
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF MATHEMATICS
ÚSTAV MATEMATIKY

SHOR'S ALGORITHM IN QUANTUM CRYPTOGRAPHY
SHORŮV ALGORITMUS V KVANTOVÉ KRYPTOGRAFII

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

B.Tech. Martyns Nwaokocha

SUPERVISOR
VEDOUCÍ PRÁCE

doc. Mgr. Jaroslav Hrdina, Ph.D.

BRNO 2020

BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Mechanical Engineering

MASTER'S THESIS

Brno, 2020 B.Tech. Martyns Nwaokocha

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

Assignment Master's Thesis
Institut: Institute of Mathematics

Student: B.Tech. Martyns Nwaokocha

Degree programm: Applied Sciences in Engineering

Branch: Mathematical Engineering

Supervisor: doc. Mgr. Jaroslav Hrdina, Ph.D.

Academic year: 2020/21

As provided for by the Act No. 111/98 Coll. on higher education institutions and the BUT Study and
Examination Regulations, the director of the Institute hereby assigns the following topic of Master's
Thesis:

Shor's algorithm in Quantum Cryptography

Brief Description:

A fundamental problem in computacional number theory is the search of proper divisors of a big
positive integer N. The quantum framework permits a solution whose complexity is polynomial. It is
hepfull for a new cryptosystems that are secure from quantum computers, collectively called
post–quantum cryptography.

Master's Thesis goals:

Learning the basics of quantum computing. Understendig the Shor's algorithm and its applications in
cryptography. Programing the cryptography scheme in the simulation software and discusing its
complexity with respect to classical non–quantum ones.

Recommended bibliography:

[GC] DE LIMA MARQUEZINO, Franklin, et al.: A Primer on Quantum Computing, SpringerBriefs in
Computer Science, 2019.

[QN] RUE, Juanjo, XAMBO, Sebastian. Mathematical essentials of quantum computing, Lecture notes
UPC, https://web.mat.upc.edu/sebastia.xambo/QC/qc.pdf

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2020/21

In Brno,

L. S.

prof. RNDr. Josef Šlapal, CSc.

Director of the Institute

doc. Ing. Jaroslav Katolický, Ph.D.
FME dean

Abstract

Cryptography is a very important aspect of our daily lives as it gives the theoretical foun-
dation of information security. Quantum computation and information is also becoming a
very important field of science because of its many application areas including cryptology
and more specifically in public key cryptography.

The difficulty of factoring numbers into its prime factors is the basis of some important
public key cryptosystems of which the RSA is an important example. Shor’s Quantum
factoring algorithm leverages most especially the quantum interference effect of quantum
computing to factor semi-prime numbers in polynomial time on a quantum computer.
Though the capacity of current quantum computers to execute the Shor’s Algorithm is
very limited, there are many extensive foundational scientific research on various tech-
niques of optimizing the algorithm in terms of factors such as number of qubits, depth of
the circuit and number of gates.

In this thesis, two variants of the Shor’s factoring algorithm and quantum circuits are
discussed. Next, these variants are simulated on the QASM simulator in the IBM Quan-
tum Experience platform using the Python Programming language and the Qiskit software
development kit. Afterwards, the simulation results are analysed and compared in terms
of their complexity and success rate.

The organization of the thesis is as follow: Chapter 1 discusses some key historical result
in quantum cryptography, states the problem discussed in this thesis and presents the ob-
jectives to be achieved. Chapter 2 summarizes the mathematical background in quantum
computing and public key cryptography as well as describing the notation used through-
out the thesis. This also explains how a realizable order-finding or factoring algorithm
can be used to break the RSA cryptosystem. Chapter 3 presents the building blocks of
Shor’s algorithm including the Quantum Fourier Transform, Quantum Phase Estimation,
Modular Exponentiation and Shor’s algorithm in detail. Different optimization variants
of the quantum circuits are also presented and compared here. Chapter 4 presents the
results of the simulations of the various versions of the Shor’s algorithm. In Chapter 5, we
discuss the achievement of thesis goals, summarize the results of the research and outline
possible future research directions.

Summary

In computational number theory, a fundamental problem is the ability to factor a large
positive integer N . This fundamental problem is the strength of some key public key cryp-
tosystems being used today and key to note is the RSA cryptosystem. Shor’s quantum
factoring algorithm offers a solution with polynomial complexity when compared to the
exponential complexity obtainable in existing classical algorithms. In this thesis, we have
discussed Shor’s quantum factoring algorithm in cryptography, its building blocks and
how an efficient factoring algorithm such as Shor’s factoring algorithm could be used in
breaking the RSA system. We also discussed and simulated two implementation variants
using the standard Quantum Fourier Transform (QFT) and the semiclassical QFT.

From our simulation, we have confirmed previous theoretical results that the variant using
semiclassical QFT optimizes the number of qubits by reducing the number of qubits from
from 2n to 1 qubit in the factorization of an n-bit integer N . However, this comes at
the cost of more quantum operations and measurements thereby resulting in a slightly
lower success rate of finding the right order and hence the right factorization. Another
drawback is that compared to the standard implementation of the QFT, it takes more
time to execute the algorithm including the amount of time it takes for the measurement
outcomes gotten from the simulation to be classically post-processed using the continued
fraction algorithm. Hence when the amount of available qubits is very limited and its
optimization is of higher priority, the implementation of the Shor’s factoring algorithm
using semiclassical is better suited.

Souhrn

V algoritmické teorii čísel je jedním ze zásadních problémů schopnost faktorizovat velká
kladná celé číslo N . Na schopnosti faktorizovat velká kladná čísla je založena výpočetní
síla některých klíčových kryptosystémů využívající veřejného klíče, které se dnes použí-
vají. Jedná se především o kryptosystém RSA. Například algoritmus kvantového faktori-
zování SHORA nabízí řešení s polynomiální složitostí ve srovnání s exponenciální složitostí
dosažitelnou ve stávajících klasických algoritmech. V této práci jsme diskutovali Shorův
kvantový algoritmus v kryptografii, jeho stavební kameny a to, jak lze použít efektivně při
prolomení systému RSA. Rovněž jsme diskutovali a simulovali dvě varianty implementace
pomocí standardní kvantové Fourierovy transformace (QFT) a semiklasické QFT.

Pomocí simulace jsme potvrdili předchozí teoretické výsledky. Především, že varianta
využívající semiklasický QFT optimalizuje počet qubitů snížením jejich počtu z 2n na
1 qubit při faktorizaci n-bitového celého čísla N . To však přichází za cenu více kvan-
tových operací a měření, což má za následek mírně nižší úspěšnost nalezení správného
řádu, a tedy správné faktorizace. Další nevýhodou je, že ve srovnání se standardní im-
plementací QFT trvá provedení algoritmu více času, včetně doby, kterou trvá, než budou
výsledky měření získané ze simulace klasicky dodatečně zpracovány pomocí algoritmu
pokračujícího zlomku. Pokud je tedy počet dostupných qubitů velmi omezený a jeho op-
timalizace má vyšší prioritu, je vhodnější implementace Shorova factoringového algoritmu
pomocí semiklasického QFT.

6

Keywords
Cryptography, Quantum Computing, Quantum Algorithm, Shor Algorithm, Fourier trans-
formation, Factorization, RSA.

Klíčová slova
Kryptografie, Kvantové počítání, Kvantové algoritmy, Shorův algoritmus, Fourierova trans-
formace, Faktorizace, RSA

NWAOKOCHA, M.Shorův algoritmus v kvantové kryptografii. Brno: Vysoké učení tech-
nické v Brně, Fakulta strojního inženýrství, 2021. 76 s. Vedoucí doc. Mgr. Jaroslav
Hrdina, Ph.D.

7

I acknowledge the use of IBM Quantum services for this work. The views expressed are
those of the authors, and do not reflect the official policy or position of IBM or the IBM
Quantum team.

Declaration

I declare that I have written my Master’s thesis on the theme “Shor’s Algorithm in Quan-
tum Cryptography” independently, under the guidance of my Master’s thesis supervisor
and using the technical literature and other sources of information which are all quoted
in the thesis and detailed in the list of literature at the end of the thesis. As the author
of the Master’s thesis I furthermore declare that, as regards the creation of this Master’s
thesis, I have not infringed any copyright. In particular, I have not unlawfully encroached
on anyone’s personal and/or ownership rights and I am fully aware of the consequences in
the case of breaking Regulation S 11 and the following of the Copyright Act No 121/2000
Sb., and of the rights related to intellectual property right and changes in some Acts
(Intellectual Property Act) and formulated in later regulations, inclusive of the possible
consequences resulting from the provisions of Criminal Act No 40/2009 Sb., Section 2,
Head VI, Part 4.

Brno

B.Tech. Martyns Nwaokocha

Acknowledgement

I would like to express the deepest appreciation to my supervisor Mgr. Jaroslav Hrdina,
Ph.D for his valuable advice, support, discussions and suggestions. I am grateful to the
Intermaths Consortium and Erasmus+ mobility for the mobility grant I have received
while studying abroad.
To my wonderful family, especially my parents Mr. and Mrs. Patrick and Regina
Nwaokocha, thank you so much for your relentless prayers, support and encouragement
all the way. Also, a big thanks to the family of Mr. and Mrs. Abashe Shehu for your
prayers. My appreciation also to Reverend Father Anyanwu Chibueze Cajethan for all
your support and prayers to me.
To almighty God for his grace and blessings, I’m utmost grateful.

.....................

B.Tech. Martyns Nwaokocha

CONTENTS

Contents
1 Introduction 3

1.1 History of Quantum Mechanics . 3
1.2 History of Quantum Computing and Quantum Cryptography 4
1.3 Problem Outline . 5
1.4 Goals of the Thesis . 6
1.5 Thesis Outline . 7

2 Mathematical Background in Quantum Cryptography 8
2.1 Basics of Quantum computing . 8

2.1.1 Complex linear algebra . 8
2.1.2 Single Qubit . 10
2.1.3 Representation of single qubits on the Bloch sphere 11
2.1.4 Single Qubit Gates . 12
2.1.5 Measuring in Different Bases . 16
2.1.6 Multi-Qubits . 17
2.1.7 Multi-Qubit Gates . 19
2.1.8 Entangled States . 19
2.1.9 Quantum Circuits . 20

2.2 Integer Factorization in Cryptography . 21
2.2.1 Rivest–Shamir–Adleman (RSA) Cryptosystem 21
2.2.2 Classical Factorization Schemes . 23

3 Building blocks for the Shor’s algorithm 24
3.1 Quantum Fourier Transform . 24

3.1.1 Standard QFT circuit . 25
3.1.2 Semiclassical QFT (’One controlling qubit’) 27

3.2 Quantum Phase Estimation (QPE) . 27
3.3 Shor’s Algorithm . 29
3.4 Period finding . 31
3.5 Reliability of getting a solution from Shor’s algorithm 33
3.6 Modular exponentiation in Shor’s algorithm 33
3.7 Implementation variants of the Shor’s algorithm 38

3.7.1 Shor’s algorithm using Modular Exponentiation with Quantum Adder
and Semiclassical QFT . 39

3.8 Complexity Analysis of the Shor’s Algorithm 40

4 Simulation of Shor’s Algorithm 41
4.1 Architecture of the Quantum Computer and Simulator Used 41
4.2 Example using Shor’s algorithm to factor N = 15 manually 42
4.3 Computer simulations . 48

4.3.1 Computer Simulation: Constant-Optimized Circuits (shor_normal_con-
stant) . 48

4.3.2 Simulation: Quantum modular exponentiation with QFT adder +
standard QFT (shor_standard_QFT) 51

1

CONTENTS

4.3.3 Simulation: Quantum modular exponentiation with QFT adder +
semiclassical QFT (shor_semiclassical_QFT) 54

4.4 Simulation Results . 57
4.4.1 Execution time analysis . 58
4.4.2 Success rate analysis . 60
4.4.3 Circuit metrics summary . 63

5 Conclusion and potential future work 66
5.1 Goals Achievement Discussion . 66

5.1.1 Review of Shor’s Algorithm . 66
5.1.2 Simulation of Shor’s Algorithm . 66
5.1.3 Analysis of simulation results . 66

5.2 Simulation Results Summary . 67
5.3 Further Work . 67

6 List of used abbreviations and symbols 73

2

1. INTRODUCTION

1. Introduction
This chapter introduces the thesis scope which is Shor’s algorithm in quantum cryptogra-
phy. It describes the motivation of the thesis, its objective and the outline of the problem
that it solves. Section 1.1 discusses the history of quantum mechanics especially as it
relates to computer science. In section 1.2, the historical development as well as some key
results in quantum cryptography are highlighted. Section 1.3 summarizes the problem to
be solved in this thesis and in section 1.4, the objectives of the thesis is presented. Lastly,
section 1.5 presents the outline of the following chapters.

1.1. History of Quantum Mechanics
Quantum mechanics is a fundamental theory in physics that gives a description of the
physical properties of nature at the scale of atoms and subatomic particles [1]. It differs
from classical mechanics given that energy, momentum and other quantities of a bound
system are quantized. Also in quantum mechanics, objects exhibit wave-particle duality
and the uncertainty principle.

Quantum mechanics began from scientists formulating theories trying to explain obser-
vations which could not be explained with classical physics. Such problems included
the black-body radiation problem which Max Planck solved in 1900 and the relationship
between energy and frequency which Albert Einstein in 1905 explained in his paper on
photoeletric effect. Since then, there has been significant progress in the theory where
new branches such as quantum chemistry, quantum field theory, quantum technology and
quantum information science have arisen from.

After the discovery of elementary particles, it was noticed that they could carry informa-
tion. In 1980, Paul Benioff observed that quantum mechanics could be used to perform
computations [2]. Later in 1982, Richard Feynman had the thought of a ”quantum com-
puter” which was to be a computer that used the effects of quantum mechanics such as
superposition and interference to its advantage [3]. Several physicists and scientists have
been working on this idea and in 2009, Aaron D. O’Connell invented the first quantum
machine, by the application of quantum mechanics to a macroscopic object just large
enough to be seen by the naked eye and which is able to vibrate a small amount and large
amount simultaneously[4].

Lately, the key to improving computer performance has been the reduction of size in
the transistors used in modern processors [5]. However, this continual reduction in size
cannot continue for too long as if the transistors become too small, the effects of quantum
mechanics will begin to hinder their performance. Over the years, many ideas for exploit-
ing quantum mechanics in computer science have been proposed. Consequently, the field
Quantum Computer Science was developed and currently could be split into Quantum
Computation and Quantum Communication.

3

1.2. HISTORY OF QUANTUM COMPUTING AND QUANTUM CRYPTOGRAPHY

1.2. History of Quantum Computing and Quantum
Cryptography

Quantum computing is the use of quantum phenomena such as superposition, interference
and entanglement to perform computation. It is a subfield of quantum information science
and began in the early 1980s, when Paul Benioff proposed a quantum mechanical model of
the Turing machine. Later, Yuri Manin in 1980 and Richard Feynman in 1982 suggested
that a quantum computer could simulate things that a classical computer could not do
[6, 7].
Quantum cryptography relies on the foundations of quantum mechanics. This is unlike
traditional cryptography which relies on the computational difficulty of mathematical
problems. Quantum cryptography was first proposed in 1968 by Stephen Wiesner who
also introduced the concept of quantum conjugate coding and quantum money. In his
paper titled ”Conjugate Coding” published in 1983, he showed how to store or transmit
two messages by encoding them in two ”conjugate observables” [8]. These included linear
and circular polarization of light thereby ensuring that either but not both, may be re-
ceived and decoded. A decade later, Charles H. Bennett and Gilles Brassard proposed a
method for secure communication based on Wiesner’s conjugate observables [9]. In 1991,
Artur Ekert developed a different approach to quantum key distribution based on special
quantum correlations called quantum entanglement [10]. As traditional public key cryp-
tography is being threatened by the development of quantum algorithms and quantum
computing for breaking cryptosystems, quantum cryptography has received more atten-
tion since the 1990s.

In 1994, Peter Shor developed a quantum algorithm for factoring integers which could
be applied in the decryption of cipher-text encrypted with RSA [11]. Very recently in
December 2019, Craig Gidney and Martin Ekerå [12] showed how to factor 2048 bit RSA
integers in 8 hours using 20 million noisy qubits by combining techniques from Shor 1994
[11], Griffiths-Niu 1996 [13] , Zalka 2006 [14], Fowler 2012 [15], Ekerå-Håstad 2017 [16] ,
Ekerå 2017 [17] , Ekerå 2018 [18] , Gidney-Fowler 2019 [19] and Gidney 2019 [20].

There are several models of quantum computing systems, including the quantum cir-
cuit model, quantum Turing machine, adiabatic quantum computer, one-way quantum
computer, and different quantum cellular automata. Amongst these, the quantum circuit
model is the most used and they are based on the quantum bit (qubit) which is analogous
to the bit in classical computation.

There have been significant progress in building a physical quantum computer however
there are a number of significant obstacles impeding the construction of useful quantum
computers. In particular, it is difficult to maintain the quantum states of qubits as they
suffer from quantum decoherence and state fidelity. Hence, Quantum computers require
error correction solutions [21, 22].

Quantum computers obey the Church–Turing thesis which means that any computational
problem that can be solved by a classical computer can also be solved by a quantum com-
puter and conversely, any problem that can be solved by a quantum computer can also

4

1. INTRODUCTION

be solved by a classical computer, at least in principle given enough time. Hence while
quantum computers offer no additional advantages over classical computers in terms of
computability, quantum algorithms for certain problems have significantly lower time com-
plexities than corresponding known classical algorithms. Notably, quantum computers
are believed to be able to quickly solve certain problems that no classical computer could
solve in any feasible amount of time and this phenomenon is called ”quantum supremacy”.

A major problem in the execution of a quantum algorithm is the number of qubits required
for the algorithm. In Shor’s algorithm, a major subroutine is the modular exponentiation
and many researchers have focused on optimizing the circuit that realises modular expo-
nentiation operation. In particular, some work have been done in reducing the number
of qubits in implementing the circuit for factorization especially the modular exponen-
tiation sub-circuit. Vedral, Barenco and Ekert in [23] showed that 7n + 1 qubits and
O(n3) elementary gates are needed for modular exponentiation. This number could be
reduced to 5n + 2 qubits with some basic optimization and reduced further to 4n + 3 if
unbounded Toffoli gates are available. As at the time of this writing in IBM Quantum [24]
for example, the maximum Toffoli gates existing is the doubly controlled-NOT . Beck-
man, Chan, Devabhaktoni and Preskill in [25] performed an extended analysis of modular
exponentiation with a circuit of 5n + 1 qubits using elementary gates and 4n + 1 if un-
bounded Toffoli gates are available. Zalka in [26] also explained a factorization method
with 3n+ O(logn) qubits using only elementary gates. As shown in [27], if the type and
size of all the quantum gates are not restricted in any way, the order-finding can be done
directly using controlled multiplication gates with just n + 1 qubits. However, with the
current physical implementation of quantum computer, having no restrictions in the type
and size of the quantum gates is not existing. The work of Stephane [28] showed that
using the semi-classical QFT, the order finding circuit could be performed with 2n + 3
qubits, O(n3log(n)) gates and a depth of O(n3). This thesis is focused on implement-
ing the Shor’s algorithm and simulating the exponential speedup it offers when solving
period-finding problems as theoretically deduced from the work of Stephane [28].

1.3. Problem Outline
Quantum computing is becoming more diverse and practical in several scientific areas.
Currently, there are many quantum computers available such as the one from IBM avail-
able to the public. However, their capacity is still limited especially on the number of
qubits they possess and possible gate operations they can directly perform.

Peter Shor in 1994 discovered an algorithm which have been named after him that showed
how a Quantum computer could factor semi-prime numbers into their prime factors in
polynomial time [11]. In comparison with classical factoring algorithms, they do so in
exponential time when performed in a generic way. This computational complexity is
the basis for cryptosystems such as the RSA which is widely used in information secu-
rity. Shor’s factoring algorithm when implemented on a scalable quantum computer could
lead to breaking the RSA cryptosystem. This has also encouraged more research in this
area to explore other different ways quantum mechanics can be leveraged in cryptography
applications. Despite the current technological limitation however, much work has been

5

1.4. GOALS OF THE THESIS

done to derive the most efficient quantum circuit implementation with optimism regard-
ing better architectures of quantum computers in the future.

A quantum bit (qubit) is a basic unit of information in quantum computers and is often
implemented with elementary particles. These qubits are fragile and interferes with the
environment despite the great amount of care in isolating them. This forms a fundamen-
tal obstacle in the construction of a scalable quantum computer, hence spurring the need
of optimizing quantum algorithms in terms of the number of qubits used as well as gate
operations in the circuit.

Shor’s algorithm is an example of a complex algorithm with multiple parts can be imple-
mented in various ways usually based on the objective of whether the number of qubits,
or gate operations or other metrics is to be optimized. In this thesis, we try to describe
two implementation variants and compare them with emphasis on the optimization of the
number of qubits used. Though the technology to execute Shor’s algorithm is limited,
quantum computer simulators that can execute the algorithm on classical computers have
been developed. These simulators are great tools to test and analyse quantum algorithms
however as shown in [7], these simulators cannot execute quantum algorithms efficiently.
In this thesis, two variants of the Shor’s factoring algorithm are discussed, simulated and
analysed and compared.

1.4. Goals of the Thesis
The main objective of this thesis is to review and simulate Shor’s algorithm in quantum
cryptography as well as discuss its complexity with respect to classical non-quantum
schemes. This has been fulfilled by achieving the following goals:

Review of Shor’s Algorithm

The Shor’s algorithm should be described in full details. The initial steps of the algorithm
with respect to classical pre-processing, the quantum order finding and classical post-
processing should be discussed. Different approaches to implement the quantum circuits
should be described and its comparison in terms of execution time, success rate and circuit
metrics such as the required number of qubits, number of gates and circuit depth should
be summarized.

Simulation of Shor’s Algorithm

The most significant variants of the quantum circuits should be implemented in a quantum
computer simulator. These should be tested and ensured to be working correctly.

Analysis of simulation results

The simulation results should be presented and analyzed. Comparisons should be made
with respect to execution time and the success rate of the different implementation vari-
ants.

6

1. INTRODUCTION

1.5. Thesis Outline
The organization of the thesis is as follows:

Chapter 2 summarizes the mathematical background in quantum computing and pub-
lic key cryptography. Here we present the notations used in quantum mechanics and
basics of complex linear algebra. Next we discuss the quantum bits (qubits), operations
on qubits and quantum circuits. At the end of the chapter, we summarize integer fac-
torization in cryptography with a focus on how a realizable order-finding or factoring
algorithm could be used to break the RSA cryptosystem.

Chapter 3 presents the building blocks of Shor’s algorithm. We begin by discussing the
Quantum Fourier Transform (QFT), the Quantum Phase Estimation (QPE) and how it
is used as a building block for developing the Shor’s algorithm. Next, we discuss in details
the sub-circuits within the Shor’s factoring quantum algorithm from the quantum adder
to the modular exponentiation. This is followed by discussing a different optimization
variant of the Shor’s algorithm using Semi-classical QFT and the chapter ends with the
complexity analysis of the Shor’s algorithm including the complexity of the subroutines
that make up the entire circuit.

Chapter 4 presents the manual calculation steps of a simple example and a discussion
of the computing steps taken to simulate two variants of the Shor’s algorithm including a
simplified variant that uses a constant optimized circuit. Next, we present the results of
the simulations of the two variants of the Shor’s algorithm on the IBM QASM simulator.
We conclude the chapter by analysing and comparing the complexity and success rate of
these implementation variants of the algorithm.

In Chapter 5, we discuss the achievement of the thesis goals, summarize the results of the
research simulations and outline possible future research directions.

7

2. Mathematical Background in
Quantum Cryptography

In this chapter, we introduce key concepts in quantum computing and integer factorization
in cryptography. Only the basic concepts which are necessary to understand the thesis
are presented and more comprehensive description can be found in [29, 30]. In section 2.1,
we summarize the concepts of single and multi-qubit as well as gate operations on them
and measurements. At the end of that section, quantum entangled states and quantum
circuits are introduced. In section 2.2, we summarize integer factorization in cryptography
listing some classical integer factorization schemes and their complexities.

2.1. Basics of Quantum computing

2.1.1. Complex linear algebra
Vector space

A vector space V over the scalar field C is a set, the elements of which are called vectors
|v〉, on which the following two operations are defined

• V × V 3 (|x〉, |y〉) 7→ |x〉 + |y〉 ∈ V

• C× V 3 (λ, |x〉) 7→ λ|x〉 ∈ V

with the following properties:

1. ∀ |x〉, |y〉, |z〉 ∈ V ,

(a) |x〉 + |y〉 = |y〉 + |x〉,
(b) |x〉+ (|y〉+ |z〉) = (|x〉+ |y〉) + |z〉.

2. ∀ |x〉 ∈ V, ∃ 0 ∈ V : 0 + |x〉 = |x〉 ,

3. ∀ |x〉 ∈ V, ∃! − |x〉 ∈ V : |x〉+ (−|x〉) = (−|x〉) + |x〉 = 0,

4. ∀ |x〉, |y〉 ∈ V and λ, µ ∈ C,

(a) 1|x〉 = |x〉,
(b) (λ+ µ)|x〉 = λ|x〉+ µ|x〉,
(c) λ(µ|x〉) = (λµ)|x〉,
(d) λ(|x〉+ |y〉) = λ|x〉+ λ|y〉.

Normed spaces, Inner product and Hilbert Spaces

A norm on a linear space V is a function ‖.‖ : V → R with the following properties:

1. ∀ |ϕ〉 ∈ V, ‖|ϕ〉‖ ≥ 0 ,

2. ∀ |ϕ〉 ∈ V and λ ∈ C, ‖λ|ϕ〉‖ = |λ|‖|ϕ〉‖ ,

8

2. MATHEMATICAL BACKGROUND IN QUANTUM CRYPTOGRAPHY

3. ∀ |ϕ〉 and |ψ〉 ∈ V, ‖|ϕ〉+ |ψ〉‖ ≤ ‖|ϕ〉‖+ ‖|ψ〉‖ ,

4. ‖|ϕ〉‖ = 0 =⇒ |ϕ〉 = 0.

A normed linear space (V, ‖ · ‖) is a linear space V equipped with a norm ‖ · ‖. An inner
product on V is a map 〈.|.〉 : V × V → C such that, ∀ |x〉, |y〉, |z〉 ∈ V and α, β ∈ C :

1. 〈x, λy + µz〉 = λ〈x, y〉+ µ〈x, z〉,

2. 〈y, x〉 = 〈x, y〉,

3. 〈x, x〉 ≥ 0,

4. 〈x, x〉 = 0 ⇐⇒ x = 0.

A linear space with an inner product is called a pre-Hilbert (inner product) space and a
Hilbert space is a complete pre-Hilbert space. In quantum mechanics we work with the
Hilbert space Cn and if 〈x| = |x〉† denotes the conjugate transpose of |x〉, the standard
inner product here is defined as:

〈x|y〉 = 〈x||y〉 = |x〉†|y〉 =
n∑

j=1

x̄jyj

where |x〉 = (x1, ..., xn)
T , |y〉 = (y1, ..., yn)

T ∈ Cn with xi, yi ∈ C.

For an element 〈ψ| of Hilbert space H representing a quantum system, the normalization
condition given below must hold.

∀〈ψ| ∈ H, 〈ψ|ψ〉 = 1

Two important types of matrices in quantum computing are Hermitian (H = H†) and
Unitary (U−1 = U †) matrices, where the † symbol denotes its conjugate transpose.
Unitary matrices are important in quantum computation because they preserve the inner
product.

Outer Products and Tensor Products

For two vectors |a〉 and |b〉 in a vector space H, the outer product is defined as

|a〉|b〉† = |a〉 〈b| =


a1
a2
...
an

 [b̄1 b̄2 · · · b̄n
]

=


a1b̄1 a1b̄2 · · · a1b̄n

a2b̄1 a2b̄2
...

...
anb̄1 · · · · · · anb̄n


The outer product is a specific example of the more general tensor product (denoted
|a〉 ⊗ |b〉 or |ab〉) used to multiply vector spaces together and defined on vectors as

|a〉 ⊗ |b〉 =

a1
[
b1
b2

]
a2

[
b1
b2

]
 =


a1b1
a1b2
a2b1
a2b2


9

2.1. BASICS OF QUANTUM COMPUTING

For an operator acting on the tensor product of |a〉 and |b〉, we take the tensor product
of the operators acting on them. The tensor product of matrices A and B equals:

A⊗B =

a11B · · · a1nB
...

am1B · · · amnB


Matrix Exponentials

We note that unitary transformations U are of the form

U = eiγH =
∞∑

n = 0

(iγH)n

n!

where H is an Hermitian matrix and γ ∈ R since UU † = eiγHe−iγH = e0 = I.

An involutory matrix B is such that B2 = I where I is an identity matrix and for
such involutory matrix B, we have

eiγB = cos(γ)I + i sin(γ)B
The Pauli gates introduced in section 2.1.4 are examples of involutory matrices and is a
useful property as these kind of gates are their own inverses.

Lastly, given some matrix M , with eigenvectors |v〉 and corresponding eigenvalues λ,
we have:

eM |v〉 =

(∞∑
n = 0

Mn

n!

)
|v〉 =

∞∑
n = 0

Mn|v〉
n!

=
∞∑

n = 0

λn|v〉
n!

=

(∞∑
n = 0

λn

n!

)
|v〉 = eλ|v〉

2.1.2. Single Qubit
A quantum bit (qubit) is a bit that obeys the rules of quantum mechanics and is the
basic variable of quantum computers. The state of a qubit is a vector in a two-dimensional
complex vector space. The special states |0〉 and |1〉 are called the computational basis
states, and together, form an orthonormal basis for this vector space. Statevectors are
used to describe the state of a system in quantum physics and helps in keeping track of
quantum systems. For example

|x〉 =



0
...
0
1
0
...
0


←

Probability of
an object being at

position k

10

2. MATHEMATICAL BACKGROUND IN QUANTUM CRYPTOGRAPHY

Qubit Notation

The states |0〉 and |1〉 form an orthonormal basis of C2, so any 2-dimensional vector |q0〉
can be represented by a linear combination of these two states. For example:

|q0〉 =

[
1√
2
i√
2

]
can be written as |q0〉 = 1√

2
|0〉+ i√

2
|1〉, where

|0〉 =
[
1
0

]
|1〉 =

[
0
1

]
|q0〉 is called the qubit’s statevector and is in a state of superposition (linear combination)
between |0〉 and |1〉.

Measurements

The probability of measuring a state |ψ〉 in the state |x〉 is given by:

p(|x〉) = |〈x|ψ〉|2

The first implication of this rule is that amplitudes are related to probabilities. For the
probabilities to be valid,

〈ψ|ψ〉 = 1.

So if |ψ〉 = α|0〉+ β|1〉 ⇒
√
|α|2 + |β|2 = 1.

Secondly, this form of measurement is just one of an infinite number of possible ways to
measure a qubit. For any orthogonal pair of states, an alternative measurement can be
defined that would make a qubit choose between the two states.

In general, if γ ∈ C is any overall factor on a state and |γ| = 1, it is called a global
phase. States differing only by a global phase are physically indistinguishable.

|〈x|(γ|a〉)|2 = |γ〈x|a〉|2 = |〈x|a〉|2

2.1.3. Representation of single qubits on the Bloch sphere
Given the general state of a qubit (|q〉):

|q〉 = α̃|0〉+ β̃|1〉 for α̃, β̃ ∈ C

Since the global phase cannot be measured, only the difference in phase between the states
|0〉 and |1〉 is measured so it becomes:

|q〉 = α|0〉+ eiφβ|1〉, for α, β, φ ∈ R.

Then, since the qubit state must also be normalised so that:

1 = ‖|q〉‖ = αα̃ + eiφβe−iφβ̃ = αα̃ + ββ̃ = α2 + β2

11

2.1. BASICS OF QUANTUM COMPUTING

using the trigonometric identity sin2 x+ cos2 x = 1 gives

α = cos θ
2
, β = sin θ

2
and hence, |q〉 = cos θ

2
|0〉+ eiφ sin θ

2
|1〉

Interpreting θ and φ ∈ R as spherical co-ordinates, any qubit state can be plotted on the
surface of a sphere called the Bloch sphere. As an example, we plot in figure 2.1 the qubit
in the state |+〉 = 1√

2
(|0〉+|1〉) which is a superposition of states |0〉 and |1〉 corresponding

to θ = π/2 and φ = 0.

Figure 2.1: Bloch sphere representation of the qubit |+〉 (θ = π/2 and φ = 0)

2.1.4. Single Qubit Gates
Gates are the operations that change a qubit between states. In C2, qubits are limited to
the form:

|q〉 = cos (θ
2
)|0〉+ eiφ sin θ

2
|1〉.

All gates in quantum computing, (except measurement and reset operations), can be
represented by unitary matrices and hence are always reversible. Common single qubit
gates include:

A. The Pauli Gates

The Pauli matrices can represent some very commonly used quantum gates namely the
X, Y and Z gates.

The X-Gate
The X-gate is represented by the Pauli-X matrix:

X =

[
0 1
1 0

]
= |0〉〈1|+ |1〉〈0|.

12

2. MATHEMATICAL BACKGROUND IN QUANTUM CRYPTOGRAPHY

The X-gate switches the amplitudes of the states |0〉 and |1〉, for example:

X|0〉 =
[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉.

The X-gate is also called a NOT-gate and can be seen as a rotation by π radians around
the x-axis of the Bloch sphere. Figure 2.2 shows an example of the action of the X-gate
on a qubit |0〉 on the Bloch sphere.

Figure 2.2: Transformation of |0〉 to |1〉 using the X-gate

The Y and Z Gates
The Y and Z Pauli matrices also act as the Y and Z-gates in quantum circuits and defined
as follows:

Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
Y = −i|0〉〈1|+ i|1〉〈0| Z = |0〉〈0| − |1〉〈1|

Also, they perform rotations by π radians around the y and z-axis respectively of the
Bloch sphere. Figure 2.3 shows an example of the action of the Y-gate on a qubit |0〉 on
the Bloch sphere.

13

2.1. BASICS OF QUANTUM COMPUTING

Figure 2.3: Transformation of |0〉 to |1〉 using the Y-gate

The Z-Gate has no effect on the qubit in the computational basis states |0〉 or |1〉 because
they are the two eigenstates of the Z-gate. Another popular basis is the X-basis, formed
by the eigenstates of the X-gate and are called |+〉 and |−〉:

|+〉 = 1√
2
(|0〉+ |1〉) = 1√

2

[
1
1

]

|−〉 = 1√
2
(|0〉 − |1〉) = 1√

2

[
1
−1

]
In fact, there are an infinite number of bases and to form one, just two orthogonal vectors
are needed.

B. The Hadamard Gate

The Hadamard gate (H-gate) is a fundamental quantum gate that allows qubits move
away from the poles of the Bloch sphere and create a superposition of |0〉 and |1〉. It is
represented by the matrix:

H = 1√
2

[
1 1
1 −1

]
and performs the transformations below:

H|0〉 = |+〉, H|1〉 = |−〉

Figure 2.4 shows an example of the action of the Hadamard gate on a qubit |0〉 on the
Bloch sphere.

14

2. MATHEMATICAL BACKGROUND IN QUANTUM CRYPTOGRAPHY

Figure 2.4: Transformation of |0〉 to |+〉 using the H-gate

C. The Rφ-gate

The Rφ-gate is parameterised by (φ) which specifies its action. The Rφ-gate performs a
rotation of φ around the Z-axis direction and has the matrix:

Rφ =

[
1 0
0 eiφ

]
where φ ∈ R

The Z-gate is a special case of the Rφ-gate, with φ = π. In fact there are three more
commonly used gates (I, S, T) all of which are special cases of the Rφ-gate.

D. The I, S and T-gates

The I-gate
The I-gate (‘Id-gate’ or ‘Identity gate’) is a gate that has no effect on the qubit state and
has the identity matrix as its representation:

I =

[
1 0
0 1

]

The S-gates
The S-gate is an Rφ-gate with φ = π/2 performing a quarter-turn around the Bloch
sphere. Unlike the X,Y,Z and H gates, the S-gate is not its own inverse having as inverse
S†-gate. The S†-gate is also an Rφ-gate with φ = −π/2:

S =

[
1 0

0 e
iπ
2

]
, S† =

[
1 0

0 e−
iπ
2

]
We observe that SS|q〉 = Z|q〉 and hence the S-gate is also called ”

√
Z-gate” since two

successively applied S-gates has the same effect as one Z-gate.

15

2.1. BASICS OF QUANTUM COMPUTING

The T-gate
The T-gate is an Rφ-gate with φ = π/4 having the matrix representation

T =

[
1 0

0 e
iπ
4

]
, T † =

[
1 0

0 e−
iπ
4

]
Similar to the S-gate, the T-gate is also called the 4

√
Z-gate.

E. General U-gates

The U3-gate is the most general of all single-qubit quantum gates and is a parameterised
gate of the form:

U3(θ, φ, λ) =

[
cos(θ/2) −eiλ sin(θ/2)
eiφ sin(θ/2) eiλ+iφ cos(θ/2)

]
We will use IBM Quantum Experience platform [24] which is a platform for simulating
and running quantum programs so let us remark that it only provides the U2 and U1 gates
which are specific cases of the U3 gate where θ = π

2
, and θ = φ = 0 respectively:

U3(
π
2
, φ, λ) = U2 =

1√
2

[
1 −eiλ
eiφ eiλ+iφ

]
U3(0, 0, λ) = U1 =

[
1 0
0 eiλ

]
Before running on IBM quantum hardware, all single-qubit operations are compiled down
to combinations of U1, U2 and U3 gates and hence these U gates are also called the physical
gates.

2.1.5. Measuring in Different Bases
An X-gate can be created by sandwiching the Z-gate between two H-gates as follows:

X = HZH

Figure 2.5: Creation of the X-gate from the Z-gate
Source: IBM Qiskit

This is verified below:

HZH = 1√
2

[
1 1
1 −1

] [
1 0
0 −1

]
1√
2

[
1 1
1 −1

]
=

[
0 1
1 0

]
= X

16

2. MATHEMATICAL BACKGROUND IN QUANTUM CRYPTOGRAPHY

Figure 2.6: Creation of the X-measurement from the Z-measurement [65]

Similarly, an X-measurement can be created by sandwiching the Z-measurement between
two H-gates.

2.1.6. Multi-Qubits

The state of two (2) qubits could be described with four (4) complex amplitudes stored
in a 4−dimensional complex vector. Its representation is:

|a〉 = a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉 =


a00
a01
a10
a11


The measurement for two qubits is defined in a similar way as in the case of a single qubit,
for example the probability of measuring a state |a〉 in the state |00〉 is given by:

p(|00〉) = |〈00|a〉|2 = |a00|2

Also, the normalisation condition holds in a similar way as in the case of a single qubit. We
have that the normalisation condition on |a〉 represented above implies that the following
equation holds:

|a00|2 + |a01|2 + |a10|2 + |a11|2 = 1

The collective state of two separated qubits can be described using the tensor product
given below:

|a〉 =
[
a0
a1

]
, |b〉 =

[
b0
b1

]

|ba〉 = |b〉 ⊗ |a〉 =

b0 ×
[
a0
a1

]
b1 ×

[
a0
a1

]
 =


b0a0
b0a1
b1a0
b1a1


17

2.1. BASICS OF QUANTUM COMPUTING

Following similar rules as in the case of two qubits, for three qubits we have that :

|cba〉 =



c0b0a0
c0b0a1
c0b1a0
c0b1a1
c1b0a0
c1b0a1
c1b1a0
c1b1a1


Where |b〉 = b00|00〉+b01|01〉+b10|10〉+b11|11〉 and |c〉 = c00|00〉+c01|01〉+c10|10〉+c11|11〉.

Hence n qubits require 2n complex amplitudes.

Single Qubit Gates on Multi-Qubit Statevectors

For a single qubit gate acting on a qubit in a multi-qubit vector, the tensor product is
used to calculate the multi-qubit statevector and furthermore, the tensor product is again
used to calculate the matrices that act on these statevectors.

Given the two-qubit |q1q0〉, the simultaneous operations of two single qubit gates (for
example H and X) can be represented using their tensor product given as:

X|q1〉 ⊗H|q0〉 = (X ⊗H)|q1q0〉

with the operation of these single qubit gates given by:

X⊗H =

[
0 1
1 0

]
⊗ 1√

2

[
1 1
1 −1

]
=

1√
2

0×
[
1 1
1 −1

]
1×

[
1 1
1 −1

]
1×

[
1 1
1 −1

]
0×

[
1 1
1 −1

]
 =

1√
2


0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0


which is then applied to the 4-dimensional statevector of |q1q0〉. Another more compact
notation of X ⊗H is:

X ⊗H =

[
0 H
H 0

]
To apply a gate to only one qubit at a time, the tensor product is done with the identity
matrix for example X ⊗ I

18

2. MATHEMATICAL BACKGROUND IN QUANTUM CRYPTOGRAPHY

2.1.7. Multi-Qubit Gates
The CNOT-Gate is a conditional gate that performs an X-gate on the target qubit, if the
state of the control qubit is |1〉. When the qubits are not in a superposition of the |0〉 or
|1〉 states, the CNOT-Gate have the following truth table representation given below:

Input |target, control〉 Output |target, control〉
|00〉 |00〉
|01〉 |11〉
|10〉 |10〉
|11〉 |01〉

The CNOT-Gate acting on a 4-dimensional statevector has one of the following two
matrices representation using |q1q0〉 notation:

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 if q0 is the control and


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 if q0 is the target

Hence for

|a〉 =


a00
a01
a10
a11

 , CNOT|a〉 =


a00
a11
a10
a01

←
←

Where the qubits in the positions indicated by the arrow have been flipped.

2.1.8. Entangled States

The state 1√
2
(|00〉 + |11〉) is called a Bell state. This state has 50% probability of being

measured in the state |00〉 and state |11〉 respectively hence no possibility of being mea-
sured in the states |01〉 or |10〉. This combined state cannot be written as two separate
qubit states and although the qubits are in a superposition state, measuring one will tell
the state of the other and collapse its superposition.

For two qubits, there are four Bell states and each have the maximal value of 2
√
2 and

hence are called maximally entangled Bell states. These four Bell states form the Bell
basis of the four-dimensional complex vector space V for two qubits and are given below:

19

2.1. BASICS OF QUANTUM COMPUTING

∣∣Φ+
〉
=

1√
2
(|00〉+ |11〉)∣∣Ψ+

〉
=

1√
2
(|01〉+ |10〉)∣∣Φ−〉 = 1√

2
(|00〉 − |11〉)∣∣Ψ−〉 = 1√

2
(|01〉 − |10〉)

An easy way to create an entangled Bell state is by taking a computational basis as input
and then applying a H gate on the first (or second) qubit and then a CNOT gate having
control as the first (or second) qubit and target as the second (or first) qubit.

The measurement result of a single qubit in a Bell state is random but once the first
qubit is measured in the computational basis, the measurement result of the second qubit
is certain to be same (for Φ Bell states) or the negation (for Ψ Bell states) as that of the
first qubit measurement.

2.1.9. Quantum Circuits
A quantum circuit is a computational routine consisting of coherent quantum operations
on quantum data, such as qubits, and concurrent real-time classical computation. It is
an ordered sequence of quantum gates, measurements and resets, all of which may be
conditioned on and use data from the real-time classical computation. Any quantum pro-
gram can be represented by a sequence of quantum circuits and non-concurrent classical
computation [31].

Figure 2.7: Components of a quantum circuit [65]

The quantum circuit in figure 2.7 uses three qubits (q0, q1 and q2) and two classical bits.

20

2. MATHEMATICAL BACKGROUND IN QUANTUM CRYPTOGRAPHY

There are four main components in a quantum circuit namely Initialization and reset,
Quantum gates, Measurements and Classically conditioned quantum gates. These are
illustrated in Figure 2.7.

2.2. Integer Factorization in Cryptography

In this section, we will discuss the application of integer factorization in the RSA cryp-
tosystem and conclude with a list of some classical factorization algorithms together with
their complexity.

2.2.1. Rivest–Shamir–Adleman (RSA) Cryptosystem
Public key cryptography (PKC) are cryptosystems that do not require a secured channel
for the transmission of the encryption key. Hence the security of PKC is based on the
computational hardness of deriving the private key given the public key. Some of such
computational hardness include Discrete logarithm, Shortest vector problem in a lattice
(Lattice-based cryptography) and Integer factorization. Examples of cryptosystems de-
pending on each of these computational hard problems are:

1. Discrete logarithm: Cramer–Shoup, Diffie-Hellman key exchange, Curve25519,
ElGamal and Elliptic Curve Cryptography.

2. Lattice-based cryptography: NTRUEncrypt and GGH encryption scheme

3. Integer factorization: Cayley–Purser, Schmidt–Samoa, Paillier, Rabin and RSA
cryptosystems

In particular, we note that RSA is used with key lengths of 1024 to 4096 bits long and
we will now discuss an example of how it could be used.

If Alice wishes to communicate securely with Bob, Alice needs to generate her private
and public key pair and make her public key known to Bob. She performs the following
steps to generate her public and private key pair:

1. Choose 2 large prime numbers, p and q.

2. Compute the product n = pq.

3. Choose a random small odd integer, e, such that gcd(e, ϕ(n)) = 1 where ϕ(n) =
(p− 1)(q − 1) is the Euler-phi function of n.

4. Calculate d = e−1 mod ϕ(n).

5. Hence, Alice public key is the pair P = (e, n) while her private key is the pair
S = (d, n)

If Bob wishes to send a message (M) to Alice, he performs the following:

21

2.2. INTEGER FACTORIZATION IN CRYPTOGRAPHY

1. Convert the message M to a number m (say L bits long)

2. If L > blognc, break m into blocks of at most blognc bits and encrypt the blocks
separately.

3. For each block, compute E(m) = me(modn) where E(m) is the encrypted message

4. Bob sends E(m) to Alice

Alice deciphers E(m) using her private key S = (d, n) by performing the following:

D(E(m)) = E(m)d(modn)
= med(modn)
= m1+kϕ(n)(modn) [since ed = 1(modϕ(n)) =⇒ ed = 1 + kϕ(n) for some k ∈ Z]
= m ·mkϕ(n)(modn)
= m(modn) [since by Euler’s theorem, mϕ(n) = 1(modn)]

This works both in the case when gcd(m,n) = 1 and gcd(m,n) > 1. When gcd(m,n) = 1,
then the justification is as shown above.

If gcd(m,n) > 1, then either p or q or both divide m. For example, if p | m and
q - m, p | m implies that m = 0 mod p and so med = 0 = m mod p. Then by Fermat’s
little theorem, q - m implies that mϕ(n) = 1 mod q since ϕ(n) = (p − 1)(q − 1). So from
ed = 1 + kϕ(n), med = m mod q and from the Chinese Remainder Theorem (CRT), we
have that med = m mod n so that Alice can also recover the message (m) even when
gcd(m,n) > 1.

RSA can be broken through order-finding and factoring. If an attacker receives the
ciphertext me mod n and has the public key (e, n), then he can find the order (r) of the
encrypted message so tht (me)r = 1 mod n. Supposing r exists, then gcd(me, n) = 1. If
r does not exist, then me mod n and n will have a common factor which can be com-
puted by using the Euclid’s algorithm hence enabling the attacker to break the RSA
using the method based on factoring. From the CRT, r | ϕ(n) and since gcd(e, ϕ(n)) = 1,
gcd(e, r) = 1 hence e−1 mod r exists and we denote it by d′. This means ed′ = 1 + kr for
some k ∈ Z and the attacker can recover m by computing:

(me)d
′
(modn) = m1+kr(modn)

= m ·mkr(modn)
= m(modn)

Hence we see that with an efficient order-finding algorithm, even without the attacker
knowing the private (d, n), he can break and recover the original message m.

The second method based on factoring allows the attacker to completely recover the
message m and the private key (d, n). If the attacker could factor n = pq, then he can
compute ϕ(n) = (p−1)(q−1). Hence, given ϕ(n) and e, he can compute d = e−1 mod ϕ(n)

22

2. MATHEMATICAL BACKGROUND IN QUANTUM CRYPTOGRAPHY

and completely recover the private key (d, n) of which computing the original message m
is now a trivial operation.

2.2.2. Classical Factorization Schemes

In this section, we will summarise some classical factorization schemes. This will closely
follow the sequence as presented in [32].

Factorization schemes are generally divided into two. The first is referred to as Dark
Age methods which include algorithms such as Trial division, p−1 method, p+1 method
and Pollard rho method etc. The second is referred to as modern methods and include
algorithms such as Continued Fraction Method, Quadratic Sieve, Elliptic Curve Method
and Number Field Sieve (NFS) amongst others.

The complexity of modern factoring algorithms lies between polynomial and exponen-
tial time, in an area referred to as sub-exponential time. This complexity of modern
factoring algorithms are measured by the function

LN(α, β) = exp
(
(β + o(1))(logN)α(log logN)1−α

)
Where we see that LN(0, β) = (logN)β+o(1) is polynomial time and LN(1, β) = Nβ+o(1) is
exponential time [32].
The prime factorization of an n-bit integer using the General Number Field Sieve (GNFS)
algorithm (which is the best known classical algorithm) requires eΘ

(
n1/3 log2/3 n

)
operations

[29] and as at the time of writing, its theoretical asymptotic running time [33] is:

e

((
3
√

64
9
+o(1)

)
(lnn)

1
3 (ln lnn)

2
3

)
≈ O(ec.n

1
3 (log (n))

2
3) where c is a constant

Other factoring algorithms with their complexities include:

1. Sieve of Erathostenes [O(n log logn)] [34],

2. Trial Division factoring method
[
O
(

2n/2(
n
2

)
ln 2

)]
,

3. Pollard’s (p–1)-method [O(Bx logBx log2 n)] where B is a smoothness bound,

4. Lenstra elliptic-curve factorization method
[
e(

√
2+o(1))

√
ln p ln ln p

]
where p is the small-

est factor of n[35],

5. Self-initializing Quadratic Sieve (QS)
[
O(e(

√
(logn log logn)))

]
,

6. Index Calculus Method [kO(log k)] [36].

With Shor’s algorithm, this complexity reduces to O(n2 log (n) log (log (n))) which is a
little faster than O(n3).

23

3. Building blocks for the Shor’s
algorithm

This chapter discusses the Shor’s algorithm. In section 3.1, we introduce the Standard
Quantum Fourier Transform and the Semi classical Quantum Fourier Transform. In sec-
tion 3.2, we discuss the Quantum Phase Estimation. The Shor’s algorithm is discussed in
section 3.3 and section 3.4. In section 3.5, we give 3 theorems that gives a reliability of
getting a solution from Shor’s algorithm even though it’s probabilistic. Detailed discus-
sion of the Modular exponentiation operation based on the Quantum adder is discussed
in section 3.6. We end the chapter with a discussion of some implementation variants of
the Shor’s algorithm in section 3.7 and the complexity analysis of the Shor’s algorithm
including its subroutines in section 3.8.

3.1. Quantum Fourier Transform
The Quantum Fourier Transform (QFT) is the quantum implementation of the Discrete
Fourier Transform (DFT) over the amplitudes of a wavefunction. DFT acts on a vector
(x0, ..., xN−1) and maps it to the vector (y0, ..., yN−1) according to the formula

yk =
1√
N

N−1∑
j=0

xjω
jk
N , where ωjk

N = e2πi
jk
N . (3.1)

Similarly, the QFT acts on a quantum state
∑N−1

i=0 xi|i〉 and maps it to the quantum state∑N−1
i=0 yi|i〉 according to the formula 3.1 where |i〉 is in decimal digits representation so

that as an example, for 2-qubits, |2〉 = |10〉.

The QFT can also be expressed as the map:

|x〉 7→ 1√
N

N−1∑
y=0

ωxy
N |y〉

Or the unitary matrix:

UQFT =
1√
N

N−1∑
x=0

N−1∑
y=0

ωxy
N |y〉〈x|

QFT transforms between the computational (Z) basis, and the Fourier basis for example,
the H-gate implements the QFT for single-qubit systems.

|State in the Computational Basis〉 −−−→
QFT

|State in the Fourier Basis〉

Let N = 2n and let QFTN act on the state |x〉 = |x1 . . . xn〉. Then we have that,

24

3. BUILDING BLOCKS FOR THE SHOR’S ALGORITHM

QFTN |x〉 =
1√
N

N−1∑
y=0

ωxy
N |y〉

=
1√
N

N−1∑
y=0

e2πixy/2
n|y〉 since ωxy

N = e2πi
xy
N andN = 2n

=
1√
N

N−1∑
y=0

e2πi
(∑n

k=1 yk/2
k
)
x|y1 . . . yn〉

[
y/2n =

n∑
k=1

yk/2
k in fractional binary notation

]

=
1√
N

N−1∑
y=0

n∏
k=1

e2πixyk/2
k |y1 . . . yn〉

=
1√
N

n⊗
k=1

(
|0〉+ e2πix/2

k |1〉
) [

by expanding
N−1∑
y=0

=
1∑

y1=0

1∑
y2=0

. . .
1∑

yn=0

]

=
1√
N

(
|0〉+ e

2πi
2

x|1〉
)
⊗
(
|0〉+ e

2πi
22

x|1〉
)
⊗ . . .⊗

(
|0〉+ e

2πi
2n−1 x|1〉

)
⊗
(
|0〉+ e

2πi
2n

x|1〉
)

(3.2)

3.1.1. Standard QFT circuit
The circuit implementing the standard QFT uses two gates. The first gate is a single-
qubit Hadamard gate H, and its action on the single-qubit state |xk〉 is

H|xk〉 =
1√
2

(
|0〉+ e

(
2πi
2

xk

)
|1〉
)

The second gate is a two-qubit controlled rotation CROTk given in block-diagonal form
as

CROTk =

[
I 0
0 UROTk

]
where UROTk =

[
1 0
0 exp

(
2πi
2k

)]
The action of CROTk on the two-qubit state |xixj〉 where the first qubit is the control
and the second is the target is given by

CROTk|0xj〉 = |0xj〉 and CROTk|1xj〉 = e

(
2πi

2k
xj

)
|1xj〉

Using these gates, a circuit that implements an n-qubit QFT is given by figure 3.1
Starting with an n-qubit input state |x1x2 . . . xn〉, steps to implement the circuit are as
follows:

1. Apply H-gate to qubit 1 transforming the input state to

H1|x1x2 . . . xn〉 =
1√
2

[
|0〉+ exp

(
2πi

2
x1

)
|1〉
]
⊗ |x2x3 . . . xn〉

25

3.1. QUANTUM FOURIER TRANSFORM

Figure 3.1: The Quantum Fourier Transform Circuit for N = 2n [65]

2. For i = 2 to n, apply the UROTi gate on qubit 1 controlled by qubit i. for i = 2,
the transformed state is now

1√
2

[
|0〉+ exp

(
2πi

22
x2 +

2πi

2
x1

)
|1〉
]
⊗ |x2x3 . . . xn〉

3. After the last UROTn gate (i.e i = n) is applied on qubit 1 controlled by qubit n,
the state becomes

1√
2

[
|0〉+ exp

(
2πi

2n
xn +

2πi

2n−1
xn−1 + . . .+

2πi

22
x2 +

2πi

2
x1

)
|1〉
]
⊗ |x2x3 . . . xn〉

which is equivalent to

1√
2

[
|0〉+ exp

(
2πi

2n
x

)
|1〉
]
⊗ |x2x3 . . . xn〉

since
x = 2n−1x1 + 2n−2x2 + . . .+ 21xn−1 + 20xn

4. After applying a similar sequence of gates for qubits 2, . . . , n, the final state is:

1√
2

[
|0〉+ exp

(
2πi

2n
x

)
|1〉
]
⊗ 1√

2

[
|0〉+ exp

(
2πi

2n−1
x

)
|1〉
]
⊗ . . .

⊗ 1√
2

[
|0〉+ exp

(
2πi

22
x

)
|1〉
]
⊗ 1√

2

[
|0〉+ exp

(
2πi

21
x

)
|1〉
]

This is the QFT of the input state as shown in equation 3.2 but with the qubits reversed
in the output state. Hence to get the desired QFT , we apply swap operations to reverse
the order of the output qubits. As the QFT circuit becomes larger, an increasing amount
of time is spent doing increasingly slight rotations. However with approximate QFT ,
we can ignore rotations below a certain threshold and still get good results. This is also
important in physical implementations, as reducing the number of operations can greatly
reduce decoherence and potential gate errors. However, to further reduce the gate errors,
techniques such as Quantum Error Correction using repetition codes is used. More on
this can be found in [29].

26

3. BUILDING BLOCKS FOR THE SHOR’S ALGORITHM

In IBM Qiskit [24], the implementation of the CROT gate is a controlled phase rota-
tion gate and defined as

CP (θ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ


Hence, the mapping from the CROTk gate used above into the CP (θ) gate is

θ = 2π/2k = π/2k−1

This implementation of the QFT on n qubits requires O(n2) operations [29] however, in
the physical implementations, there are thresholds for the precision of the gates. This is
because many phase shifts will be very small and almost negligible that we could ignore
the phase shifts with k > kmax where kmax is a given threshold. Coppersmith [37] showed
that the error introduced by ignoring all gates with k > kmax is proportional to n2−kmax .
Hence we can choose kmax ∈ O(log(nε)).

The implementation of this approximate version of theQFT on n qubits requiresO(nlog(n))
gates. The depth of either the exact or approximate QFT can be reduced below O(n)
but it requires using extra qubits in parellelization techniques as shown in [37]. Hence the
depth of the standard QFT on n+ 1 qubits is O(n).

3.1.2. Semiclassical QFT (’One controlling qubit’)

Robert Griffiths and Chi-Sheng Niu in 1995 presented an alternative way to perform the
standard QFT [39]. Their idea was from the assumption that two-qubit gates could be
difficult to construct than single-qubit gates in their physical implementation. Hence they
proposed a circuit which used only one-qubit gates that were classically controlled.

If we interchange the roles of the target and control qubits of the UROTi gates in figure
3.1, we observe that after the application of the H gate on the ith qubit, no other gate
operates on it (except the swap operation) till it is measured. Hence it is possible not
to delay the measurements and instead measure the ith qubit just after the application
of the H gate. We can then use the measurement result which is a classical bit value to
classically control the UROTi gates. As we will see in section 3.7, using the semiclassical
QFT can be used to optimize the number of qubits used in the Shor’s factoring algorithm.

3.2. Quantum Phase Estimation (QPE)
Given a unitary operator U , the aim of the Quantum Phase Estimation (QPE) algorithm
is to estimate the phase θ of U in the relation U |ψ〉 = e2πiθ|ψ〉. Here |ψ〉 is an eigenvector
of U and e2πiθ is its corresponding eigenvalue. The general quantum circuit for QPE is
shown in figure 3.2.

27

3.2. QUANTUM PHASE ESTIMATION (QPE)

Figure 3.2: The Quantum Phase Estimation Circuit for N = 2n [65]

The top register (also referred to as counting register) contains n qubits, and the bottom
register contains qubits in the state of the eigenvector |ψ〉. QPE algorithm leverages the
effect of phase kickback to write the phase of U to the n qubits in the counting register.
This phase of U denoted by θ is in the Fourier basis and QFT † is then used to translate
this from the Fourier basis into the computational basis, which is finally measured.

Due to phase kickback, when a qubit is used to control the U -gate, the qubit will ro-
tate proportionally to the phase e2iπθ. Hence, successive CU -gates can be used to repeat
this rotation the right amount of times until (θ) has been encoded within the interval
0 ≤ θ ≤ 2n in the Fourier basis. Lastly, the inverse QFT is applied which transforms this
to the computational basis. Steps to implement the circuit are as follows:

1. Circuit setup: We setup two registers as follows. The first register (counting
register) will contain n qubits with which it will store the value 2nθ. The second
register will store |ψ〉 so that after the circuit setup, we will have:

ψ0 = |0〉⊗n|ψ〉

2. Put qubits in counting register in a state of superposition: For the n qubits
in the counting register, we will apply H⊗n to get:

ψ1 =
1

2
n
2

(|0〉+ |1〉)⊗n |ψ〉

3. Application of controlled unitary operations (C−U): The C−U operations
applies U on the target register when its control bit is in the |1〉 state. Given an
eigenvector |ψ〉 of U , we have that U |ψ〉 = e2πiθ|ψ〉 and since U is unitary, it implies
that

28

3. BUILDING BLOCKS FOR THE SHOR’S ALGORITHM

U2j |ψ〉 = U2j−1U |ψ〉 = U2j−1e2πiθ|ψ〉 = · · · = e2πi2
jθ|ψ〉

Hence after the application of all the n C−U2j operations where 0 ≤ j ≤ n− 1, we
use the relation |0〉 ⊗ |ψ〉+ |1〉 ⊗ e2πiθ|ψ〉 =

(
|0〉+ e2πiθ|1〉

)
⊗ |ψ〉 to get:

ψ2 =
1

2
n
2

(
|0〉+ e2πiθ2n−1|1〉

)
⊗ · · · ⊗

(
|0〉+ e2πiθ21|1〉

)
⊗
(
|0〉+ e2πiθ20|1〉

)
⊗ |ψ〉

=
1

2
n
2

2n−1∑
k=0

e2πiθk|k〉 ⊗ |ψ〉

(3.3)
where k is the representation of n-bit binary numbers in base 10.

4. Application of QFT †: From the result in equation 3.3 and equation 3.2, x = 2nθ.
Hence, an inverse Fourier transform is applied on the counting register to retrieve
the state |2nθ〉 and hence the output is given below

|ψ3〉 =
1

2
n
2

2n−1∑
k=0

e2πiθk|k〉 ⊗ |ψ〉 −−−−→
QFT −1

n

1

2n

2n−1∑
x=0

2n−1∑
k=0

e−
2πik
2n

(x−2nθ)|x〉 ⊗ |ψ〉 (3.4)

5. Take measurements of the counting register: Equation 3.4 peaks near x =
2nθ. If 2nθ is an integer, then with high probability, measurement of the counting
register in the computational basis gives the phase:

|ψ4〉 = |2nθ〉 ⊗ |ψ〉

If 2nθ is not an integer, equation 3.4 still peaks near x = 2nθ with probability better
than 4/π2 ≈ 40% as given in [29].

3.3. Shor’s Algorithm
Quantum factorization generally consists of classical pre-processing, quantum algorithm
for order-finding and classical post-processing [29, 41, 42]. The only use of quantum
computation in Shor’s algorithm is in order finding (indicated by the black arrow in
figure 3.3) which entails finding the order r of a modulo N , where N is an n -bit integer
to be factored.

ar ≡ 1(modN)

The factoring algorithm for N as given in [29] is:

1. If N is even, return the factor 2.

2. Determine classically if N = pq for p ≥ 1 and q ≥ 2 and if so return the factor p.

29

3.3. SHOR’S ALGORITHM

Figure 3.3: Overview of Shor’s factoring algorithm

3. Choose a random number a such that 1 < a ≤ N − 1. Using Euclid’s algorithm,
determine if gcd(a,N) > 1 and if so, return the factor gcd(a,N)

4. Use the order-finding quantum algorithm to find the order r of a modulo N .

5. If r is odd or r is even but ar/2 = −1(modN), then go to step (3). Else, compute
gcd

(
ar/2 − 1, N

)
and gcd

(
ar/2 + 1, N

)
. Test to see if one of these is a non-trivial

factor of N, and if so, return the factor.

With at least 50% probability, r will be even and ar/2 6= −1(modN) [29, 42]. The quan-
tum part of the algorithm (i.e. step 4) is computable in polynomial time on a quantum
computer and we can build the order-finding circuit using a polynomial number of elemen-
tary gates and a linear number of qubits [42]. While the best-known classical algorithm
requires super-polynomial time to factor the product of two primes, Shor’s algorithm does

30

3. BUILDING BLOCKS FOR THE SHOR’S ALGORITHM

this in polynomial time. Here, our focus will be on the quantum part of Shor’s algorithm,
which solves the problem of period finding. Since, a factoring problem can be turned into
a period finding problem in polynomial time, an efficient period finding algorithm can be
used to factor integers efficiently too.

3.4. Period finding
Consider the periodic function:

f(x) = ax mod N

where a and N are positive integers, a < N , and gcd(a,N) = 1. The period, or order (r),
is the smallest (non-zero) integer such that

ar mod N = 1

Shor’s solution was to use QPE on U defined as:

U |y〉 ≡ |ay mod N〉

Starting in the state |1〉, each successive application of U will multiply the state of our
register by a (mod N), and after r applications, we will have the state |1〉 again.
So a superposition of the states in this cycle (|u0〉) would be an eigenstate of U :

|u0〉 =
1√
r

r−1∑
k=0

|ak mod N〉

An interesting eigenstate could be one in which the phase of the kth state is proportional
to k hence the phase is different for each of these computational basis states:

|u1〉 =
1√
r

r−1∑
k=0

e−
2πik
r |ak mod N〉

U |u1〉 = e
2πi
r |u1〉

Hence we see that the eigenvalue contains r which ensures that the phase differences be-
tween the r computational basis states are equal. However, there are other eigenstates
with this behaviour and so to generalise, the phase difference is multiplied by an integer
s and which then appears in the eigenvalue as given in equation 3.5:

|us〉 =
1√
r

r−1∑
k=0

e−
2πisk

r |ak mod N〉

U |us〉 = e
2πis
r |us〉

(3.5)

31

3.4. PERIOD FINDING

From equation 3.5, we have a unique eigenstate for each integer value of s where

0 ≤ s ≤ r − 1

Summing up all these eigenstates, the different phases cancel out all computational basis
states except |1〉 to imply that |1〉 is a superposition of the eigenstates of U :

1√
r

r−1∑
s=0

|us〉 = |1〉

Since the computational basis state |1〉 is a superposition of these eigenstates, if we perform
QPE on U using the state |1〉, we will measure a phase of:

φ =
s

r
where s is a random integer satisfying 0 ≤ s ≤ r − 1

Finally to obtain the period r, continued fractions algorithm on φ is used. The circuit
diagram for the Shor’s period finding algorithm is shown below

Figure 3.4: Shor’s period finding algorithm for U2j [65]

As shown in fig 3.4, creating the U2j gates by repeating U grows exponentially (rather
than polynomially) with j. Hence we consider this operator:

U2j |y〉 = |a2jy mod N〉

This grows polynomially with j and so the calculation a2
j mod N is efficiently possible.

The repeated squaring algorithm usable in classical computers can be used to calculate an
exponential and this algorithm is even simpler in the case of exponentials in the form 2j.
However, even though this algorithm scales polynomially with j, modular exponentiation
circuits are more involved and is one of the constraints in Shor’s algorithm. A simplified
version of the implementation is seen in reference [28] and discussed in section 3.6.

32

3. BUILDING BLOCKS FOR THE SHOR’S ALGORITHM

3.5. Reliability of getting a solution from Shor’s algo-
rithm

After taking measurements in the Shor’s period finding algorithm, we get the phase φ
and by the continued fraction algorithm, we are guaranteed for a precision level to get a
rational number sufficiently close as given in the following theorem in [29].

Theorem 1. Suppose s/r is a rational number such that∣∣∣s
r
− ϕ

∣∣∣ ≤ 1

2r2

Then s/r is a convergent of the continued fraction for ϕ, and thus can be computed in
O (n3) operations using the continued fractions algorithm.

The claim about step 5 in Shor’s algorithm described in section 3.3 is confirmed by the
following theorem [29]:

Theorem 2. Suppose N is an n bit composite number, and x is a non-trivial solution
to the equation x2 = 1(modN) in the range 1 ≤ x ≤ N , that is, neither x = 1(modN)
nor x = N − 1 = −1(modN). Then at least one of gcd(x− 1, N) and gcd(x+ 1, N) is a
non-trivial factor of N that can be computed using O (n3) operations.

By repeatedly choosing a random number a as specified in step 3 of section 3.3, we are
almost guaranteed that we won’t have to do so many trials as the probability approaches
1 as the number of trials increases. This is summarized in the following theorem as given
in [29]:

Theorem 3. Suppose N = pα1
1 . . . pαm

m is the prime factorization of an odd composite pos-
itive integer. Let x be an integer chosen uniformly at random, subject to the requirements
that 1 ≤ x ≤ N − 1 and x is co-prime to N . Let r be the order of x modulo N . Then p (r
is even and xr/2 6= −1(modN)

)
≥ 1− 1

2m

3.6. Modular exponentiation in Shor’s algorithm
As shown in figure 3.4, the order finding algorithm requires several smaller quantum
circuits from the primitive Quantum addition up to the more involved modular exponen-
tiation circuits. All the subroutines that makes up the Shor’s algorithm are discussed in
this section and closely follows the idea presented in [28].

Quantum addition

There are two major variants of the addition circuit that could be used in Modular ex-
ponentiation namely Plain adder and Quantum Adder. Many variants of the quantum
addition circuits have been proposed and for the modular exponentiation circuit explored
in this thesis, we will use the version proposed by Draper [43] and shown in figure 3.5.
This circuit comprises of 2 registers namely A and B. Register A takes n qubits as input

33

3.6. MODULAR EXPONENTIATION IN SHOR’S ALGORITHM

representing a number a, and register B takes n qubits containing the QFT of another
number b denoted as Φ(b). After the addition operation, register A remains the same but
register B now contains the QFT of (a + b) mod 2n which we denote as Φ(a + b). Since
we want to find the period of the function ax mod N where a < N is a classical random
variable, it’s sufficient to only add a classical value to the quantum register. Hence, the
qubits representing a can be changed to classical bits and so the gates are classically
controlled.

Figure 3.5: Quantum addition as given in [28]

QFT Adder gate

Next, since the addition is performed in the Fourier space, the circuit can be denoted as
the ΦADD(a) gate. This gate is shown in figure 3.6 with a thick black bar on the right of
the gate symbol to differentiate it from its unitary inverse. To prevent addition overflow,
n + 1 qubits are needed in register B so that Φ(b) denotes the QFT of (n + 1) qubit
register containing a n-bit number.

Applying the unitary inverse of ΦADD(a) (denoted Φ−1ADD(a)) with input Φ(b), ei-
ther φ (2n+1 − (a− b)) if b < a or φ(b − a) if b ≥ a is gotten. This Φ−1ADD(a) gate is
used for subtraction and comparing. This gate is shown in figure 3.7 with a thick black
bar on the left of the gate symbol.

Figure 3.6: Adder gate [28]

34

3. BUILDING BLOCKS FOR THE SHOR’S ALGORITHM

Figure 3.7: Adder gate inverse [28]

Modular adder gate

The ΦADD(a) gate, is used in building a modular adder gate (figure 3.8) and we denote
it as ΦADD(a) mod N . For this gate, a+ b is first computed and N subtracted from it if
a+ b ≥ N . Its input are Φ(b) with b < N and a classical number a also satisfying a < N .
To create the ΦADD(a) mod N gate, we do the following:

Figure 3.8: Modular adder gate [28]

1. Apply ΦADD(a) gate to register Φ(b) to contain Φ(a+ b) with no overflow

2. Apply Φ−1ADD(N) to get Φ(a+ b−N)

3. Apply QFT † on the whole register to access the Most Significant Bit (MSB)

4. Use the qubit from step 3 as the controlling qubit of a C-NOT gate acting on an
ancillary qubit

5. Reapply QFT and use the ancillary qubit in step 4 as the control qubit for a
ΦADD(N) controlled gate. This gives Φ((a+ b) mod N) in the register.

6. To restore the ancilla to |0〉, the identity 3.6 below is used:

(a+ b) mod N ≥ a⇔ a+ b < N (3.6)

7. To get the most significant qubit of (a + b) mod (N − a) so as to compare (a +
b) mod N with a, we apply Φ−1ADD(a) and then QFT †

35

3.6. MODULAR EXPONENTIATION IN SHOR’S ALGORITHM

8. Apply a NOT gate on this most significant qubit and use it as the controlling qubit
of a C −NOT with the ancilla as the target.

9. Apply another NOT gate on the most significant qubit

10. Apply QFT and ΦADD(a) gates on the register B. This gives the computation of
Φ((a+ b) mod N) with clean ancilla.

In the Shor’s algorithm, we use a doubly controlled ΦADD(a) mod N . To do this with low
complexity of the circuit, only the ΦADD(a) gates are doubly controlled and two control
qubits (|c1〉 and |c2〉) are added. By close inspection, we observe that if the ΦADD(a)
gates are switched off, then the entire circuit implements the identity gate on all qubits
since b < N .

Controlled-SWAP

The controlled-SWAP gate is composed of two controlled-NOT and one Toffoli gates as
depicted in figure 3.9.

Figure 3.9: Controlled SWAP gate [28]

This performs a SWAP operation on two qubits controlled by a third qubit and needs
O(n) of the controlled-SWAP gates to SWAP n qubits in a controlled manner.

Controlled multiplier gate

The doubly controlled ΦADD(a) mod N gate is used in building a controlled multiplier
gate denoted CMULT (A) mod N as shown in figure 3.10. Its inputs are |c〉|x〉|b〉 and its
output is dependent on the value of the qubit |c〉 as follows:

1. If |c〉 = |1〉, its output is |c〉|x〉|b+ (ax) (mod N)〉

2. If |c〉 = |0〉, its output remains as |c〉|x〉|b〉

36

3. BUILDING BLOCKS FOR THE SHOR’S ALGORITHM

Figure 3.10: Controlled multiplier gate [28]

To implement the CMULT (A) mod N gate, the following identity 3.7 is used:

(ax) mod N =
(
. . .
((
20ax0

)
mod N + 21ax1

)
mod N + . . .+ 2n−1axn−1

)
mod N (3.7)

From identity 3.7, to create the CMULT (A) mod N gate, only n successive doubly con-
trolled ΦADD(a) mod N gates are needed with each adding a different value (2ia) mod N
for 0 ≤ i < n. After these n operations, the output is |x〉|b〉 −→ |x〉|b + (ax) mod N〉
however, our objective is to compute |x〉 −→ |(ax) mod N〉. To do this, two controlled
multiplication and one swap gate is used as shown in figure 3.11 and steps are outlined
as follows:

Figure 3.11: Controlled Ua gate [28]

1. Apply the CMULT (A) mod N gate to |c〉|x〉|0〉

2. Apply a controlled-SWAP between the two registers (i.e. apply SWAP if |c〉 = |1〉)
for n qubits since the most significant qubit of (ax) mod N will always be 0 because
of the one extra qubit storing the overflow in the ΦADD(a) gate.

3. Apply the CMULT (a−1) mod N gate where a−1 is the inverse of a and can be
computed classically in polynomial time using the Extended Euclidean algorithm
and will exist since a and N are co-prime. Hence CMULT (a−1) mod N transforms
|c〉|x〉|b〉 =⇒ |c〉|x〉|(b− a−1x) mod N〉.

The resulting gate from these series of operations will be denoted C−Ua for controlled-Ua

and its action is summarily as follows:

1. if |c〉 = |0〉, it does nothing

37

3.7. IMPLEMENTATION VARIANTS OF THE SHOR’S ALGORITHM

2. if |c〉 = |1〉, the two registers are transformed as follows:

|x〉|0〉 → |x〉|(ax) mod N〉 → |(ax) mod N〉|x〉 → |(ax) mod N〉 |(x− a−1ax) mod N〉
= |(ax) mod N〉|0〉

Since at the end of the computation, the bottom register returns to |0〉, this extra register
can be considered as part of the C − Ua gate implying that

C − Ua : |x〉 −→ |(ax) mod N〉

This is exactly the needed gate in the quantum order-finding circuit as shown in figure
3.4. To get the modular exponentiation operations (C − Ua)

n, C − Uan can be computed
directly since:

(anx) mod N = (a . . . (a(ax) mod N) mod N . . .) mod N︸ ︷︷ ︸
n times

.

where an mod N is computed classically.

3.7. Implementation variants of the Shor’s algorithm

In this section, we will discuss possible optimization variants of the Shor’s factoring al-
gorithm. The optimizations apply to the QFT and Quantum modular exponentiation
subroutines. Here, we will focus on minimizing the number of qubits needed for a suc-
cessful implementation of the Shor’s algorithm.

There are two versions of the Quantum modular exponentiation operation. One uses
a classical adder while the second uses a QFT adder. The QFT adder has been discussed
in this thesis in section 3.6 while more details on the classical plain adder which uses the
NOT, CNOT and Toffoli gates can be found in [23].

In section 3.1, we discussed two variants of the QFT namely the standard QFT and
the semiclassical QFT . Different combinations of the Quantum modular exponentiation
and QFT can be selected to implement the Shor’s factoring algorithm. These are as
follows:

1. Variant 1 (Classical approach) [23]: Quantum modular exponentiation with classical
adder + Standard QFT : In this variant the algorithm needs 7n+3 qubits where n
is the number of bits of the number N to be factored.

2. Variant 2: Quantum modular exponentiation with classical adder + semiclassical
QFT . This however does not reduce the number of qubits required hence we omit
this.

3. Variant 3: Quantum modular exponentiation with QFT adder + Standard QFT .
This reduces the number of required qubits to 4n+ 2. This variant is simulated in
section 4.3.2 and we will refer to it as the shor_standard_QFT variant.

38

3. BUILDING BLOCKS FOR THE SHOR’S ALGORITHM

4. Variant 4: Quantum modular exponentiation withQFT adder + semiclassicalQFT .
This further optimizes the number of required qubits to 2n + 3. This variant is
simulated in section 4.3.3 and we will refer to it as the shor_semiclassical_QFT
variant.

Everything we need to know about the shor_standard_QFT variant has been discussed in
section 3.1.1 and 3.4 and the idea of the Semiclassical QFT has been discussed in section
3.1.2. Hence what remains is to discuss how Semiclassical QFT can be incorporated in
the Shor’s factoring algorithm.

3.7.1. Shor’s algorithm using Modular Exponentiation with Quan-
tum Adder and Semiclassical QFT

Since in Shor’s algorithm (section 3.3) immediately after the QFT † is performed the reg-
ister is measured, it makes it possible to interleave the measurements of each individual
qubits with the steps of QFT . Then classical bit values of the measurements could be
used in controlling subsequent quantum gates.

The idea of the Quantum Modular Exponentiation with QFT Adder semiclassical QFT
using one controlling qubit instead of 2n qubits done in the standard QFT was proposed
by Zalka [26]. Stephane Beauregard then worked on this idea and developed the circuit
which implemented it as discussed in [28].

The quantum controlled rotations C − Ua2
j could be replaced with ’semi-classically’ con-

trolled rotations of the subsequent qubits [40, 26, 27]. Hence, the control bit is measured
and, if the outcome is 1, the rotation is performed quantumly. This is possible because
the controlled-U gates all commute and QFT † can be applied semi-classically and so we
can compute the inverse QFT semi-classically.

Figure 3.12: Factoring using the one control qubit technique [28]

By applying the operations sequentially as shown in figure 3.12, the answer can be gotten
bit by bit in each iteration. Each measured bit determines the unitary transformation
that will be applied after every controlled-U step before the next measurement. Hence
this simulates the inverse Quantum Fourier Transform QFT † being followed by a mea-
surement as shown in figure 3.4. With this, only 2n+3 qubits are used to factor an n-bit
number N and its complexity analysis will be shown in section 3.8.

39

3.8. COMPLEXITY ANALYSIS OF THE SHOR’S ALGORITHM

3.8. Complexity Analysis of the Shor’s Algorithm
Given an n-bit number N , the complexity analysis is done by keeping track of the number
of qubits, order of the number gates and order of the depth of the circuit (and sub-circuits)
in each subroutine that makes up the order finding circuit. We recall from section 3.4
and 3.6 that the order finding circuit uses only single qubit gates up to doubly controlled
conditional phase shift gates and up to doubly CNOT gates. As shown in [44], since these
gates can be implemented using a constant number of single qubit gates and CNOTs,
these gates will be considered as elementary quantum gates in this analysis.

The ΦADD(a) gate in section 3.6 requires n+ 1 qubits (an extra qubit added to prevent
addition overflow) and O(n) single qubit gates in constant depth. When a control qubit
is added to the circuit, the depth becomes O(n) since the conditional phase shifts are
sequentially performed.

The doubly controlled ΦADD(a) mod N circuit in figure 3.8 requires n+4 qubits (that is
|c1〉, |c2〉, |0〉 and n+1 in |Φ(b)〉). It also requires O(nkmax) gates but has a depth of O(n)
independent of kmax because the QFTs can be parallelized [28]. The CMULT (a) mod N
circuit is a total of n doubly controlled ΦADD(a) mod N so requiring 2n + 3 qubits,
O(n2kmax) gates and a depth of O(n2).

The controlled-SWAP on n qubits needs O(n) gates and depth respectively hence the C−
Ua circuit which requires two of the CMULT (a) mod N circuit and one controlled-SWAP
needs 2n+ 3 qubits, O(n2kmax) gates and a depth of O(n2).

For the entire order-finding circuit, 2n of the C − Ua circuits are needed hence requiring
2n + 3 qubits, O(n3kmax) gates and depth of O(n3). Using the exact QFT in the adder
gate, kmax = n while using the approximate QFT , kmax = O

(
log
(
n
ε

))
and number of

gates is O(n3log(n)) for any ε polynomial in 1
n
.

Out of the 2n + 3 qubits used in this circuit, one is used as an ancilla for the modu-
lar addition, another is used to prevent overflow from the addition operation and n are
used as an ancillary register to get modular multiplication from successive additions.

40

4. SIMULATION OF SHOR’S ALGORITHM

4. Simulation of Shor’s Algorithm
We present in this chapter the results of the simulation of Shor’s algorithm using a sim-
ulator. Firstly in section 4.1, we introduce the IBM Quantum Experience simulation
environment. In section 4.2, we give a detailed breakdown of the calculations for a sim-
plified case. Section 4.3 presents a detailed work-through of simulation cases using two
variants of the algorithm and a constant optimized version. Section 4.4 presents and
discusses the actual results of the different simulations.

4.1. Architecture of the Quantum Computer and Sim-
ulator Used

We used the IBM QASM_simulator available publicly on IBM Quantum Experience [24].
The key module on the IBM Quantum Experience platform is the Qiskit library and users
can write quantum programs in the Python programming language. A Python user can
also install the Qiskit library in their local Python environment and use locally. The IBM
Quantum computing platform has both a graphical environment (called Quantum com-
poser) and a source code editor in the form of Python Jupyter notebook (called Quantum
lab). Due to the complicated nature of the circuit to implement the Shor’s factoring al-
gorithm and the need to automate several steps including the classical pre-processing and
post-processing, we wrote program codes in the Quantum lab as it gives a lot of flexibility.
Figure 4.1 shows the interface of the IBM Quantum lab.

Figure 4.1: IBM Quantum Lab

IBM Qiskit Aer is a simulator for quantum circuits that includes realistic noise models
and the QASM Simulator is the main Qiskit Aer backend. This backend simulates the

41

4.2. EXAMPLE USING SHOR’S ALGORITHM TO FACTOR N = 15 MANUALLY

execution of a quantum circuit on a real quantum device and outputs measurement counts
as well as the final quantum state vector of the device at the end of the simulation. Figure
4.2 summarizes the QASM simulator system specifications as at the time of running the
simulations. We note that most of the parameters listed in the figure didn’t change
throughout the simulation period which took a few days.1

Figure 4.2: Qiskit version information

4.2. Example using Shor’s algorithm to factor N = 15

manually

In this section, we begin by factoring N = 15 manually using the steps in the Shor’s
algorithm outlined in 3.3. The steps are generally divided into 3 parts namely the clas-
sical pre-processing, quantum order finding algorithm and classical post-processing. The
classical pre-processing steps are outlined below:

Step 1 (Check if N is even): 15 = 1 (mod 2) hence N is not even

Step 2: Check if N = ab for integers a ≥ 1 and b ≥ 2. Manually checking for all
numbers up to

√
N shows that N is not of the form ab

1At first, the system specification and version information wasn’t recorded during the trial and testing
phases. However, the data used in the analysis were from experiments that ran under these exact
specifications.

42

4. SIMULATION OF SHOR’S ALGORITHM

Step 3: Randomly choose x where 1 < x < 14 for e.g. x = 7. Next compute
d = gcd(7, 15). By Euclidean algorithm,

15 = 7(2) + 1

7 = 1(7) + 0

Hence d = 1 implying 7 and 15 are co-prime.

Next, we move to the second part which uses the quantum order finding algorithm to
obtain the order r of the chosen x mod N .

Step 4: Use the QPE to find the order r of 7 (mod 15). The number of bits n rep-
resenting N = 15 is:

n = dlog2(N + 1)e = dlog2(14)e = 4

We initialize the circuit by creating 2 quantum registers (”counting_register(c)” and ”act-
ing_register(a)”) and each containing 4 qubits. We also create 1 classical register con-
taining 4 classical bits to store the result of the measurements. Then we perform the
following QPE steps:

Step 4i: All qubits are initialized to ground state |0〉 =

[
1
0

]
as shown in figure 4.3

so we have |0〉⊗4|0〉⊗4

Figure 4.3: Initialization of circuit

43

4.2. EXAMPLE USING SHOR’S ALGORITHM TO FACTOR N = 15 MANUALLY

Step 4ii: We apply Hadamard gate to the counting_register and Pauli-X gate to the
last qubit in the acting_register as shown in figure 4.4 to get[

H⊗4|0〉⊗4
]
|0〉⊗4 =

1

4
[|0〉+ |1〉+ |2〉+ · · ·+ |15〉]|1〉

Figure 4.4: Application of Hadamard and X-gate

Step 4iii: We apply U |y〉 = |ay (mod 15)〉 and powers of U |y〉 given by U2j |y〉 = |a2jy
(mod 15)〉 for j = 0, · · · , n−1 to the qubits in the acting_register controlled by the qubits
in the counting_register to get

=
1

4

[
|0〉|70(mod 15)〉+ |1〉|71(mod 15)〉+ |2〉|72(mod 15)〉+ · · ·+ |15〉|715(mod 15)〉

]
Expanding and simplifying further gives

=
1

4

[
|0〉|1〉+ |1〉|7〉+ |2〉|4〉+ |3〉|13〉+ |4〉|1〉+ |5〉|7〉+ |6〉|4〉+ |7〉|13〉

+|8〉|1〉+ |9〉|7〉+ |10〉|4〉+ |11〉|13〉+ |12〉|1〉+ |13〉|7〉+ |14〉|4〉+ |15〉|13〉
]

Step 4iv: Taking measurements on the acting_register (say we measured |13〉), we
have:

1

2
[|3〉+ |7〉+ |11〉+ |15〉]⊗ |13〉

Step 4v: We apply QFT † on the counting_register to get

44

4. SIMULATION OF SHOR’S ALGORITHM

Figure 4.5: Application of the U-gate and measuring the acting_register

QFT †|3〉 = 1√
16

15∑
y=0

e−2πi·3y/16|y〉

=
1

4

15∑
y=0

e−πi·3y/8|y〉
(4.1)

QFT †|7〉 = 1

4

15∑
y=0

e−πi·7y/8|y〉 (4.2)

QFT †|11〉 = 1

4

15∑
y=0

e−πi·11y/8|y〉 (4.3)

QFT †|15〉 = 1

4

15∑
y=0

e−πi·15y/8|y〉 (4.4)

QFT †|c〉 = 1

8

15∑
y=0

[
e−i· 3πy

8 + e−i· 7πy
8 + e−i· 11πy

8 + e−i· 15πy
8

]
|y〉

=
1

8
[4|0〉+ 4i|4〉 − 4|8〉 − 4i|12〉]

Where some terms cancelled illustrating how we leverage the effect of quantum interfer-
ence.

Step 4vi: Measure the counting_register (figure 4.7) to get |0000〉 ≡ |0〉 or |0100〉 ≡ |4〉
or |1000〉 ≡ |8〉 or |1100〉 ≡ |12〉 with roughly equal probability of 1/4 as shown in figure
4.8.

At this point, we will continue with classical post-processing steps to obtain the order
r and finally get the factors.

Step 5: Analysing the different possible results, we apply the continued fractions al-
gorithms where necessary depending on the measured outcomes. Hence we have the
following scenarios:

45

4.2. EXAMPLE USING SHOR’S ALGORITHM TO FACTOR N = 15 MANUALLY

Figure 4.6: Application of the inverse QFT on the counting_register

1. Measured |0〉: This is trivial and we have to restart. So with probability ≈ 1
4
, we

were unsuccessful.

2. Measured |4〉: Phase φ = s
r
= 4

24
= 1

4
. Hence by the continued fractions algorithm in

this easy case, r = 4. Since r is even, we proceed to the next classical post-processing
step where we compute the following:

x ≡ ar/2(modN) = 74/2(modN) = 4

Now, x + 1 = 5 =⇒ gcd(5, 15) = 5 and x − 1 = 3 =⇒ gcd(3, 15) = 3. Hence,
with probability ≈ 1

4
, we have gotten the factor of N = 3× 5 in this case

3. Measured |8〉: Phase φ = s
r
= 8

24
= 1

2
. Hence r = 2 or r = 4. The latter case

is similar as above for the case of measuring |4〉 and for the former, even though
72 6≡1(mod15), we get one of the factors as follows:

x ≡ 72/2(modN) = 7

Now, x + 1 = 8 =⇒ gcd(8, 15) = 1 and x − 1 = 6 =⇒ gcd(6, 15) = 3. with this
first factor, the second factor is trivial to obtain. Hence with another probability
≈ 1

4
, we have gotten the factor of N = 3× 5 in this case.

4. Measured |12〉: Phase φ = s
r
= 12

24
= 3

4
. Hence r = 4 and we get similar result as the

case of measuring |4〉. So finally with another probability of ≈ 1
4
, we have gotten

the factor of N = 3× 5 in this case.

Overall, we have seen that with probability ≈ 3/4, we get the factors of N = 15 = 3× 5
at the first run. Running this simulation more times for different starting values increases
the chance of being successful in obtaining the desired factors.

This was a very easy case to illustrate the Shor’s algorithm. As can be seen in figure 4.11,
the period is 4 and as shown above, using this period gives us the factors of N = 3× 5.

46

4. SIMULATION OF SHOR’S ALGORITHM

Figure 4.7: Taking measurements on the counting_register

Figure 4.8: Measurement outcomes

47

4.3. COMPUTER SIMULATIONS

4.3. Computer simulations

In the following computer simulations, we used Shor’s algorithm with various modifica-
tions to factorise the numbers N = 15, 21 and 33. To illustrate the details of the steps
taken in this computer simulations, we will consider the case of N = 15 = 11112. Hence
the number of bits (n) representing N is 4. Later in section 4.4, we will present the results
from the other simulations and analyse these results. As discussed in section 3.7, some
variants of implementing the Shor’s algorithm include the following combination.

1. Variant 1: Quantum modular exponentiation with classical adder + Standard QFT

2. Variant 2: Quantum modular exponentiation with classical adder + semiclassical
QFT

3. Variant 3: Quantum modular exponentiation with QFT adder + Standard QFT

4. Variant 4: Quantum modular exponentiation with QFT adder + semiclassical QFT

Quantum modular exponentiation with QFT adder was explained in section 3.6 and the
explanation of Quantum modular exponentiation with classical adder proposed by Vedral,
Barenco and Ekert in 1996 and implemented in a reversible way can be found in [23]. The
standard QFT was discussed in section 3.1.1 and the semiclassical QFT was discussed in
3.1.2. With respect to these variants, the simulation was done along the following line:

• Using Constant-Optimized Quantum Circuits for Modular multiplication which we
referred to as shor_normal_constant in section 4.3.1

• Simulating variant 3 by using the modular exponentiation circuit with QFT adder
which uses the standard QFT and which we referred to as shor_standard_QFT in
section 4.3.2

• Simulating variant 4 by using the modular exponentiation circuit which uses Semi-
classical QFT and which we referred to as shor_semiclassical_QFT in section 4.3.3

4.3.1. Computer Simulation: Constant-Optimized Circuits (shor_nor-
mal_constant)

To factor N = 15, we begin by randomly chose a = 7 and used 8 counting bits. To
create the circuit for U |y〉 = |ay mod 15〉, we used a simplified version of the modular
exponentiation circuit based on the results from Igor et al. (2012) [45]. This simplified
the modular multiplication circuit for different choices of a modN as shown in 4.9.

Furthermore, we notice that by a manual computation of these constant-optimized circuits
for f(x) = Cx mod 15, the circuits for 2 and 13, 7 and 8, 4 and 11 all give similar circuit
output with the difference being only the X gate applied to 7, 11, 13. Hence the following
steps which we apply for the case of choosing a = 7 can be easily reproduced for other
choices of a with very little modifications. To create the function Ux, we repeated it x
times because

U2j |y〉 =
∣∣∣a2jy mod N

〉
. (4.5)

48

4. SIMULATION OF SHOR’S ALGORITHM

Figure 4.9: Circuits for f(x) = Cx mod 15, gcd(C, 15) = 1, (left); C = 2k, (right)
C = 15− 2k.

The detailed steps are below:

1. Initialise a quantum circuit with two registers. The first having 8 qubits and the
second having 4 qubits.

2. We put the qubits in the first register to a maximal superposition state by applying
the Hadamard gate.

3. Next we apply an X gate to the last qubit in the second register |0〉

4. In applying the controlled-U operation, we use the optimized version given in fig-
ure 4.9 which amounts to performing 3 swap operations and repeating x times to
implement Ux.

5. QFT † is applied to the 8 qubits in the first register and we measure these qubits
to get the final circuit shown in figure 4.10. Measurement outcomes are shown in
figure 4.12.

Figure 4.10: Constant-optimized Shor’s circuit

Results from the measurements are post-processed classically by doing the following

• Using continued fractions algorithm, we get 0/1, 1/4, 1/2 and 3/4. Hence r = 2 or
4. This clearly agrees with the graph of 7x (mod 15) shown in figure 4.11 showing
that the period is indeed r = 4

• Since r is even and ar/2 + 1 = 72 + 1 = 5 (mod 15) is a non-trivial factor of 15, we
compute gcd(5, 15) = 3 and hence we get the factors of 15 = 3× 5.

This entire circuit used 12 qubits and 8 classical bits.

49

4.3. COMPUTER SIMULATIONS

Figure 4.11: Graph of 7x (mod 15)

Figure 4.12: Measurement results and Measured Phases

50

4. SIMULATION OF SHOR’S ALGORITHM

4.3.2. Simulation: Quantum modular exponentiation with QFT
adder + standard QFT (shor_standard_QFT)

This variant implements the circuit for modular exponentiation using Quantum Fourier
transform Adder as described in section 3.6. It uses the standard implementation of the
QFT as discussed in section 3.1. This circuit requires 4n+2 qubits to factor an n-bit inte-
ger N and this implementation variant will be referred to as the shor_standard_QFT
variant. For consistency, We also chose a = 7 and created the following registers:

• An auxiliary quantum register ”aux_reg” with n+ 2 qubits. This was used for the
addition and multiplication operations

• A quantum register ”up_reg” with 2n qubits where the standard QFT was per-
formed

• A quantum register ”down_reg” with n qubits where the multiplications were made

• A classical register ”up_classic” with 2n classical bits where the measured values
of the qubits are stored.

Next, we initialized the ”down_reg” to |1〉 by applying the X gate and created maximal
superposition in ”up_reg”. Thus the total number of qubits used was 4n+2 = 4(4)+2 = 18
qubits.

Figure 4.13: initialization of the circuit

We applied the multiplication gates as showed in the work by Stephane Beauregard [28]
and discussed in section 3.6 in order to create the exponentiation. The actual modular ex-
ponentiation operation Ux was discussed in section 3.6 with circuit diagram in figure 3.11

51

4.3. COMPUTER SIMULATIONS

showing its dependence on the CMULT (A) mod N operation. To finish up, we applied
QFT † and took measurements. The final circuit is shown in figure 4.14 where the cir-
cuits for ΦADD(a), ΦADD(a) mod N , controlled-SWAP and CMULT (A) mod N are
all embedded within the modular exponentiation U2j shown in the figure. Running this

Figure 4.14: Final circuit of the shor_standard_QFT variant for factoring N = 15

Figure 4.15: Measurement results of the shor_standard_QFT variant for factoring N =
15

circuit 1024 times on IBM QASM_simulator returned 84 different possible measurements

52

4. SIMULATION OF SHOR’S ALGORITHM

with varying frequency.

Figure 4.15 shows the top 30 outcomes with a probability of being measured. We note
that this seemingly noisy data is due to the realistic noise model being implemented on
the IBM QASM_simulator which simulates how a real quantum computer will perform.
These ”errors” in a quantum computer can come from many sources including dephasing
and decoherence of the qubits, quantum state preparation, quantum gate operations or
even measurements. However, four results (K) standout namely |00000000〉, |01000000〉,
|10000000〉 and |11000000〉 each corresponding to 0, 64, 128 and 192 in integers. For a
measurement outcome K, the phase φ = K

2n
= s

r
where r is the period of a = 7 we are

trying to get and can be gotten from the continued fraction algorithm. We notice that K
28

for the different values of K corresponds to 0, 0.25, 0.5 and 0.75. From the computations
in section 4.2, we get the answer to the factorization of 15 = 3× 5.

We also notice from the results that the probability of success P (s) ≥ 0.110 + 0.119 +
0.130 = 0.359. By theorems 1, 2 and 3, we are quite certain that with a few more trials,
the correct order will be deduced and the much lower probability of obtaining the right
measurement outcome seen here is mainly due to noise.

53

4.3. COMPUTER SIMULATIONS

4.3.3. Simulation: Quantum modular exponentiation with QFT
adder + semiclassical QFT (shor_semiclassical_QFT)

This implementation is based on the Modular exponentiation with the QFT adder dis-
cussed in section 3.6 together with the QFT implemented semiclassically discussed in
section 3.1.2. This variant needs 2n + 3 qubits to factor an n-bit integer N and we will
refer to this variant as shor_semiclassical_QFT. Similar to the shor_standard_QFT ver-
sion, we chose similar parameters and performed similar operations. The major change
was that we replaced the standard QFT implementation with semiclassical QFT. We
describe the key implementation differences below:

• We initialize a quantum register with only 1 qubit where the semiclassical QFT was
performed

• We initialized a classical register with 1 bit used to reset the state of the top single
qubit to 0 if the previous measurement was 1

• We initialized the down register to 1

• For each round in 2n cycles, we applied the following

1. An X gate to up_reg classically controlled by the classical auxilliary register
2. An Hadamard gate to up_reg
3. Modular exponentiation operation using CMULT (A) mod N applied the nec-

essary amount of times.
4. At the ith round of the 2n cycles, for another set of 2i sub-rounds, we further

apply the following operations
(a) A phase rotation gate u1 to up_reg classically controlled by the up classical

register having a value equal to the index of this sub-round
(b) An Hadamard gate to up_reg
(c) Two measurements of the single qubit in the up register. The first mea-

surement is stored in the ith classical bit in the up classical register while
the second measurement is stored in the single bit in the aux_classic reg-
ister

• At the end of these cycles of operations, we take final measurement of up_reg. Since
the circuit is too large to be shown in this report, the beginning part of the circuit
is shown in figure 4.16 while the final part is shown in figure 4.17. The complete
circuit is accessible at [46] by zooming accordingly 1.

• Next we compiled the circuit with an optimization level of 3 on the QASM_simu-
lator and ran it with 1024 shots.

As expected, the results were very noisy due to the large number of QASM_instructions
with each instruction introducing its own noise. From the 1024 simulations, there were

54

4. SIMULATION OF SHOR’S ALGORITHM

Figure 4.16: Beginning part of the Shor’s factorization circuit for N = 15 with semiclas-
sical QFT

128 different possible measurements with varying frequency.

Figure 4.18 shows the top 30 outcomes with a probability of being measure and it’s
difficult to really select with a high level of certainty what the likely measurement will
be. To this end, we processed the result programatically as follows:

1. We converted the measurement outcomes from binary to base 10 then sorted them
by their frequency

2. We divided each outcome by 28 to get the phase φ = s
r

1The complete image of the final circuit could not be uploaded alongside the thesis because of the
limit on the size of attachments. Hence it can be accessed at https://raw.githubusercontent.com/mar-
tynscn/Thesis/main/shor_semiclassical_final_circuit_long.png

55

4.3. COMPUTER SIMULATIONS

Figure 4.17: Final part of the Shor’s factorization circuit for N = 15 with semiclassical
QFT

3. We applied the continued fraction algorithm to the phase φ with a possible maximum
denominator of 103 since we know the size of N and to save time and computing
resources.

4. If the continued fraction terminates successfully and yield φ = s
r
, we compute

p = gcd(a
n
2 + 1, N) and q = gcd(a

n
2 − 1, N).

5. We confirm that p and/or q are non-trivial factors of N and if true, then we record
the factorization along with the probability of that measurement outcome to be
used in determining the overall success rate.

After performing these steps, we found that in at least 22.36% of the time out of 1024 shots,
our algorithm yielded the right answer. We say at least here because we discarded those
measurement outcomes which in applying the continued fraction algorithm was giving

56

4. SIMULATION OF SHOR’S ALGORITHM

Figure 4.18: Measurement results of the shor_semiclassical_QFT variant for factoring
N = 15

denominators greater than 1000. If this threshold was moved higher, the probability of
obtaining the period r is certain to at least remain the same or better still increase.

4.4. Simulation Results
As we previously described in section 4.2, we simulated three variants of the Shor’s algo-
rithm namely shor_normal_constant, shor_standard_QFT and shor_semiclassical_QFT.
However, the shor_normal_constant variant is not interesting to analyse and compare
because it is not scalable. The constant optimized circuit we used is different for every N
and already precomputed. Hence, we begin with analysing the execution time of the two
implementation variants (4.3) in section 4.4.1. In section 4.4.2, we analyse the success
rates between the two main variants shor_standard_QFT and shor_semiclassical_QFT
and in section 4.4.3, we give a summary statistics of the complexity of their circuits.

Each simulation we performed was done with 1024 shots for better result outcomes. We
did the simulations for the numbers 15, 21 and 33 while attempts were also made to also
factor numbers 35, 39, 51, 55 and 57. However, the constraint on the amount of memory
available to public users in IBM Quantum Experience platform was 8gb RAM and the
capacity of this resource was easily reached by running up to 7 parallel operations each
lasting more than an hour. We got partial results (for some a coprime to N) for the
numbers 35, 39, 51, 55 and 57 and complete results for the numbers 15, 21 and 33 hence
for a holistic analysis, we present the results for N = 15, 21 and 33. The full raw data
(including partial data from 35, 39, 51, 55 and 57) is available at [56]. while the relevant
complete raw and processed data used in this analysis (15, 21 and 33) is available at [57]

57

4.4. SIMULATION RESULTS

4.4.1. Execution time analysis
In figure 4.19, we show the relation between the number N factored and the execution
time (in logarithm scale) for 1024 shots. This execution time takes into account the
classical pre-processing, the quantum processing and the classical post-processing where
we employ the continued fractions algorithm. We remind here that the three numbers
considered 15, 21 and 33 are each 4, 5 and 6 bits numbers so their result could fairly
approximate the result for other 4, 5 and 6 bits semi-prime numbers.

Figure 4.19: Comparison of the execution time for shor_standard_QFT and shor_semi-
classical_QFT in log scale

We see that in the figure 4.19, both variants have exponential computational complexity.
This agrees with the theory as the quantum circuits simulated on classical computers
would have at least exponential computational complexity [47, 48]. It was also proven
that quantum algorithms can only be efficiently simulated using quantum systems in [7].
We observe that in the case of shor_semiclassical_QFT, the results of the measurement
appear to lie exactly on the trend line. Measured execution times for the shor_stan-
dard_QFT variant slightly differed from the trend line. It was rather surprising that
the execution time for the shor_semiclassical_QFT variant was overall higher than the
shor_standard_QFT variant since it uses less qubits. However this could be explained
given the huge number of QASM instructions in the shor_semiclassical_QFT variant
when compared to shor_standard_QFT. We present this level of information in section
4.4.3.

Normally, a is chosen at random at the start of the Shor’s algorithm and it is important to
investigate what impact the chosen number has on the execution time. Figures 4.20 and
4.21 shows the execution times (for 1024 shots) for every number a coprime to N = 33
respectively for the shor_standard_QFT and shor_semiclassical_QFT variants. These
times were taken into account in the analysis regardless of the successful or unsuccessful
outcome of the iteration. We noticed that there was no impact of the success or failure on

58

4. SIMULATION OF SHOR’S ALGORITHM

Figure 4.20: Execution time for every possible number (a) co-prime to N = 33 (shor_stan-
dard_QFT)

Figure 4.21: Execution time for every possible number (a) co-prime toN = 33 (shor_semi-
classical_QFT)

the execution time of the algorithm as for example, in the case of shor_standard_QFT,
the execution time for a = 7 and a = 10 were both the highest and lowest respectively and
both a values were successful with varying degree of probability. Similar statement holds
in the shor_semiclassical_QFT variant for a = 14 and a = 13. It is quite remarkable

59

4.4. SIMULATION RESULTS

to note the very low execution time for a = 13 in the shor_semiclassical_QFT variant.
More experiments (each consisting of 1024 shots) for this particular case (a = 13) showed
the execution times all ranged between 52 minutes 25 seconds and 1 hour 8 minutes 35
seconds.

In summary, the shor_standard_QFT seems to perform a little better than the shor_semi-
classical_QFT variant. However, this could be because of the longer number of QASM
instructions and classical postprocessing using continued fraction algorithm. This rea-
son could be valid because the different possible measurement outcomes from shor_stan-
dard_QFT was fewer (84) than that of shor_semiclassical_QFT (128) variant hence more
classical postprocessing was needed in the case of shor_semiclassical_QFT. Nevertheless,
it is important for the performance of the algorithm to choose at random the number a
co-prime to N before every iteration of the algorithm. This tries to ensure almost equal
probability to choose better or worse starting value.

4.4.2. Success rate analysis
In this section, we analyse the success rate of both simulated variants which we define as
the number of executions (out of 1024 shots) that our algorithm yields the correct period.
As discussed in [42], the algorithm returns the correct period r only with some probability.

The standard approach that a candidate (measurement outcome) for an order yield by
the classical post-processing phase is to test whether it is the correct order or not. If this
fails, then the quantum order finding algorithm has to be executed again. In table 4.22
and 4.23, we show the success rates for the numbers N = 15, 21 and 35 considered for
the shor_standard_QFT and shor_semiclassical_QFT variant consecutively. For each
number N and each a chosen, it shows the average success rates.

It is interesting to see the combinations of N and a that gives us over 50% success rates
in the shor_standard_QFT variant. These are a = 4 and 11 for N = 15, a = 8 and 13
for N = 21, a = 10 and 23 for N = 33. However, in the shor_standard_QFT variant, we
see that only the combination of N = 15 and a = 4 gives a success rate of over 50%. The
theoretical success rate has been shown to depend on the order r, which in turn depends
on the number a co-prime to N [30] and on average ranges between 20% to 40%.

In addition as shown in figure 4.24, it is very interesting to see the high correlation
between the success rate in both variants. However, this could be very much expected
because the underlying theory regarding the period r for each number N and a combina-
tion doesn’t change with a change of algorithm. Hence we see similar patterns because we
are performing the same computation (of order finding) but implemented in two different
ways. Though the overall success rate of shor_standard_QFT variant is higher than the
shor_semiclassical_QFT variant, we observe little significant impact on the success rate
of the computation if either of the two variants is chosen. Also, the overall lower suc-
cess rate in the shor_semiclassical_QFT variant may be explained as the result of many
QASM instructions and measurements which with high probability introduces more gate
and measurement errors even though it uses less qubits.

60

4. SIMULATION OF SHOR’S ALGORITHM

Figure 4.22: Success rate for numbers N = 15, 21 and 35 considered in the shor_stan-
dard_QFT variant

61

4.4. SIMULATION RESULTS

Figure 4.23: Success rate for numbers N = 15, 21 and 35 considered in the shor_semi-
classical_QFT variant

Figure 4.24: Comparing the success rates between shor_standard_QFT and shor_semi-
classical_QFT for different combinations of N and random a chosen

62

4. SIMULATION OF SHOR’S ALGORITHM

4.4.3. Circuit metrics summary
In this section, we briefly present a summary of some metrics of the circuits in the two
variants. We comment that after the quantum circuit is built, it is decomposed which is
the expansion of a gate in a circuit using its decomposition rules. Next, the decomposed
circuit is transpiled which is the process of rewriting the input decomposed quantum
circuit to match the topology of the specific quantum device. Transpilation could also be
used as a way of optimizing the quantum circuit for execution on noisy quantum systems.
The process entails the following [49]:

1. Virtual circuit optimization

2. Qubit gate decomposition for all 3+ multi qubit gates

3. Placement on physical qubits

4. Routing on restricted topology

5. Translation to basis gates

6. Physical circuit optimization

Figure 4.25: Summary metrics for the shor_standard_QFT decomposed circuit

After the transpilation process, some metrics of the circuit could be higher or lower
depending on the initial design of the circuit implementing the algorithm. In the following
figures, we summarize the metrics for the decomposed and transpiled versions of the
circuits implementing both variants of the algorithm. Some abbreviations have been
made and they are explained below [50]:

1. Number of binary digits (num_bits): Number of bits of the number N

2. Number of qubits (num_qubits)

63

4.4. SIMULATION RESULTS

Figure 4.26: Summary metrics for the shor_standard_QFT transpiled circuit

Figure 4.27: Summary metrics for the shor_semiclassical_QFT decomposed circuit

3. Number of classical bits (num_clbits)

4. Number of qubits plus classical bits in the circuit (width)

64

4. SIMULATION OF SHOR’S ALGORITHM

Figure 4.28: Summary metrics for the shor_semiclassical_QFT transpiled circuit

5. Depth of the circuit [i.e. the length of the critical path in the circuit] (depth)

6. Total number of gate operations in the circuit (size)

7. Number of non-local gates in the circuit [for e.g. CNOTs] (num_nonlocal_gates)

8. Total number of operations including its multiplicities [this does not include mea-
surement operations] (num_of_count_ops)

9. Number of measurement operations (num_of_measure)

10. Number of C-NOT operations (num_of_cx)

11. Number of Hadamard operations (num_of_h)

12. Number of T-gate operations [or T-counts] num_of_t

Figures 4.25, 4.26, 4.27 and 4.28 shows the summary metrics of the decomposed and tran-
spiled circuits from the implementation of the the shor_standard_QFT and shor_semi-
classical_QFT variant respectively. We notice how the transpiled circuit implementing
the shor_semiclassical_QFT variant is higher than the shor_standard_QFT in many
metrics except in the number of qubits and circuit width (which depends on the number
of qubits). Hence this could further explain the reason why the measurement outcomes in
the shor_semiclassical_QFT variant was a lot more noisier than the shor_standard_QFT
variant.

65

5. Conclusion and potential future
work

In this chapter, we summarize the thesis. In section 5.1, we discuss the achievement of
the goals of the thesis. Section 5.2 presents the key conclusions from the simulations of
the Shor’s algorithm and in section 5.3, we present areas of possible further work

5.1. Goals Achievement Discussion
The goals of the thesis has been described in section 1.4. In this section we discuss how
the goals have been achieved in the thesis.

5.1.1. Review of Shor’s Algorithm
In chapter 3, we have described the Shor’s algorithm details. We explained each part of the
algorithm including important concepts such as Quantum Fourier Transforms, Quantum
Phase Estimations and Modular Exponentiation. We also introduced basic subroutines
needed to perform the Shor’s order finding algorithm. In addition, we discussed the
standard implementation of the Shor’s algorithm in section 3.3 and a variant using semi-
classical Quantum Fourier Transforms in section 3.1.2. We provided circuits leading up
to the Quantum Modular Exponentiation, Quantum Phase Estimation and the Quantum
Fourier Transforms. In section 3.1.2, presented an optimization variant of the Quantum
Fourier Transforms and we compared the implementation of these variants in terms of the
number of qubits needed as well as number of gates and circuit depth. In section 3.8, we
discussed the complexity analysis of the two implementation variants and in section 2.2,
we showed how an efficient integer factoring algorithm such as Shor’s factoring algorithm
can be used in breaking the RSA cryptosystem.

5.1.2. Simulation of Shor’s Algorithm
We have implemented the quantum circuits for Shor’s algorithm which was described
in chapter 4 using the QASM simulator in IBM Quantum Experience Platform. We
have tested the implementations and observe that it gives correct results according to
theoretical assumptions and realistic implementation of the current quantum systems
available. We have prepared and executed simulation cases in order to compare the
implementation variants.

5.1.3. Analysis of simulation results
In section 4.3, we presented the outcomes from our simulations. We analyzed a perfor-
mance metric given by the execution time. We have also compared the success rate of
order finding achieved by the different algorithm variants and summarized their circuit
complexity.

66

5. CONCLUSION AND POTENTIAL FUTURE WORK

5.2. Simulation Results Summary
We have simulated two implementation variants of the Shor’s Factoring algorithm using
the QASM simulator offered on IBM Quantum Experience Platform. We compared the
results in terms of computational complexity, the algorithm’s success rate of finding the
order and circuit metrics.
Both implementation variants had exponential computational complexity. This is correct
according to the theoretical assumptions regarding the simulation of quantum compu-
tation on classical computers [47]. However, one of the variants (shor_standard_QFT)
performs a little better than the other (shor_semiclassical_QFT). This could be because
of the much higher QASM instructions needed in the shor_semiclassical_QFT variant.

The success rates of both implementations correlated well for different combination of
values of N and a. However, one of the variants (shor_standard_QFT) had a slightly
higher success rates overall.

5.3. Further Work
In this thesis, we have simulated and provided the results of the simulation of two vari-
ants of the Shor’s Algorithm. There are other possibilities that could be done. While
we used solely the Quantum Adder, the Classical Adder can be used. Quantum Modular
Exponentiation with Classical Adder can be combined with both the standard QFT and
the semiclassical QFT .

In Shor’s algorithm, the number a with gcd(a,N) = 1 is chosen at random at the begin-
ning of the algorithm. It could be useful to see the analysis from a number theoretical
point of view of how these values (or even class of values) of a can effect the result in an
overall success rate of finding the order of r.

In this thesis, our implementation variant using semiclassical QFT optimized the re-
quired number of qubits from 2n to just 1 where n denotes the number of bits of the
semi-prime N to be factored. There are also variants of Shor’s algorithm that optimises
the number of operations or include the possibility of parallel computations. It will be
very useful to see how these possibility of parallelizing the computation could be combined
with the semiclassical implementation of the QFT to build an order finding circuit that
both reduces the number of qubits required and the number of operations.

67

BIBLIOGRAPHY

Bibliography
[1] Feynman, Richard; Leighton, Robert; Sands, Matthew: In The Feynman Lectures

on Physics, Vol. 3, California Institute of Technology, p. 1.1 (1964) ISBN 978-
0201500646

[2] Benioff, Paul: The computer as a physical system: A microscopic quantum mechan-
ical Hamiltonian model of computers as represented by Turing machines. In Journal
of Statistical Physics. 22 (5), 563–591 1980

[3] David Deutsch: Quantum computation. In A comprehensive and inspiring guide to
quantum computing, Physics World, 1992

[4] Cho, Adrian: Breakthrough of the Year: The First Quantum Machine. In Science
Magazine, 330 (6011): 1604 (2010-12-17)

[5] Tom Thompson: When silicon hits its limits. In Byte, (1996)

[6] Manin, Yu. I.: Computable and Noncomputable, Sov.Radio. pp. 13–15 1980

[7] Feynman, Richard: Simulating Physics with Computers. In International Journal of
Theoretical Physics. 21 (6/7), 467–488, June 1982 doi: 10.1007/BF02650179. URL
http://dx.doi.org/10.1007/BF02650179.

[8] S. Wiesner: Conjugate coding. In SIGACT News15 (1) 78 - 88, (1983)

[9] C.H. Bennett, G. Brassard: Quantum cryptography: public key distribution and
coin tossing. In Proceedings of the International Conference on Computers, Systems
& Signal Processing Bangalore, India, pp. 175–179. December 10–12,1984

[10] Ekert, Artur K: Quantum cryptography based on Bell’s theorem. In Physical Review
Letters. 67 (6): 661–663, doi:10.1103/PhysRevLett.67.661 (5 August 1991)

[11] Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring.
In Proceedings 35th Annual Symposium on Foundations of Computer Science, pp.
124–134. IEEE Computer Society, Washington (1994)

[12] Craig Gidney and Martin Ekerå: How to factor 2048 bit RSA integers in 8 hours
using 20 million noisy qubits. December 6, 2019

[13] R. B. Griffiths and C.-S. Niu: Semiclassical Fourier transform for quantum compu-
tation. In Physical Review Letters 76, 3228-3231 (1996)

[14] C. Zalka: Shor’s algorithm with fewer (pure) qubits, arXiv preprint quant-ph/0601097
(2006)

[15] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland: Surface codes:
Towards practical large-scale quantum computation. In Physical Review A 86, 032324
(2012), arXiv:1208.0928

68

BIBLIOGRAPHY

[16] M. Ekerå and J. Håstad: Quantum Algorithms for Computing Short Discrete Loga-
rithms and Factoring RSA Integers. In Proceedings of the 8th International Workshop
on Post-Quantum Cryptography (PQCrypto 2017), Lecture Notes in Computer Sci-
ence (LNCS), Vol. 10346, (Springer, 2017) pp. 347-363

[17] M. Ekerå: Modifying Shor’s algorithm to compute short discrete logarithms. In Cryp-
tology ePrint Archive, Report, 2016/1128 (2016)

[18] M. Ekerå: Quantum algorithms for computing general discrete logarithms and orders
with tradeoffs. In Cryptology ePrint Archive, Report, 2018/797 (2018)

[19] C. Gidney and A. G. Fowler: Flexible layout of surface code computations using
AutoCCZ states. In Journal, arXiv preprint arXiv:1905.08916 (2019)

[20] C. Gidney: Approximate encoded permutations and piecewise quantum adders. In
arXiv preprint arXiv:1905.08488,2019

[21] Franklin, Diana; Chong, Frederic T.: Challenges in Reliable Quantum Computing.
In Nano, Quantum and Molecular Computing, pp. 247–266. (2004) doi:10.1007/1-
4020-8068-9_8. ISBN 1-4020-8067-0

[22] Pakkin, Scott; Coles, Patrick: The Problem with Quantum Computers. In Scientific
American, 10 June 2019

[23] V. Vedral, A. Barenco, and A. Ekert: Quantum networks for elementary arithmetic
operations. In Phys. Rev. A, 54, pp. 147-153. Also on arXiv:quant-ph/9511018 (1996)

[24] IBM Quantum: https://quantum-computing.ibm.com/ (2021)

[25] D. Beckman, A.N. Chari, S. Devabhaktuni, and J. Preskill: Efficient networks for
quantum factoring. In Phys. Rev. A, 54, pp. 1034- 1063. Also on arXiv:quant-
ph/9602016 (1996)

[26] C. Zalka: Fast versions of Shor’s quantum factoring algorithm. Also on arXiv:quant-
ph/9806084 (1998)

[27] S. Parker and M.B. Plenio: Efficient factorization with a single pure qubit and logN
mixed qubits. In Phys. Rev. Lett., 85, pp. 3049-3052. Also on arXiv:quant-ph/0001066
(2000)

[28] Stephane Beauregard: Circuit for Shor’s algorithm using 2n+3 qubits. In Quantum
Information and Computation, Vol. 3, No. 2, pp. 175-185. Also on arXiv:quant-
ph/0205095 (2003)

[29] Michael. A. Nielsen and Isaac. L. Chuang.: Quantum Computation and Quantum
Information. Cambridge University Press (Cambridge); 2010

[30] Mermin, David: Quantum Computer Science. An Introduction. Cambridge Univer-
sity Press, 2007

[31] Asher Peres, Daniel R. Terno: Quantum Information and Relativity Theory, 2004,
https://arxiv.org/abs/quant-ph/0212023

69

BIBLIOGRAPHY

[32] Nigel Smart: Cryptography: An Introduction (3rd Edition)

[33] Buhler, J. P.; Lenstra, H. W. Jr.; Pomerance, Carl (1993): Factoring integers with
the number field sieve. In Lenstra A.K., Lenstra H.W. (eds) The development of
the number field sieve. Lecture Notes in Mathematics, vol 1554. Springer, Berlin,
Heidelberg, https://doi.org/10.1007/BFb0091539; Retrieved 11 April 2021

[34] Jonathan Sorenson: An Introduction to Prime Number Sieves. In Computer Sciences
Technical Report #909, Department of Computer Sciences University of Wisconsin-
Madison (January 2, 1990)

[35] Pomerance, Carl; Crandall, Richard: Prime Numbers: A Computational Perspective
(Second ed.), New York: Springer. ISBN 978-0-387-25282-7. MR 2156291 (2005)

[36] A. Joux: A new index calculus algorithm with complexity L(1/4 + o(1)) in very small
characteristic. In Selected Areas in Cryptography — SAC, Springer 2013, LNCS 8282
(2014)

[37] D. Coppersmith: An approximate Fourier transform useful in quantum factoring. In
IBM Research Report No. RC19642. Also on arXiv:quant-ph/0201067 (1996)

[38] C. Moore and M. Nilsson: Parallel quantum computation and quantum codes. In
SIAM J. Comp., 31, pp. 799-815. Also on arXiv:quant-ph/9808027 (2002)

[39] Robert B. Griffiths and Chi S Niu: Semiclassical Fourier Transform for Quantum
Computation. In Physical Review Letters, 76(17):3228–3231, 1996. doi: 10.1103/
PhysRevLett.76.3228. URL http://arxiv.org/abs/quant-ph/9511007

[40] M. Mosca and A. Ekert: The hidden subgroup problem and eigenvalue estimation
on a quantum computer. In Lecture Notes in Computer Science, 1509, pp. 174-188.
Also on arXiv:quant-ph/9903071 (1999)

[41] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca: Quantum algorithms revisited.
Proc. R. Soc. London A, 454, pp. 339-354. Also on quant-ph/9708016; (1998)

[42] Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. In SIAM J. Comp., 26, pp. 1484-1509. Also on quant-
ph/9508027 (1997)

[43] T. Draper: Addition on a quantum computer, arXiv:quant-ph/0008033 (2000)

[44] A. Barenco, C. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P.Shor, T. Sleator,
J.A. Smolin, and H. Weifurter: Elementary gates for quantum computation. In Phys.
Rev. A, 52, pp. 3457-3467. Also on arXiv:quant-ph/9503016 (1995)

[45] Igor L. Markov; Mehdi Saeedi: Constant-Optimized Quantum Circuits for Modular
Multiplication and Exponentiation. In Quantum Information and Computation, Vol.
12, No. 5&6, pp. 0361-0394, 2012, arXiv:1202.6614v3 [cs.ET]

[46] Complete circuit for the factorization of N = 15 Shor’s algorithm with semiclassical
QFT: https://raw.githubusercontent.com/martynscn/Thesis/main/shor_semiclassi-
cal_final_circuit_long.png

70

BIBLIOGRAPHY

[47] Julia Wallace: Quantum Computer Simulators - A Review Version 2.1, (1999)

[48] H. De Raedt and K. Michielsen: Computational Methods for Simulating Quantum
Computers. In M. Rieth and W. Schommers, editors, Handbook of Theoretical and
Computational Nanotechnology, volume 3: Quantum and molecular computing, quan-
tum simulations, chapter 1, page 248. American Scientific Publisher, 2006. URL
http://arxiv.org/abs/quant-ph/0406210.

[49] IBM Transpiler: https://qiskit.org/documentation/apidoc/transpiler.html

[50] IBM Quantum Circuits documentation: https://qiskit.org/documenta-
tion/stubs/qiskit.circuit.QuantumCircuit.html

[51] Mermin, David: Breaking RSA Encryption with a Quantum Computer: Shor’s Fac-
toring Algorithm. In Physics 481-681 Lecture Notes (PDF), Cornell University March
28, 2006

[52] L. K. Grover: A fast quantum mechanical algorithm for database search. In Annual
ACM Symposium on Theory of Computing. USA, 1996, p. 212-219.

[53] T. Apostol.: Introduction to Analytic Number Theory. Undergraduate Texts in Math-
ematics. Springer-Verlag, 1976.

[54] D. Deutsch and R. Jozsa.: Rapid solution of problems by quantum computation. Pro-
ceedings of the Royal Society of London A., 439:553-558. doi:10.1098/rspa.1992.0167,
October 1992.

[55] G. H. Hardy and E. M. Wright.: An Introduction to the Theory of Numbers.Ox-
ford University Press, 2008 (6th edition, revised by D. R. Heath-Brown and J. H.
Silvermann; 1st edition published in 1938)

[56] Measurement Outcomes for Shor’s algorithm with standard and semiclassical QFT:
https://github.com/martynscn/Thesis/tree/main/Measurement_outcomes

[57] Complete raw and processed data for Shor’s algorithm with standard and semi-
classical QFT applied to numbers 15, 21 and 33: https://rebrand.ly/Com-
plete_raw_and_processed_data_shors_simulation

[58] Kefa Rabah : Review of Methods for Integer Factorization Applied to Cryptography.
In Journal of Applied Sciences, 6, pp. 458-481. DOI: 10.3923/jas.2006.458.481; URL:
https://scialert.net/abstract/?doi=jas.2006.458.481 (2006)

[59] Diego F. Aranha : Integer factoring and related cryptosystems. Institute of
Computing UNICAMP; URL: https://www.ic.unicamp.br/ rdahab/cursos/mo422-
mc938/2016-2s/Welcome_files/fatoracao+Rabin.pdf (2006)

[60] Qiskit Aer: https://qiskit.org/documentation/apidoc/aer.html

[61] Johannes A. Buchmann, Denis Butin, Florian Göpfert, Albrecht Petzoldt: Post-
Quantum Cryptography: State of the Art. Technische Universität Darmstadt,
Fachbereich Informatik, Hochschulstraße 10, 64289 Darmstadt, Germany; URL:
https://core.ac.uk/download/pdf/144828958.pdf; accessed on 19/03/2021

71

BIBLIOGRAPHY

[62] M. R. K. Ariffin, M. A. Asbullah, N. A. Abu and Z. Mahad: A New Efficient Asym-
metric Cryptosystem Based on the Integer Factorization Problem. Malaysian Jour-
nal of Mathematical Sciences 7(S): 19-37 (2013); URL: https://core.ac.uk/down-
load/pdf/153818781.pdf; (2013); accessed on 19/03/2021

[63] Richard Feynman: Simulating physics with computers. In International Journal of
Theoretical Physics, pp. 21(6-7), (1982)

[64] Bartłomiej Patrzyk: Review, analysis and simulation of quantum algorithms in cryp-
tography, 2014

[65] Abraham Asfaw and Luciano Bello and Yael Ben-Haim and Sergey Bravyi and
Nicholas Bronn and Lauren Capelluto and Almudena Carrera Vazquez and Jack
Ceroni and Richard Chen and Albert Frisch and Jay Gambetta and Shelly Garion
and Leron Gil and Salvador De La Puente Gonzalez and Francis Harkins and Takashi
Imamichi and David McKay and Antonio Mezzacapo and Zlatko Minev and Ramis
Movassagh and Giacomo Nannicni and Paul Nation and Anna Phan and Marco Pis-
toia and Arthur Rattew and Joachim Schaefer and Javad Shabani and John Smolin
and Kristan Temme and Madeleine Tod and Stephen Wood and James Wootton:
Learn Quantum Computation Using Qiskit, 2020, http://community.qiskit.org/text-
book, Accessed on 22/11/2020.

72

6. LIST OF USED ABBREVIATIONS AND SYMBOLS

6. List of used abbreviations and
symbols

|.〉 Ket notation. Also represents a column vector

〈.| Bra notation. A row vector equal to the complex conjugate transpose of |.〉

† Complex conjugate transpose
∗ Complex conjugate of a vector

|a〉 〈b| Ket-Bra notation representing the outer product of a and b.

〈b| |a〉 Bra-Ket notation representing the inner product of a and b.

|a〉 |b〉 Ket-Ket notation representing the tensor product of a and b.

⊗ Tensor product

R Set of Real Numbers

C Set of Complex Numbers

73

List of attachments
1. shor_normal_constant.ipynb: This contains code for the implementation of the
constant optimized version of Shor’s algorithm.

2. shor_standard_qft.ipynb: This contains code for the implementation of the shor_stan-
dard_QFT variant of the Shor’s algorithm.

3. shor_semiclassical_QFT: This contains code for the implementation of the shor_semi-
classical_QFT variant of the Shor’s algorithm.

4. Zip files of csvs: This contains data saved for the simulation experiments carried out
for the two implementation variants of the Shor’s algorithm

74

LIST OF FIGURES

List of Figures
2.1 Bloch sphere representation of the qubit |+〉 (θ = π/2 and φ = 0) 12
2.2 Transformation of |0〉 to |1〉 using the X-gate 13
2.3 Transformation of |0〉 to |1〉 using the Y-gate 14
2.4 Transformation of |0〉 to |+〉 using the H-gate 15
2.5 Creation of the X-gate from the Z-gate . 16
2.6 Creation of the X-measurement from the Z-measurement [65] 17
2.7 Components of a quantum circuit [65] . 20
3.1 The Quantum Fourier Transform Circuit for N = 2n [65] 26
3.2 The Quantum Phase Estimation Circuit for N = 2n [65] 28
3.3 Overview of Shor’s factoring algorithm . 30
3.4 Shor’s period finding algorithm for U2j [65] 32
3.5 Quantum addition as given in [28] . 34
3.6 Adder gate [28] . 34
3.7 Adder gate inverse [28] . 35
3.8 Modular adder gate [28] . 35
3.9 Controlled SWAP gate [28] . 36
3.10 Controlled multiplier gate [28] . 37
3.11 Controlled Ua gate [28] . 37
3.12 Factoring using the one control qubit technique [28] 39
4.1 IBM Quantum Lab . 41
4.2 Qiskit version information . 42
4.3 Initialization of circuit . 43
4.4 Application of Hadamard and X-gate . 44
4.5 Application of the U-gate and measuring the acting_register 45
4.6 Application of the inverse QFT on the counting_register 46
4.7 Taking measurements on the counting_register 47
4.8 Measurement outcomes . 47
4.9 Circuits for f(x) = Cx mod 15, gcd(C, 15) = 1, (left); C = 2k, (right)

C = 15− 2k. 49
4.10 Constant-optimized Shor’s circuit . 49
4.11 Graph of 7x (mod 15) . 50
4.12 Measurement results and Measured Phases 50
4.13 initialization of the circuit . 51
4.14 Final circuit of the shor_standard_QFT variant for factoring N = 15 . . . 52
4.15 Measurement results of the shor_standard_QFT variant for factoring N =

15 . 52
4.16 Beginning part of the Shor’s factorization circuit for N = 15 with semi-

classical QFT . 55
4.17 Final part of the Shor’s factorization circuit for N = 15 with semiclassical

QFT . 56
4.18 Measurement results of the shor_semiclassical_QFT variant for factoring

N = 15 . 57
4.19 Comparison of the execution time for shor_standard_QFT and shor_semi-

classical_QFT in log scale . 58

75

LIST OF FIGURES

4.20 Execution time for every possible number (a) co-prime toN = 33 (shor_stan-
dard_QFT) . 59

4.21 Execution time for every possible number (a) co-prime toN = 33 (shor_semi-
classical_QFT) . 59

4.22 Success rate for numbers N = 15, 21 and 35 considered in the shor_stan-
dard_QFT variant . 61

4.23 Success rate for numbers N = 15, 21 and 35 considered in the shor_semi-
classical_QFT variant . 62

4.24 Comparing the success rates between shor_standard_QFT and shor_semi-
classical_QFT for different combinations of N and random a chosen . . . 62

4.25 Summary metrics for the shor_standard_QFT decomposed circuit 63
4.26 Summary metrics for the shor_standard_QFT transpiled circuit 64
4.27 Summary metrics for the shor_semiclassical_QFT decomposed circuit . . 64
4.28 Summary metrics for the shor_semiclassical_QFT transpiled circuit 65

76

	Introduction
	History of Quantum Mechanics
	History of Quantum Computing and Quantum Cryptography
	Problem Outline
	Goals of the Thesis
	Thesis Outline

	Mathematical Background in Quantum Cryptography
	Basics of Quantum computing
	Complex linear algebra
	Single Qubit
	Representation of single qubits on the Bloch sphere
	Single Qubit Gates
	Measuring in Different Bases
	Multi-Qubits
	Multi-Qubit Gates
	Entangled States
	Quantum Circuits

	Integer Factorization in Cryptography
	Rivest–Shamir–Adleman (RSA) Cryptosystem
	Classical Factorization Schemes

	Building blocks for the Shor's algorithm
	Quantum Fourier Transform
	Standard QFT circuit
	Semiclassical QFT ('One controlling qubit')

	Quantum Phase Estimation (QPE)
	Shor's Algorithm
	Period finding
	Reliability of getting a solution from Shor's algorithm
	Modular exponentiation in Shor's algorithm
	Implementation variants of the Shor's algorithm
	Shor's algorithm using Modular Exponentiation with Quantum Adder and Semiclassical QFT

	Complexity Analysis of the Shor's Algorithm

	Simulation of Shor's Algorithm
	Architecture of the Quantum Computer and Simulator Used
	Example using Shor's algorithm to factor N = 15 manually
	Computer simulations
	Computer Simulation: Constant-Optimized Circuits (shor_normal_constant)
	Simulation: Quantum modular exponentiation with QFT adder + standard QFT (shor_standard_QFT)
	Simulation: Quantum modular exponentiation with QFT adder + semiclassical QFT (shor_semiclassical_QFT)

	Simulation Results
	Execution time analysis
	Success rate analysis
	Circuit metrics summary

	Conclusion and potential future work
	Goals Achievement Discussion
	Review of Shor's Algorithm
	Simulation of Shor's Algorithm
	Analysis of simulation results

	Simulation Results Summary
	Further Work

	List of used abbreviations and symbols

