {(x, f(x)): x& E}

is a subobject, too. Denote by 3, the corresponding structure and by
v (M, A M, yo) = (X x Y,y

the inclusion morphism.
ITI. We can restrict f to a bijection

fTE-MnM,.
Let o, be the structure transported by f, L.e., such that
[ (Esag) = (M 0 M, )

is an isomorphism. We shall verify that (E, z,) 1s a subobject of (X, z). Denote by
w: E — X the inclusion map.

g

h i
(T,8) ———= [E,ot,)) — MMy 7;]

First, observe that Yip)

W= s E=.X
and

ﬂf.[-'-'ﬂ =f.ﬂ:x.ﬂﬂ: MJ-I"'TMH—}X.

(1) The first of these equalities implies that
w: (B, 20) — (X, o)

1s 2 morphism.
(2) Let (T, d) be an object and let h: T — E be a map such that w.h: (T,4) —
— (X, ) is a morphism. Then both

iy (vo.f-h)=w.h: [T,ﬁ]ﬁ(j{,a}
and

Ty (vo-f . h)=f.my.v5.f.h=f.(w.h): (T.8) - (Y, B)
are morphisms. This proves that
vo. f.h: (T.8) = (X x Y,9)

15 a morphism. Since v, is the inclusion of a subobject, [. h: (T, 8} =+ (MM, y,)
1s also a morphism. Hence,

h=f"1AS.h): (T,8) = (E, o)
1$ a morphism. []

Examples. (i) Lat has equalizers. Let f.g: (X, £) = (Y, =) be lattice homo-
morphisms. Then E is a sublattice of (X, =): Given x|, x,eE then

flxs v x3) = flx,) v flx;) = g(x,) v alx;) = glx, v x3),

which means that x, v x; € E; analogously, x, A x; € E.

Analogously with other algebraic constructs (Grp, Vect, Rng).

(i) Comp has equalizers. Let f.g: (X,a) — (Y, f) be continuous maps in Comp;
then E is a subobject, ie., a closed subset of (X,a). Given xe E then f(x)= g(x)
(i.e., x € E): If not, choose disjoint open sets U, containing f(x), and V, containing
g(x). Since f~'(U)m g '(V) is an open set, containing x but disjoint from E, this
is a contradiction,

Exercises 2B

a. Products

(1) Lat: prove that the Cartesian product [ [(X,, <,) of posets is a lattice whenever
each (X ., <) is a lattice; the joins and meets are formed coordinate-wise. Conclude
that Lat has Cartesian products (2Aa).

Does the same hold for Csf and Clat?

(2) Veet: verily that the Cartesian product of vector spaces is a vector space with
“coordinate-wise” operations.

(3} Nor: verify that two normed vector spaces have a Cartesian product but that
no inlinite collection of non-trivial normed vector spaces has a Cartesian product.
Hint: see Example 2B4(iv); note that since |r-x|= ||+ |x|, @ norm is always un-

bounded.
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b. Equalizers: (i) Grd: verify explicitly that for arbitrary homomorphisms
f,g: (X, ) = (Y,-) the set E is a subgroupoid of (X, ). Does the same hold in Sgr

and Grp?
(ii) Clat: check the equalizers for complete lattice homomorphisms.
(iii) Tepe: find two morphisms which fail to have an equalizer. Hint: see Remark

1F4; define f,g: X - X = {0, 00, W {0, 1,2,...} by f(x) =g(x) for all
xe{0,1,2,...}, f(oo,) = o0, = g(0,) and g(oo,) = w, = f(oo,)

2C. Final Structurgs

1. Final structures are defined “dually” to the initial structures: the arrows lead

from objects to a set.

A sink in a construct & on a set X is a (possibly large) collection (¥, B, f)), i€ 1,
where (Y, f,) are objects of & and f: ¥,— X are maps. The following notation
is used:

(% B) 5 X}
i

Definit.on. A final structure of a sink {(Y, f;)= X},, is a structure « on X
such that

(1) fi: (¥, B) — (X, ) are morphisms for all iel;

(2) for each object (T, d) and each map h: X — T such that all h.f;: (¥, B) -
— (T, 8) are morphisms (iel), also h: (X,«) — (T, ) is a morphism.

tTilBil

W
Ih

\T, &)

-

Examples. (i) Gra:the final structure of a sink {(¥,, §;) 23 X };.; is the following
graph 2 on X ;

a={(x,x)eX x X; (x,x') = (fly), fily)) for some iel and (y.y)ef}.

Prool

(1) fi: (¥, B) — (X,2) are compatible since (y,)')e f; implies (fi{y). fi{y)) ea
(2) If (T, 6) is a graph and h: X — T is a map such that all h.f: (Y, ) = (T, 9)
* are compatible then h: (X, a) — (T, 8) is also compatible. For each (x, xX)ea we
have (x,x') = (f{»), fly')). where iel and (y, ))ef;: then

(b)) = (. £3) b £ € 6

since h, f; is compatible,
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A concrete example: T
(Y, 8,) (Yy 8, (Y3 Ps ) Ys 1 By
-?. {i’hl\ /F/—‘,‘l;l —T3m &
\. NN 7 ]
'ﬁ--—ﬂ‘bl‘_} G—
[X,0t)

(ii) Top: the final structure of a sink {(Y, ﬁi}ir X} is the following topology o:
Uea iff f;i(U)ep, forall iel.

Proof: (1) f: (¥, B8)—(X,x) are continuous, since Uenx implies f;~'(U)e f;;
(2) If (T, 0) is a topological space and h: X — T 1s a map with each h. f; con-
tinuous then f is also continuous. For ecach Veé we have

V) =(h.£)(V)eB, forall iel.
Thus, i~ }(V)e

2. Remark. A construct is said to be finally complete if each sink has a unique
final structure. As in 2A3 1t can be shown that a finally complete construct is trans-
portable. We are going to prove that imitial and final completeness are equivalent
properties.

For each sink

(Y. 8) '{'f‘X}iEr

consider the (large) collection of all objects (T, é) and all maps h: X — T such that
each h.f: (Y,f)—(T.d) isamorphism (iel).

This collection can be written with the use of indices, say, as [T_,, 8 hy), jed

(where J is an auxiliary index class; we assume that the triples (T, ¢, h,) are pairwise
distinct). The source

hs
{X T [TJ 5jJ}jEJ
is called the dual source of the given sink.
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Thus, the dual source of a sink {(Y, ,‘]’,-}ir—'* X s 15 a source | X 2, (T}, 8,)} ., which
is maximal with respect to the following propertics:

(i) each h;.f;: (Y. B) — (T, ¢;) isa morphism (il and jeJ);

(1i) the triples (7}, ;, h;) are pairwise distinct.
Analogously, the dual sink of a source {Xﬂr{?}, ) is 1s a sink {(Y, B. %5 X} et
which is maximal with respect to (i) and

(ii’) the triples (Y, B, f;) are pairwise distinct.

Duality Theorem. A construct is initially complete iff it is finally complete.

Proof. Let & be initially complete, and let
fi
{[ Yo B) = X i

be its sink. We prove that the initial structure « of the dual source

(X 5(T;,0))} e

is final for the given sink.
(1) Foreach iel,

j}: {Yu ﬁf} & (X,EI!)

1s a morphism. This follows from the initiality of « since all h;. f: (Y, ;) = (7,.4))
are morphisms (j e J).

(2) Let (7.0) be an object and h: X — T a map such that all h.f: (Y,f)—
~ (7, 6) are morphisms (i€ I). By the maximality of the dual source, there exists
jed with (T,8,h) = (T.4,h;). This implies that h: (X, a) = (T, 6) is a morphism.

The uniqueness of the final'structure a follows from the fact that & is transportable
(2A3): if o' is another final structure then, obviously, « and ' are equivalent and
hence equal,

Conversely let . be finally complete. Then each source has an initial structure:
this is the final structure of the dual sink. And the unigueness follows, again, from
the fact that & is transportable. (]

Example: the construct Pros is initially and hence also finally complete. For
cach sink of preordered sets

(Y, =)= X}

el »

let 2 be the final graph on X (2Cl(i)), Let = be the smallest preorder, containing =,
1.6, for each x,x'e X,

%) x=x iff x=x orthereare x=t{,¢,,...t,=x" in X
“'lth ;ﬂ:[lq’ Il ':t‘:‘---, I"_'EI'.

Then = is the final preorder. Clearly, each f; is order-preserving: y <,)" implies
Jiy) o fi(y'). hence, f{v) < f{(y) (for all iel;y,y e¥) If (T, <) is a preordered set
and h: X — Y is a map with h_j; order-preserving for all iel, then h: (X, a) -
— (T, =) is compatible; hence, h: (X, £)— (T, =) is order-preserving — see (*).

S e S el

s

Gl vy
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Consider the following sink. where each (Y, <) is the poset ({0, 1}, <) with
0<1and | £ 0:

1Y, (3 (Y8, Yo,y

:
b
X

Then = is the following relation:
a<b and b = c; c<h
(while b £ a).

Remark. The formation of quotient objects is a special case of final structures.
For each object (X, ) and each equivalence ~ on X consider the singleton sink

(X, 2)> X[~}

Then an object (X ~. &) is final iff it is the quotient object of (X ) under the equiv-
alence ~ ; this is similar to the situation with subobjects (2A5).
Conscquently, every initially complete construct is cohereditary.

3. Asink ona set X can also be empty: the indexing class I i1s the empty set (so that
no object (Y, f;) and no map f; are actually given). A structure « is final with respect _
to the empty sink iff for each object (T, 6) and each map h: X — T,

h: (X,2) = (T,6) isa morphism.

This is precisely the definition of a discrete object (1H4).

Analogously, we can define an indiscrete object on a set X as an object (X, a) such
that for each object (T, 8) every map h: T — X is a morphism, h: (T, d) = (X, «).
Equivalently: « is the initial structure of the empty source on X. (This terminology 1s
consistent with that for topological spaces (1C6).)

Observation. An initially complete construct has a discrete and an indiscrete
object on each set.

Example: in Pmet,, the discrete psecudometric on X 1s defined by

ox, y) = {

the indiscrete one by #(x,y) =0 (x, y€ X).

k if x#y

forall x,yeX;
0 i x=y orall x,ye
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Exercises 2C

a. Final order. For which sinks in Pos does a final order exist? Hinl;'inﬁpecl
the final preorder of the sink.

b. Final pseudometric. (1) Let {(¥, )25 X} be a sink in Pmet,. Given
A
x,x' in X, denote by «(x,x') the infimum (in [0,k]) of all the sums ) £, (¥, Vi)

fr o )

where ig,...1,€1 and y_ .y, €Y, fulfil the following condition:

x=fulveh X =L and £ ()= fi. (Vmer).

Prove that z is the final pseudometric of the given source.
(2) Exhibit a sink in Pmet which has no final structure.
(3) Exhibit a sink in Mer, which has no final structure.

¢. The transitivity of final structures. Formulate and prove the statement
analogous to 2A7.

d. Disjoint union. Let (X, &), i € I, be objects with the sets X, pairwise disjoint;

put X = UX!, Then for each iel we have the inclusion map v;: X; - X. The
iwl

disjoint union of the given objects is the final object of the following sink:
“xh 'ii)ﬂ' X}-'E; .

(1) Describe disjoint unions in Pos, Top and Met,. Hint: in Mer, the distance of
xeX; and ye X, is k whenever i # j.

(2) Show that disjoint unions generally do not exist in Lar, Comp and Mex.

(3) Verify that unary algebras have disjoint unions but that other algebraic
constructs, e.g., Grp and Vect, do not.

2D.  Semifinal Objects

1. While initial completeness (or final completeness) is a rather special property
of constructs, we present a generalization which is encountered 1n a large number
of current constructs: semifinal completeness. To explam the idea, we start with
sinks in Pos.

For cach sink of posets

(Yo <) X}

we have the final preorder <, see Example 2C2. Let (X*, <*) be the antisym-
metrization of (X, £). i.e, the poset which is the quotient of (X, <) under the fol-
lowing equivalence (1Bb):

X~x" iffboth x<x' and x < x (x, x" e X},
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Then the quotient map
o X = X*= X/~
has the following propertices:

Y=l icl

(T, =)

(1) All @.f: (Y, =)= (X*, =*) arc order-preserving, i.e., morphisms in Pos
(ief):;

(2) For each poset (T, =) and each map h: X — T such thatall &. f;: (¥, <) =
— (T, =) are order-preserving (i e I), there exists a unique order-preserving map

h*: (X*, =%) = (T. =)
with
h=~h*.p.

Proof. (1) is clear. For (2) we use the fact that since < is the final preorder,
the map

hi (X, 2) = (T.2)
is order-preserving. Then
x ~x' implies hix)=h(x’) forall x,x'eX

(since x = x’ implies h{x) < h(x'), x* < x implies hfx') < hfx) and < is antisym-
metric). Thus, we can defline a map h*: X/~ — T by

h*([x]) = h(x) foreach xeX.

This is the unique map with h = h*. ¢; and h* is order-preserving since [x] <*[x']
implies x < x and hence, h*([x]) < h*([x]), for each x,x € X,

Remark. The poset (X*, <*) has two properties analogous to those defining
a final object. The basic difference is the fact that the underlying set is not the given
set X but another set which is “connected” with X by a map X — X*: it is with
respect to this map that these properties are formulated.

We are going to generalize this concept now.
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2. Definition. A semifinal object of a sink
Ji-
{(}: ﬁ:) = X}ier -
is an object (X*, o*) for which a map (called a connecting map)
g: X = X*

with the following properties exists:

(1) all €. f: (¥, B,)— (X* a*) are morphisms, iel;

(2) for each object (T, 6) and each map h: X — T such that all h. fi: (Y, 8) —
— (T, 8) are morphisms, i€ I, there exists a unique morphism

i*: (X*, %) > (T, 6)

with
h=h*.¢c.

X — IK*W':*]
h .
h*
 §
(T,&)

Remarks. (i) If X* = X and & =idy then (X* o*) is the final object of the
given sink: If all h.f, are morphisms then also h i1s a morphism, since h = h* . ¢
implies h = h*. Thus, “semifinal™ generalizes “final™.

(i) Let (X*, x*) be a semifinal object with a connecting map &: X — X*. For
arbitrary morphisms h, k: (X*, a*)— (T, é)

h.e=Fk.g mphes h=¥k.

h
p— Byl ) . [T
k

This follows from the uniqueness of i* in the preceding definition.

Example: Vector spaces. Let {(¥, +,-}ﬁm X}y be a sink of vector spaces.
- Let (}3 . +,+) be a vector space with basis X. (For example, the vector space of all
formal linear combinations »,x, + ... 4+ r,x, where Figos a6 05 A0 %0, e X
forsome n=0,1,2,....) Let M, < X denote the set of all vectors of the following
type:
r i)+ 7 fy) = ey +ry)
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for iel, y,y’eY and r,r' eR. This set generates a subspace M < X, the linear
span of M. Denote by

(X%, +,°)

the quotient space of (X, +, ) under the ~_..sruence ~,, (see 1Ga). Note that ~,
is the least congruence on (X, +, " such that

(*) r )+ ) ~ fLy + 1Y)
holdsfor all iel, y,yeY and r,reR.
We claim that (X*, +, +) is the semifinal vector space with the connecting map

£ X —+ X*
defined as the restriction of the quotient map ¢: X = X[~ ,, = X* ie,
gx)=[x] foreach xeX.

(1) All &.fi: (¥, +,+) » (X* +,-) are linear maps, i e I. This follows immedi-
ately from (*).

(2) Let (T, +,+) be a vector space and let h: X — T be a map such that all
h.f; are lincar, iel. We extend h to a linear map h: (X, +,+) - (T, +,-) by

Mrix, +...+rx)=rhx,)+ ...+, h(x,) for each rx, +...+ rx,eX. For
each vector

X =rf{y)+rfy) = filry + ry)
in My we use the linearity of k. f; to verify that A(x) = 0:
hlx) = rb. £)(¥) + r(k. £) () = (. ) (ry + r'y)
= - L)) + r(h. L)) = (- L) fry + 1Y)
= h _fl_{ry - r'y-f = r_y o r’}.‘]
=)
Therefore, clearly,
xeM implies h{x)=0.
In other words,
X~y x" implies hix) = h(x) forall x,xeX.
Thus, we can define

h*: X* — ‘i_:-}l""‘“l'f_-h ?1
by
h*([x]) = A{x) foreach xeX.

In particular,

h*([x]) = h{x) foreach xeX,
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hence,
K*.6="Hh, " .

The map h* is linear because h*.@ = h is linear. It is clear that h* is the unique
linear map with h = h* . &

3. Definition. A transportable construct is said to be semifinally complete if
each sink has a semifinal object.

Examples. (i) Vect is semifinally complete. It can be similarly proved that

other algebraic constructs are semifinally complete. Given a sink {(Y, ﬁija‘iX 1,
we form the free algebra (X, &) generated by X. Then we find the least congruence ~
on X which “turns” all f; into homomorphisms. The quotient object under this
" congruence 15 the semifinal algebra. In this way we can prove that the constructs

Mon, Sgr, Ab

(which we know to have free objects) are semifinally complete. We shall see later
that also other algebraic constructs, e.g.,

Grp, Lat, Rng

are semifinally complete.

(i) Each initially complete construct (Gra, Top, Pros) is also semifinally complete:
by 2C2, each sink has a final object. We prove now, that all initially mono-complete
constructs (Pos, Met,, Top,) are also semifinally complete.

4. Theorem. Every initially mono-complete construct is semifinally complete.

Proof. For each sink
II.
{( Y, ﬁi) o ‘X}iel
consider the dual source (2C2)
h
(X =(T}.6))} jea -
Denote by ~ the following equivalence on X: given x,x'e X,
x~x iff h{x)=h(x) foreach jeJ.
As in the proof of 2A6 we factor
.F‘IJ=.I‘.!;-I",D [jEJ}..
where /i1 X/~ — T sends cach |x]to h {x). The source
. A
'[X." ~ =5 {r":* 51]}_1:1
separates points and hence, it has an initial structure «. We claim that-

(X]~.a)

Initial and Final Structures 87

1s the semifinal object of the given sink with respect to the quotient map

@: X — Xl."ﬂ-f.

(1) Each ¢. fi: (Y, B;) = (X/~,2) is a morphism, i € I. To prove this it suffices
to show that given ie/, then all K,.(¢.f): (Y, B, = (T,8,) are morphisms, jeJ.
This lollows from

H,.o.f,=h,.f

since the triple (T}, 6, h;) belongs to the dual source.

(2) Let (T, 0) be an object and h: X — T a map such that h. f: (Y. B) - (T, 3)
18 a morphism for each iel. Then there exists jeJ with (T, 4, h] = {TJ d., hj), and

h* =l (X[ ~,2) - (T, 9)
is a morphism with
L B

This morphism is unique simply because ¢ is a surjection (thus, h. ¢ = k. ¢ implies

h= k). [

Remark, We have seen in the course of the preceding proof that initially mono-
complete constructs have the following property: the semifinal object of each sink
on X can be found on a quotient set X/~ (with the quotient map ¢: X — X/~
as the connecting map). This fact simplifies considerably the task of finding the
semifinal object of a given sink.

The mentioned property actually characterizes initially mono-complete constructs,
see Exercise c. below.

Example: the semifinal partial groupoids. Let {(Y, ui)i'l. X},.; beasink in Grd,,
Since this construct is initially mono-complete, a semifinal partial groupoid on
a quotient set of X can be found. Consider first an arbitrary equivalence ~ on X
and an arbitrary partial operation = on X ;"—-r. Il each ¢.f is a homomorphism,
we see that

Yooy =y implies [f{y)] =[] = [fy)]
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for all iel and y,y,y" in Y, Thus, given jeJ and 22, z"€ Y, with ' 2" =z,
the following holds: -

(*) M)~ flF) and f(y") ~ ff2") mply fi{3) ~ ffz)-

Thus, a candidate for the semifinal groupoid is determined as follows: let = be the
least equivalence on X with the property (*). It is easy to see that the meet of all
equivalences satisfying (*) also satisfies it. Define an operation « on X~ as follows:

[x]-[x]=x il x=f{y); x"=f() and x=ffy)

forsome iel and y =y = y" in Y.
It can be easily verified that

(X[,

1s indeed a semifinal partial groupoid.

5. Definition. A construct % is said to be rrivial if for each object (X, a) of &
the set X has at most one point, 1.e, 1f

S[X]#0 implies card X 1 (X a set).
All other constructs are called non-trivial.

Remark. A transformation monoid considered as a construct (1Da) is trivial
iff its underlying set has at most one point (and only the identity transformation is
considered). With this exception, all the constructs mentioned in the preceding
_ sections are non-trivial.

The reason for introducing the concept of triviality 1s to obtain free objects as
special semifinal objects. Recall that the final object of the empty sink 1s the discrete
object (2C3); now we characterize the semifinal objects.

Proposition. In a non-trivial construct, free objects are precisely the semifinal
objects of the empty sinks.

Proof. I Let X beaset and let (X*, 2*) be the semifinal object of the empty sink
on X. Let &: X — X* denote the connecting map. We shall prove that (X*, 2*)
is free over the subset M = g X). The semifinality means that for each object (T, é)

X £ = (X" ")

N,

ks

b

[ ]

¢

-y
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and each map h: X - T there exists a unique morphism h*: (X* 2*) - (T, §)
such that h = h* & Thus, if X < X* and ¢ is the inclusion map then (X*, o*)
1s free over X (since h = h*.e then means that h* extends h). For a general ¢ first
observe that ¢ is one-lo-one: choose an object (T, é) with two distinct points 1, e T.
(This is possible since our constructs is non-trivial.) For arbitrary

x,xeX with x#£x

choose any map h: X — T such that h(x) =t and h(x') = r. The morphism h*
fuliils h = k*.e — thus, h(x) # h(x') implies

g(x) # #{x).
Now, we shall prove that (X*, a*) is free over
M = dX).
First, denote by
Eg: X = M
the bijection which is the range-restriction of g; i.e.,

E=10.§

where v: M —+ X is the inclusion map. For each object (7, 8) and each map
k: M — T put

h=k.eg: X T,

There exists a unique morphism h*: (X*, a*) — (7, ) with
h=h*.¢c=(h*.0).¢,

Then h* extends k since
E={k.gy).205> =h.e5? =(h*.0).0,. 85" = h*.0:

II. Let (X* a*) be a free object over X < X*. Then (X*, a*) is the semifinal
object of the empty sink on X with the inclusion map v: X — X* being the connecting
map. Indeed, for each object (7, 4) and ecach map h: X — T there exists a unique
extension to a morphism h*: (X* «*) —(7,4), i.e, a unique morphism with
=% 0 ]

Corollary. Each non-trivial, semifinally complete construct hags free objects.

6. Since free objects are not unique, but only unique up to an isomorphism (1H3),
it follows that semifinal objects are also not unique. We shall prove that they too
are unique up to an isomorphism. The proof is analogous to that for the free objects.

Proposition. Let (X* a*) be a semifinal object of a sink. Then
(i) each other semifinal object of this sink is isomorphic to (X*, «*);
(ii} each object isomorphic to (X*, x*) is semifinal with respect to the given sink.
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Proof. Let {(¥, f) % X},, be a sink, and let (X*,o*) be a semifinal object
with a connecting map &: X — X*. i

(i) If (X*,2") 1s another semifinal object with a connecting map & we prove
that (X*,a*) = (X", 2")

X ec')

For each iel,

E_ﬂ: (K, ﬁ;) o (x+. 5:+}
15 @ morphism and hence, there exists a unique morphism
&*: (X% a*) = (X*,at)
with
E=§".¢.
This follows from the semifinality of (X*, «*). Analogously, there exists a unique
morphism
et (X, at) = (X% a%)
with

E=mE" B,

It suffices to show that é* and &* are inverse to each other. Note that for the map
h = & we have a unique (!) morphism h*: (X* 2*) — (X* o*) such that & = h*.¢;
by the uniqueness, h* = idy.. Now, the morphism

e” . 8% (XY, 0%) = (X", 0%

fulfils

(6% . &%) .s =gt . E=¢
and hence,

et i* = idy..
Similarly,

E‘.E-F = idx-n- .

ks
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(i) Let p: (X*,a*) = (X",a") be an isomorphism.

1Y,

X —— (X" o) - Ixh«Y)
p-'l

- h*

+

(T,&)

We shall prove that (X*, a*) is semifinal, with the connecting map £ = p.& For
each object (T, 8) and cach map h: X — T such thatall k. f; are morphisms, there
exists a unique morphism

h*: (X*, o*) — (T, )
with h = h*_& Then the morphism

h* =h*.p~t: (X, a*) = (T, 0)
fulfils

h=h*.p~'.p.e=h".E.

And h* is unique: if k: (X*,a") - (T,0) also fulfils h = k.& then h = (k.p).¢&;
therefore, -

k.p—h*
Le.,

k=he.p~t = h*.

Thus, (X7, 2™ is semifinal.

7. Concluding remark. Semifinal completeness is a property of constructs
which we often meet in algebra, topology and elsewhere. We present a criterion for
semifinal completenes in the next section. This 1s also a useful criterion for the
existence of free objects.

The other way round. the constructs which fail to have free objects (Metz, Clat, ctc.)
are not semifinally complete. Semifinal completeness can be viewed as a property
characteristic of the “well-behaved” constructs.

Exercises 2D

a. Semifinal algebras. (1) Describe the semifinal monoids and prove that Mon
is semifinally complete. Hint: this is analogous to Example 2D2; here X = X*
will be the word-monoid over X and ~ will be the least congruence on X* such that
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the two-letter words f(y) f{y’) are congruent to the one-letter words f{} (v) (for
all iel and y,y € Y). Then the quotient monoid is semifinal.

(2) Check that the situation in Sgr is analogous.

(3) Describe the semifinal groups in Ab. Hint: similar to (1); denote by X the
free Abelian group, see 1Hb,

b. Semifinal topologies and metrics. (1) Describe semifinal objects in
Top,, Top,, Top,. Hint: use the final topologies and Remark 2D4.

(2) Prove that in Mer, the semifinal metric of a sink {(¥, )% X} is obtained
as follows: if a is the final pseudometric (2Cb) then X* = X/—- where x ~ x'
iff afx,x') =0 and a*([x],[y]) = «x,y) forall x,ye X,

c. Initially mono-complete constructs. Prove the following converse to
Remark 2D4: if each sink in a transportable construct has a semifinal object with

a surjective connecting map, then the construct is imitially mono-complete. Hint:
use dual sinks,

2E. A Criterion for Semifinal Completeness

. Theorem. Each semifinally complete construct has Cartesian products and
intersections.

Proof. Let & be a semifinally complete construct, Let (T, 8 ), j € J, be its objects.
To show that . has Cartesian products, put

Jf=]'[1}
&t

and denote by p;: X — T; the projections. It is our task to show that the following
SOUTCE

) (X 2(Tod
has an initial structure. To show that % has intersections, assume that each (7},4))
is a subobject of a given object (T, ); put
X =7,
jed

and denote by p;: X —» T, the inclusion maps. Again, it suffices to show that the
source (*) has an initial structure «: then (X, z) is the intersection of the objects
(7,4;). Indeed, if v: X = T and v T, — T denote the inclusion maps, then

v=uv;.p; foreach jelJ.

Hence, v: (X, ) — (T, ) is a morphism. Moreover, given an object (Z, ) and a map
h: Z - X such that v.h=v,.(p,.h): (Z,7) > (T,8) is a morphism, then each
p;-h isa morphism and henc: h: (Z,y) = (X, a) is a morphism.
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To prove that (*) has an initial structure let &

{{}:" ﬁt}-{:. X}I'El
denote its dual source (2C2), and let (X*, «*) be the semifinal object with connecting

map
po X+ X%,

We shall prove that eis a bijection. Then it transports the structure «* to a structure o
such that
&: (X, o) — (X%, 2%

is an isomorphism (since & is transportable by the definition of semifinal complete-
ness). It is then easy to see that « is the initial structure of (*). Thus, the proof will
be concluded when we exhibit a map &: X* —+ X inverse (o0 &

tYiiP‘i]

X = (X))

(1.8
Given jeJ, all p,.f, are morphisms and thus we have a unique morphism

pt: (X*, o*) = (T, 6,) with
[]) p; = p}.¢& (jEJ).
There is a unique map &: X* — X with
(2) pr=p;-8 (jeJ).
This is clear in the case of products: define £ by #x) = {p¥(x)},, for all xeX.
In the case of intersections, the map v: X — T has the property that each ©. f; =
— v;.p;. fi: (Y, B) = (T.8) is a morphism, hence, there is a unique (!) morphism
ad [JL’"‘ :*}—r{T-S) with v = v*.& For each jeJ, the morphism ¢;.p¥ fulfils
(v;.pf)e=v;.p;=v and therefnre,

v;.pT =v* forall jelJ.
Hence, for each x & X* the point p¥{(x) is independent of j and it lies in T; — thus,
it liesin X = (T, We can define & X* —» X by

8x) = p¥(x) foreach xeX, jel.

Then (2) holds.
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To prove that i is inverse to & first use the equality
p;-[E.e)=pf.e=p; (forall jel) -
to conclude that
£.e=idy

(which follows immediately both for products and for intersections). Next, the map

(X*, a¥) £, X belongs to the dual sink of (*) because each p;-& = p¥,jelt, isa mor-
phism. Hence, £.&: (X*, o*) = (X*, «*) is also a morphism. Since

(£.8).e=¢.(-¢) =&,
we conclude that

E.E == idx-r-.

see Remark ZDZ{.'IE}.

2. Il we are to decide whether a certain construct is semifinally complete, we
should first check for Cartesian products (which is usvally easy). Then we should
study the generation of subobjects (1F3).

Definition. A construct with intersections is said to have bounded generation
il for each cardinal n there is a cardinal n*® such that each object on n generators
has at most n* points (i.c., il (X, z) has n generators then card X < n*).

The following elementary properties of cardinals are used in the subsequent
examples.
(i) For cach infinite set X

card X =card X x X.

(1) If card X = n then card (exp X) is larger than n; it is denoted by 2" (since
it is the cardinality of the set {0, 1}*). We have

card B = 2%,
(iii) For each infinite set X,
card X = card -[M c X: M ﬁnite} '.

(iv) If X and Y are disjoint sets then card (X U Y) is denoted by n + m, where
card X = n and card Y = m, If n is infinite, then

n+ N, =n;
if n 15 finite, then

"'I‘Hn:Nﬂ-
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(v) If infinite sets X,, X,, X,,... have the same cardinality n, then also

card (| J X,) = n.
k=0

Examples. (i) Sgr has bounded generation with
n*=n+ N, for each cardinal n.

In fact, let (X,+) be a semigroup, generated by a set M = X with card M < n.
Put M, =M and

M,={x-y;x,yeMj uM,,
M,={xy;x,yeM,}UM,,

=
etc. The set M = U M, is a subsemigroup: given x,yeM there is an i with
i=0Q
x,y€M;: then x-ye M,.,. Since M = M, we conclude that X = M. Moreover,
if M is finite then ecach M, is finite, hence,card M < W,:if M isinfinite then My, M, ...
have the same cardinality as M. Therefore, card X = card M < n 4+ N,.

(ii) Other algebraic constructs, e.g.,
Mon, Grp, Rng, Lat

have bounded generation with n* = n + W, for all n — the proof is similar to (i),
(iii) The construct Vect has bounded generation with n* = n 4 2% _If a vector
space has dimension =n, it has a basis M of cardinality =n. All elements are linear

k .
combinations ) rx; (x;€ M). The number of all linear combinations is clearly
i=1

card R x card M < n + 2%
(iv) All hereditary constructs have bounded generation with
n* =n  for each cardinal n.

In fact, an object (X, a) is generated by M = X only if M = X, then card M =
= card X. Thus, Top, Pos, Met, elc., have (trivially) bounded generation.
(v) The construct Comp (of compact T,-spaces) has bounded generation with

n* = 2% for each cardinal n.

Indeed, let (X, 2) be a space generated in Compby M = X. Then M is a dense subset
of X (1Ff). For cach point xe X put -

A =lUc M; xelU}.
Then A4, < exp M, and
x#x implies A, # A, forall x,x'eX.

(If x # x' then there exist disjoint open sets U, Vwith xe U and x'= V. Since M is
dense, we have UnMeA_ but U~nM¢A, since VaA(UnM)=0)
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Thus, the number of points in X is smaller than or equal to the number of subsets
of exp M. Hence,

card M <n implies card X = 2%.

Remark. An example of a construct without bounded generation is Clar: there
exist arbitrarily large complete lattices even on three generators, Another construct
without bounded generation is Tepc: this construct does not have intersections,
hence. it does not have bounded generation by definition (recall that it does not
have generation (1F4 and 1Fb)).

3. Theorem. Each fibre-small construct with Cartesian products and bounded
generation is semifinally complete.
Proof. For each sink
£
(Yo B)= X}
we are going to find a semifinal object. Put
n = card X ;

there is a cardinal n* such that each object on n generators has at most n* points.
For every cardinal k < n choose a set T, with

card T, = k.
Let us consider all objects (7,,d), k < n and § e #[7,], with the following property;

(*) there exists a map &: X — T, such that all ¢.f: (Y,B)—(7.0) are
morphisms (i € I).

NS

X '_E_i' [quE]

All these objects form a set — a subset of

U #[%]

ksn

(which is a set since the construct & is fibre-small!). Hence, all the triples (T;, 4. &),
.where (7;,4) is an object satisfying (*) and e: X — T, is the corresponding map,
can be written as a collection

(Tpbse)s Jed,
where J is a set,
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Let us [orm the Cartesian product of the objects (T,
{f— %) = g{'ﬂur '&,]-
Define a map }
BEX-X= H L

ar &)

as follows:

#x) = {efx)}js  (xeX),
1.e., by

;. &= foreach jelJ.

The set
M=gX)s X
generates a subobject
(x*,2%)
of (X, &). Denote by
e*: X —» X*
the restriction of &; the inclusion map v: X* — X fulfils
U= B%E=§,

We are going to prove that (X*, «*) is a semifinal object of the given sink with the
connecting map &*,
(Y . B)
f.

1

» P
¥ =t [YPT] ——b )

<

Y
[T*Ijl . Ei}
(1) Foreach iel
e¥ . fi (Y Bi) = (X%, a%)

is a morphism. By the property (*), all
g;- fi = j-(E-ﬁ]:(ﬂwﬁi}""(nm'ﬂ.i} (ieJ)
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are morphisms. By the definition of Cartesian product, this implies that
E-fir (%, B) — (X, 4) )
is a morphism. Since & = v. ¥, by the definition of subobject also
e*. i (Y, B) = (X*,a*%)

18 & morphism.

(2) Let (T,4) be an object and h: X — T a map such that all h.f: (¥, 8)—
— (T, 6), iel, are morphisms. The set h(X) < T generates a subobject (77, d')
of (T, 8); denote by

hW: X T
the restriction of h, 1.e., the map such that
h=w.H

for the inclusion map w: T"—= 1.
Since
card h(X) < card X = n,

the object (7", &) has n generators which implies
card T = n*.

Therefore, there exists a cardinal & < n* such that T' and T, are 1somorphic sets.
Choose any bijection

b: T. = T..

IY; By )

fil

P T S

E-Eja
h T

R [T.E } "'h—i" {TUEI']' {Tlf[ju] |5.:|ﬂ]

T, &)
Denote by 6 the structure, transported by b, i.e., such that

b: (T',8') - (T, d)
is an isomorphism. Then the object (T, 6) has property (*) with respect to
E=b.W=X=T.
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Indeed, h.f,=w.(K.f): (Y,B,)—(T.6) is a morphism for each iel. Therefore,
h'. fi: (YaB;) = (T, &) is a morphism, and so is

e.fi=b.(H.f): (Y, B) (%)
This implies that there exist j,eJ with

(T2 0, g) = (T;:Uup 0js 'Eju)'
Put
W =w.b~! & .v: (X% o) > (T, 9).

This is a morphism since each of the maps composing h* is a morphism. And

h=w.HK
—w.b™' . [=b.h]
=w.b™'.m, . & |é=¢, =m,, . £]
=w. b n et [& = 1v.¢¥]
=8 e L

To prove that h* is unique, let k: {X* *) — (T, ) be another morphism with

k.24 =k,

By Proposition 2B7, the set
E = {xe X*; k(x) = h¥x)}

is a subobject of (X*, a*), hence, of (X, &) (see 1Fa). Since h*.g* = k.¢*, we have
E2 e X) = §X)= M.

Since M generates (X*, a*), this implies
E =X,

Therefore, k(x) = h*(x) for each x & X*, in other words, k = h*. (]

4. Corollary. Each non-trivial, fibre-small construct with Cartesian products
and bounded generation has free objects.

This follows from Corollary 2D3,
Examples. The following constructs have free objects:

Lat, Grd, Grp, Rng, Comp .
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