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Few measurables, big problems
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Eventual categoricity in power

Vopěnka ⇔ Any subfunctor of an accessible functor is
accessible (Adámek/Rosický)

Strongly compact ⇒ Any accessible category is cowellpowered
(Makkai/Paré)

Almost strongly ⇔ Powerful images of accessible functors are
compact accessible (Boney/Unger, et al)

. . .

Boundedly many ⇒ Exists a non-cowellpowered accessible
measurables category (Adámek/Rosický)

. . .

V = L Failure of eventual categoricity?

Under GCH*, we can say a great deal about internal sizes versus
cardinalities, and gather compelling evidence for the former as the
better way of phrasing test questions: categoricity, existence, etc.
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Makkai/Paré: Let ZC denote Zermelo-Fraenkel with choice, but
without replacement. Let K be the category of well-founded
models of ZC , with elementary embeddings.

Facts

1. Mostowski Collapse: Any object of K is uniquely iso to unique
transitive standard model: M̂ = (M,∈|M), M transitive.

2. In particular, K contains V̂α = (Vα,∈|Vα), for limit α.

3. K is accessible: category of models of ZC plus Lω1ω1-sentence

∀(xi )i∈ω ∨i∈ω ¬[xi+1 ∈ xi ]

4. Directly: K is ℵ1-accessible, with M ∈ K ℵ1-presentable iff
countable.
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Form K∗ by formally adjoining an initial object I . This new
category is still ℵ1-accessible.

Claim
If there are no measurables, I has a proper class of quotients,
namely those represented by the I → V̂α, α limit.

It suffices to show that there is at most one f : V̂α → N for N ∈ K,
hence that the maps I → V̂α are trivially surjective, and that the
full models form a proper class of pairwise nonisomorphic objects.

Set theory: If f : V̂α → N is such that f (β) = β for all ordinals β,
f (x) = x for all x ∈ Vα. So if f is not simply the inclusion,
f (β) 6= β for some ordinal β. The least such must be a measurable
cardinal. But there aren’t any of those...
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Proposition (Adámek/Rosický)

If there are boundedly many measurables, there is a
non-cowellpowered accessible category.

Let K be the accessible category with the same objects, and with
λ-elementary embeddings, where λ is larger than any measurable
cardinal. Again, formally adjoin initial object 1.

By λ-elementarity, any K-morphism f : V̂α → N preserves ordinals
β < λ, meaning that the first ordinal it moves must be a
measurable above λ. Doesn’t work.

Question
Does the existence of a proper class of measurables imply
cowellpoweredness of accessible categories?
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Failure of eventual IS-categoricity?

The central organizing concern of abstract model theory is the
following:

Conjecture (Shelah)

Let K be an abstract elementary class (AEC). If K is λ-categorical
for some sufficiently large λ, it is µ-categorical for all sufficiently
large µ.

Convincing approximations exist, particularly assuming, e.g.
strongly compact cardinals. But at what level of generality does it
fail? Is the following true?

Conjecture (Beke/Rosický—who don’t believe it either.)

Let K be an accessible category. If K is categorical in sufficiently
large internal size λ (λ-IS-categorical), it is µ-IS-categorical for all
sufficiently large µ.

Intuition: Look for a counterexample here, with V = L.
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Any accessible category K comes with a notion of size:

Definition
An object K in K is λ-presentable (λ regular) if HomK(K ,−)
preserves λ-directed colimits. The presentability rank of K , πK(K ),
is the least λ such that K is λ-presentable.

In Sets, π(X ) = |X |+. In an AEC, π(M) = |M|+. In a metric
AEC (mAEC), π(M) = dc(M)+. A pattern here...

Fact (Beke/Rosický)

Let K be accessible, M ∈ K. If

1. GCH* holds, or

2. K has directed colimits and all morphisms mono,

then π(M) = λ+ for some λ. In either case, we define the internal
size of M in K, denoted |M|K, to be λ.
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Tossed out in the opening paragraph of Shelah:1019 is the
following example (this version due to L/Rosický/Vasey):

Let K be the category of well-founded models of Kripke-Platek set
theory (no powerset, restricted separation and replacement) plus
V=L, with morphisms the elementary embeddings.

Fact

1. By Condensation, any M in K is uniquely isomorphic to a
unique

L̂α = (Lα,∈|Lα).

2. K is an accessible category (because an ℵ1-AEC...),

|M|K = |M|,

and there are λ+ models in every infinite cardinality λ.
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Example

Let K∗ be the full subcategory of K on the M ∈ K isomorphic to
(Lα,∈) such that for all β < α, [Lβ]≤ℵ0 ∩ L ⊆ Lα.

Fact
K∗ is also accessible (still an ℵ1-AEC).

Lemma
For λ an infinite cardinal we have:

I (K∗, λ) =


1 if |[Lλ]≤ℵ0 ∩ L| > λ

λ+ if (∀α < λ+)(∃β < λ+)([Lα]≤ℵ0 ∩ L ⊆ Lβ)

µ otherwise, for some µ ∈ [1, λ+)

Cardinalities!
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Theorem
Assume V = L and let λ be an infinite cardinal. Then:

I (K∗, λ) =

{
1 if cf (λ) = ℵ0
λ+ if cf (λ) > ℵ0
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Theorem
Assume V = L and let λ be an infinite cardinal. Then:

I (K∗, λ) =

{
1 if cf (λ) = ℵ0
λ+ if cf (λ) > ℵ0

So we’re done! Obviously cardinalities and internal sizes coincide,
so we have a failure of eventual IS-categoricity not just in an
accessible category, but in an accessible category with all
morphisms mono.
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Theorem
Assume V = L and let λ be an infinite cardinal. Then:

I (K∗, λ) =

{
1 if cf (λ) = ℵ0
λ+ if cf (λ) > ℵ0

So we’re done! Obviously cardinalities and internal sizes coincide,
so we have a failure of eventual IS-categoricity not just in an
accessible category, but in an accessible category with all
morphisms mono.

Or not: one discovers that objects of cardinality λ+0 with
cf (λ0) = ℵ0 can have internal size λ0 or λ+0 , and enough drop
down to destroy our hopes...

Lieberman Set-theoretic pathologies



Few measurables, big problems
Shelah’s (counter?)example
Internal size vs. cardinality

Eventual categoricity in power

µ-AECs
µ-AECs, accessible categories
Sizes under GCH*
Eventual categoricity conjectures

Although AECs are very general, they are, for some purposes, not
general enough: many classes of interest lack (concrete) directed
colimits (e.g. mAECs), only have models in certain cardinalities
(e.g. Satλ(K) ⊆ K), or call for infinitary operations (e.g.
µ-complete BAs). This led to:

Definition (Boney/Grossberg/L/Rosický/Vasey)

An abstract class of structures K in a µ-ary signature is a µ-AEC if
it satisfies the AEC axioms, but with the following modifications:

I K is only assumed to have µ-directed colimits, and

I there is λ with λ<µ = λ such that for any A ⊆ M ∈ K, there
is A ⊆ N ≺K M and |N| ≤ |A|<µ + λ. Define LST (K) to be
least such λ.
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While this characterization isn’t terribly easy to motivate, there is
another:

Theorem (BGLRV)

1. Any µ-AEC K is a LST(K)+-accessible category with all
morphisms mono.

2. Any µ-accessible category with all morphisms mono is
(equivalent to) a µ-AEC.

Good news in many ways: allows extensive application of MT tools
to accessible categories with monos, on the one hand, and allows
clean, uncluttered CT arguments involving µ-AECs, on the other.

As already seen, we have a tension here: | − |K versus | − |.
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We consider only the case GCH*. Given a µ-AEC K, | − |K and
| − | mostly agree, except—as in Shelah’s example—when it comes
to successors of cardinals of cofinality less than µ.

Theorem (L/Rosický/Vasey)

Let K be a µ-AEC, M ∈ K, and λ = |M|.

|M|K =

{
λ or λ0 if λ = λ+0 , cf (λ0) < µ

λ else

Here you can clearly see the smoothing that comes with passing to
internal sizes.

In a µ-AEC, it is easy to create, say, gaps in cardinalities λ with
cf (λ) < µ, but this is precisely where internal sizes drop back to
fill the holes.
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There are two natural ways of generalizing Shelah’s conjecture to
µ-AECs:

Conjecture (Eventual categoricity in power)

If a µ-AEC is categorical in a large enough cardinal λ with
λ = λ<µ, it is categorical in all sufficiently large κ such that
κ = κ<µ.

Note: we write off all cardinals of cofinality less than µ.

Conjecture (Eventual IS-categoricity)

If a µ-AEC is λ-IS-categorical for some sufficiently large λ, then it
is κ-IS-categorical in sufficiently large κ.

In AECs, these are the same. In mAECs, research is (secretly)
focused on the second. But what to pursue in a general µ-AEC?
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Example

Let Hilb denote the category of (complex) Hilbert spaces and
linear isometries.

Note

1. Hilb is ℵ1-accessible, hence an ℵ1-AEC.

2. For any V ∈ Hilb, |V |Hilb is the size of an orthonormal basis
of V .

3. Clearly, V is λ-IS-categorical for every λ.

So what about categoricity in power?

Fact (Bartoszyński/Džamonja/Halbeisen/Murtinová/Plichko)

Any V ∈ Hilb has cardinality λℵ0 for some λ.
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Assume GCH. For any infinite cardinal λ,

I (Hilb, λ) =


0 if cf (λ) = ℵ0
2 if λ = λ+0 , cf (λ0) = ℵ0
1 else

Here we have a failure of eventual categoricity in power, even in
the limited sense of ℵ1-AECs.

In fact, if for all α, ℵℵ0α = ℵα+β for some β, there are |β|+ 1
objects of cardinality ℵα+β, encompassing internal sizes

ℵα,ℵα+1, . . . ,ℵα+β

Possible moral: categoricity in power is wildly extrinsic and
dependent on background set theory. IS-categoricity, though...
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All occurrences of “GCH*” should be interpreted as follows: “GCH
or even SCHµ,≥θ for suitable θ,” where:

Definition
Let µ ≤ λ.

1. We say that λ is almost µ-closed if θ<µ ≤ λ for all θ < λ.

2. For S a class of infinite cardinals greater than or equal to µ,
we write SCHµ,S for the statement “every λ ∈ S is almost
µ-closed.” SCHµ,≥θ has the obvious meaning.

Note
If µ is strongly compact, SCHµ,≥µ holds, so the above results hold
not just under V=L/GCH, but also in the newly favored context of
ZFC+(strongly compacts).
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