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Summary
This diploma thesis deals with geometric algebra for conics (GAC) in autonomous nav-
igation, presented on robot movement in a tube. First, the theoretical concepts are
introduced. Consequently, the representations of conics in GAC are presented. Then an
engine is implemented, which is capable of performing basic operations in GAC including
displaying conics, which are entered in GAC context. In the end an algorithm is pre-
sented, which estimates the tube axis using points, placed into space from image, where
we place center of an ellipse, which is obtained by image filter and fitting algorothm.

Abstrakt
Tato diplomová práce se zabývá využitím geometrické algebry pro kuželosečky (GAC) v
autonomní navigaci, prezentované na pohybu robota v trubici. Nejprve jsou zavedeny
teoretické pojmy z geometrických algeber. Následně jsou prezentovány kuželosečky v
GAC. Dále je provedena implementace enginu, který je schopný provádět základní operace
v GAC, včetně zobrazování kuželoseček zadaných v kontextu GAC. Nakonec je ukázán
algoritmus, který odhadne osu trubice pomocí bodů, které umístí do prostoru pomocí
středů elips, umístěných v obrazu, získaných obrazovým filtrem a fitovacím algoritmem.
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Introduction
Autonomous navigation is a very up to date topic. There are a lot of sensors that

provide specific data, that can be used to analyze environment and use it for trajectory
planning. One of the most used sensors are cameras, which capture the environment as
an image from camera’s perspective. Sophisticated algorithms then make an estimation
about the environment in front of that camera. But extraction of details for orientation
from a single picture is very difficult without any information about the environment.
Before the software can be developed, simulations are necessary. First step can be simple
example of that environment, which can be clearly recognizable by the algorithms, because
it has direct signs. Autonomous navigation of a robot with camera in a tube can be
initialized with simulation, which is described by this thesis. Easy case to solve is just a
straight tube. The robot with a camera and light source can simply be navigated to the
direction of the darkest point in an image, given by the camera. In a case of a curved
tube, the same approach can lead to a collision with the tube surface. Safe path would
follow the tube axis.

Goal of this thesis is to find a conic that follows elliptic contour, that can be seen in a
curved tube (Figure 2.2) and make path using the center of the conic. We create a testing
tube and develop an algorithm, the first part of which generates such conic. The second
part extracts point in space as the center of that conic. The environment was created with
Unity game engine, which create 2D or 3D environment with many useful tools. Unity
uses C# as scripting programming language. Conic sections and manipulation with them
can be defined using geometric algebras.

Usage of geometric algebras in the computer science is interesting for many reasons, see
[3, 5]. The main advantage comes with geometrically intuitive development of algorithms.
It connects standard vector space calculus with many mathematical tools. Christian Per-
wass [10] examines all aspects essential for a successful application of geometric algebra.
Our focus in this thesis is placed on Geometric Algebra for Conics (GAC), see [6, 7].
It can be described as 256-dimensional algebra, which contains conformal embedding of
Euclidean space R2, together with representations of conics and Euclidean transforma-
tions. Because working with such high dimensional space can be demanding in terms of
computational time, it is reasonable to look for optimization. We put our interest on
effective computing of geometric algebra’s operation called geometric product, because
this operation can take a lot of time with large dimension of the algebra.

This thesis is divided into 2 parts. Chapter 1 gives a theoretical background to ge-
ometric algebras, more specifically to G5,3. As in majority of the thesis we work with
properties and basic operations of the geometric algebra, in Section 1.1.1 we introduce
general geometric algebra concept. In Section 1.2 we present GAC together with rep-
resentations of conics, Euclidean transformations and conic fitting algorithm. Software,
developed for this thesis, is able to perform computations presented in Section 1.2 and
display graphical result.

In Chapter 2 we present the mentioned software. As this application does not use
preset objects in Unity, we present how to generate a tube in computer graphic. Then
we introduce simple algorithms for point selection, the purpose of which is to highlight
a tube elliptic contour (when the camera is moving through curve). Finally, with the
tube radius and projective geometry in computer graphics together with the properties of

2
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fitted ellipse we estimate the axis. The program is created with Unity 2019.4.18f1, scripts
are written with C# 9.0 and MATLAB R2020b.
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1. Theoretic introduction
1.1. Geometric Algebra
We begin this Section with defining a vector space Rp,q equipped with a bilinear form.
Then we continue with axiomatic definition of geometric algebra. We observe properties
of its operation on basis vectors. We define specific way how basis of the geometric algebra
is ordered. We also introduce another two important operations and we finish this section
with the duality property. We follow [10], where the general concept of geometric algebra
is introduced in a detailed way.

1.1.1. Vector Space Rp,q

The following text assumes knowledge of the concept of vector spaces, linear forms, basic
concept of an algebra. Let Rp,q denote a (p+ q)-dimensional vector space over the set of
real numbers R. Furthermore, let f be a commutative bilinear form1 on this space. The
reason, why we use notation p, q, comes from the property on basis vectors of the space
Rp,q together with f defined as follows.

Definition 1.1.1. The canonical basis of Rp,q denoted by Rp,q is defined as the totally
ordered set

Rp,q
= (e1, . . . , ep, ep+1, . . . , ep+q) ⊂ Rp,q, (1.1)

where ei has the following property

f(ei, ej) =


1, 1 ≤ i = j ≤ p,

−1, p+ 1 ≤ i = j ≤ p+ q,

0, i 6= j.

(1.2)

This bilinear form is understood to be a scalar product in the context of geometric
algebras, however without property f(u,u) > 0. Thus we call the bilinear form (1.2)
a pseudoscalar product in the vector spaces context. Let the basis elements of Rp,q be
such that e1, . . . , ep have positive signature and ep+1, . . . , ep+q have negative signature,
i.e. f(ei, ei) = 1 (−1) for i = 1, . . . , p (i = p+ 1, . . . , p+ q). The space Rp,q is understood
to be the vector space Rp+q with the pseudoscalar product (1.2).

Definition 1.1.2. Let r be a quadratic from associated with the pseudoscalar product
f . That is, for u ∈ Rp+q, r(u) = f(u,u). Then the vector space Rp+q together with
quadratic form r create a quadratic space (Rp,q, r).

1.1.2. Axiomatic Definition
Definition 1.1.3. Let A(Rp,q) denote an associative algebra over the quadratic space
(Rp,q, r). Let a symbol ∗ denote an algebraic product. The Algebra A(Rp,q) is said to be
a geometric algebra if for every vector u ∈ Rp,q ⊂ A(Rp,q), u ∗ u = r(u) holds.

1If we would further assume that f(u,u) > 0 we would end up with a scalar product.
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1.1. GEOMETRIC ALGEBRA

The geometric algebra over the vector space Rp,q is denoted by G(Rp,q) or simply Gp,q.
The algebraic product is called a geometric product. The elements of Gp,q are called
multivectors. Now we give an axiomatic definition of the multivectors.

(i) ∀U ,V ∈ Gp,q, ∃W ∈ Gp,q : W = U + V ,

(ii) ∀U ∈ Gp,q, ∀c ∈ R : ∃cU ∈ Gp,q

(1.3)

The property (i) reads that Gp,q is closed under addition, and (ii) reads that Gp,q is
closed under multiplication by constant. Note that the filed of real numbers R ⊂ Gp,q.
Multivectors also satisfy conditions for vectors in the vector space over the R.

(i) ∀U ,V ,W ∈ Gp,q : (U + V ) +W = U + (V +W ),

(ii) ∀U ,V ∈ Gp,q : U + V = V +U ,

(iii) ∃0 ∈ Gp,q, ∀U ∈ Gp,q : U + 0 = U ,

(iv) ∀U ∈ Gp,q, ∃ −U ∈ Gp,q : U + (−U) = 0,

(v) ∀U ,V ∈ Gp,q, ∀c ∈ R : c(U + V ) = cU + cV ,

(vi) ∀U ∈ Gp,q, ∀c, d ∈ R : (c+ d)U = cU + dU ,

(vii) ∀U ∈ Gp,q, ∀a, b ∈ R : (ab)U = a(bU),

(viii) for 1 ∈ R, ∀U ∈ Gp,q : 1U = U .

(1.4)

Axioms for the geometric product ”∗” are as follows:

(i) ∀U ,V ∈ Gp,q : (U ∗ V ) ∈ Gp,q,

(ii) ∀U ,V ,W ∈ Gp,q : (U ∗ V ) ∗W = U ∗ (V ∗W ),

(iii) ∀U ,V ,W ∈ Gp,q : W ∗ (U + V ) = W ∗U +W ∗ V ,

(V +W ) ∗U = V ∗U +W ∗U ,

(iv) ∀U ∈ Gp,q, ∀c ∈ R : c ∗U = U ∗ c = cU .

(1.5)

All the axioms given so far define an associative algebra. What actually separates the
Geometric Algebra from other algebras is the defining equation.

∀u ∈ Rp,q ⊂ Gp,q u ∗ u = r(u,u) ∈ R. (1.6)

To get some insight to this concept, lets present example on the geometric algebra G2.
Let u1e1, u2e2 ∈ R2 ⊂ G2, then u1u2e1 ∗ e2 ∈ G2. Also

u1u2(e1 ∗ e2) ∗ (u2e2) = u1u
2
2e1 ∗ (e2 ∗ e2) = u1u

2
2e1 ∈ G2.

Now we observe some basic properties. Using the property (1.2) of pseudoscalar
product f for ei ∈ Rp,q elements and equation (1.6) we get:

ei ∗ ei =

{
1, 1 ≤ i ≤ p,

−1, p ≤ i ≤ p+ q.
(1.7)

5



1.1. GEOMETRIC ALGEBRA

For any vectors u,v ∈ Rp,q ⊂ Gp,q the following holds:

(u+ v) ∗ (u+ v) = f(u+ v,u+ v),

u ∗ u+ u ∗ v + v ∗ u+ v ∗ v = f(u,u) + 2f(u,v) + f(v,v),
1
2
(u ∗ v + v ∗ u) = f(u,v).

(1.8)

Since we know that for ei, ej ∈ Rp,q ⊂ Gp,q, f(ei, ej) = 0, i 6= j, then by using (1.8) we
get:

1
2
(ei ∗ ej + ej ∗ ei) = 0 ⇐⇒ ei ∗ ej = −ej ∗ ei. (1.9)

Further in the text, we omit the symbol ∗ and instead of U ∗ V , we write just UV .

1.1.3. Basis of Geometric Algebra
In this subsection we show how to construct an algebraic basis of Gp,q. Firstly, let S[i]
be an i-th element of an ordered set S. A product operator

∏
is understood to be the

geometric product for multiple basis elements.

Definition 1.1.4. A basis blade of Gp,q is the geometric product of a number of different
elements of the canonical basis Rp,q of the vector space Rp,q. Let S ⊆ {1, . . . , p+ q}, then
eS denotes the basis blade:

eS = eS[1] . . . eS[|S|] =

|S|∏
i=1

Rp,q
[S[i]], (1.10)

where the number |S| denotes the size2 of a set S and Rp,q
[S[i]] is the S[i]-th element of

the canonical basis Rp,q. Also e∅ = 1 is the basis blade of Gp,q.

Example 1.1.1. For example if we use geometric algebra G5,3 and set S = {1, 3, 6, 7},
then

eS =
4∏

i=1

R5,3
[S[i]] = R5,3

[1] R5,3
[3] R5,3

[6] R5,3
[7] = e1e3e6e7.

Definition 1.1.5. The grade of a basis blade eS ∈ Gp,q, where S ⊆ {1, . . . , p + q} is
denoted as gr(eS) and is defined as gr(eS) = |S|. The grade of e∅ is gr(1) = 0.

In the vector space Rp,q with canonical basis Rp,q there are 2p+q ways how to uniquely
multiply the basis vectors of Rp,q. In other words, in the Geometric algebra Gp,q there
exist 2p+q linearly independent basis blades.

Recall that the geometric product is associative. So we can write (eiej)ek as eiejek,
i, j, k ∈ {1, . . . , p + q} and so on with more elements. We know that eiej = −ejei if
i 6= j. So if we switch the positions of two basis blades, the only thing changed is the
signature. But this leads to a number of possible bases for one geometric algebra Gp,q.
On the other hand these bases are always isomorphic. Clearly, every basis of the same
geometric algebra Gp,q must have the same number of elements, and there is an option
to switch positions of the basis vectors. Further in this subsection an algorithm how to
order the basis elements is described.

2In other words, the number of elements of the set, i.e. cardinality.
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1.1. GEOMETRIC ALGEBRA

It is good to make an ordered set A for practical reasons, because it can give a
formula how to create the canonical basis for a general geometric algebra Gp,q. Firstly,
the elements are ordered by their grade, then indexes of the base vectors are ordered in
ascending sequence. This approach make the implementation of following concepts easier.
For this purpose we can use totaly ordered power set.

Definition 1.1.6. Let I = {1, . . . , p + q} ⊂ N. Clearly |I| = p + q. Denote by P(I) the
power set of I, i. e. the cardinality of P(I) is 2p+q. The ordered power set of I, denoted
by PO(I), is a totally ordered set with the following properties. The elements of PO(I),
which are subsets of I, are ordered by cardinality in ascending order. The members of
each element of PO(I) are ordered in ascending order. The elements of PO(I) of equal
cardinality are ordered in lexicographical order.

Example 1.1.2. Let I = {1, 2, 3}, |I| = 3, cardinality of the corresponding power set is
23 = 8.

PO(I) =
{
{∅}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
. (1.11)

Definition 1.1.7. The canonical basis of the geometric algebra Gp,q, denoted as Gp,q, is
constructed as follows. Let Rp,q be canonical basis

Rp,q
= (e1, . . . , ep, ep+1, . . . , ep+q),

and let I = {1, . . . , p+ q}. Canonical basis of the geometric algebra Gp,q is given by

Gp,q =
{
eS : S ∈ PO(I)

}
. (1.12)

The order of elements in Gp,q is analogous to PO(I).

Notation of the basis blades eiej can be simplified as eij. Let Ei = Gp,q[i], then every
multivector U ∈ Gp,q can be expressed as a linear combination of the basis blades;

U =
2p+q∑
i=1

uiEi, Ei ∈ Gp,q, ui ∈ R. (1.13)

Definition 1.1.8. Let U ,V ∈ Gp,q, where U =
∑

i uiEi,V =
∑

i viEi , ui, vi ∈ R, then

UV =
∑
i,j

uivjEiEj. (1.14)

Definition 1.1.9. An element with the highest grade is called a pseudoscalar and is
denoted as I.

I = Gp,q[2
p+q] = E2p+q = e1e2 · · · ep+q. (1.15)

1.1.4. Inner and Outer Product
This subsection provides the definition of an inner and outer product, which are two
important operations in geometric algebra. They have geometrical meaning in special
cases, like computing distances, angles, relations to objects or associate points to objects,
similarly to the scalar and cross product of vectors in vector spaces context.

7



1.1. GEOMETRIC ALGEBRA

Definition 1.1.10. Let Ei = Gp,q[i], then the grade projection of the Ei to the grade k
is denoted as 〈Ei〉k and defined as follows:

〈Ei〉k =

{
Ei, gr(Ei) = k,

0, gr(Ei) 6= k.
(1.16)

Let U ,V ∈ Gp,q, then their geometric product can be written, in terms of grade
projection, as

UV =

p+q∑
i=0

〈UV 〉i. (1.17)

This concept of preserving the base blade only if it is a same grade as the grade of the
projection is a simple way how to define each of the following operations.

Definition 1.1.11. Let Ei = Gp,q[i], then the inner product of the two basis blades Ei,
Ej, with k = gr(Ei) l = gr(Ej) is denoted by dot and defined as

Ei ·Ej =

{
〈EiEj〉|k−l| , i, j > 0,

0, i = 0 and/or j = 0.
(1.18)

Definition 1.1.12. Let Ei = Gp,q[i], then the outer product of the two basis blades Ei,
and Ej, with k = gr(Ei) l = gr(Ej) is denoted by ∧ and defined as

Ei ∧Ej = 〈EiEj〉k+l. (1.19)

This concept can be explained as follows. If we multiply two basis blades Ei, Ej by
the inner product, it results in zero if the element with the lower grade does not include
the elements of the other basis blade. On the other hand, the outer product requires both
basis blades to have distinct elements in each of the basis blades. Note that the outer
product of two basis blades Ei a Ej, with grades k = gr(Ei) l = gr(Ej) such that the
sum k + l is greater than the dimension of the vector space Rp,q, is always zero, because
if we just substitute into equation (1.19), we see that the geometric product of these 2
basis blades has at most grade p+ q, so the grade projection is 0.

Example 1.1.3. The following examples show the previous explanation on elements of
G5,3.

(e1e2e3) · e3 = 〈e1e2e3e3〉|3−1| = 〈e1e2〉2 = e1e2,

(e1e2) · e3 = 〈e1e2e3〉|2−1| = 〈e1e2e3〉1 = 0,

(e1e2e3) ∧ (e4e5e6e8) = 〈e1e2e3e4e5e6e8〉3+4 = e1e2e3e4e5e6e8,

(e1e2e3) ∧ (e3e4e5e6e8) = 〈e1e2e3e3e4e5e6e8〉3+5 = 〈e1e2e4e5e6e8〉8 = 0.

Because the inner and outer product of basis blades are either zero or the geometric
product these two, it is easy to extend them on general multivectors U ,V ∈ Gp,q, where
U =

∑
i uiEi and V =

∑
i viEi , ui, vi ∈ R:

U · V =
∑
i,j

uivj(Ei ·Ej), (1.20)

U ∧ V =
∑
i,j

uivj(Ei ∧Ej). (1.21)

8



1.1. GEOMETRIC ALGEBRA

Definition 1.1.13. Let ui ∈ Rp,q, i = 1, . . . , k, k ≤ p+ q be linearly independet vectors.
Then we call outer product of these vectors as k-blade. Such blade is denoted by U 〈k〉.

1.1.5. Inversion
In this Subsection, we briefly introduce inversion with an examples on vectors u ∈ Rp,q ⊂
Gp,q, on basis blades Ei ∈ Gp,q.

Definition 1.1.14. Let U ∈ Gp,q be some general multivector. Then if exists U−1 ∈ Gp,q

such that
UU−1 = 1, (1.22)

then we say that multivector U−1 is an inverse to the multivector U .

Example 1.1.4. Simple example is finding an inverse u−1 ∈ Rp,q ⊂ Gp,q to the vector
u ∈ Rp,q ⊂ Gp,q. Firstly we show why u · u = uu:

u · u =

p+q∑
i,j

uiei · ujej =

p+q∑
i,j

uiuj〈ei ∗ ej〉0 =
p+q∑
i

uiui(ei ∗ ei).

u ∗ u =

p+q∑
i,j

uiei ∗ ujej =

p+q∑
i

uiui(ei ∗ ei) +

p+q∑
i,j i 6=j

uiuj(ei ∗ ej) =

p+q∑
i

uiui(ei ∗ ei).

Term
∑p+q

i,j i 6=j uiuj(ei ∗ ej) is zero because when i 6= j we can find uiuj(ei ∗ ej) for every
ujui(ej ∗ ei). Since ej ∗ ei = −ei ∗ ej, all the second grade elements vanish. We had just
showed that (1.6) holds. Then

u−1 =
u

u · u
, u ∗ u

u · u
=

u ∗ u
u · u

= 1.

Definition 1.1.15. Let Ei ∈ Gp,q. Then a reverse Ẽi of the basis blade Ei is defined as

Ẽi =

|Si|∏
j=1

e[Si[|Si|−j+1]],

where Si = PO(I)[i], I = {1, . . . , p+ q}. Basically we reverse the order of elements in the
set PO(I)[i].

Reverse of general multivector is reverse of each basis blade in the multivector. Let
U ∈ Gp,q, then

U =
2p+q∑
i=1

aiEi, Ũ =
2p+q∑
i=1

aiẼi Ei ∈ Gp,q, ui ∈ R. (1.23)

Example 1.1.5. This Example follows [10], with a bit different approach. To see what is
an inverse to the basis blade Ei ∈ Gp,q, let Ẽi be a reverse to the basis blade. Let r ∈ N
be a number of the negative signature basis elements, then

EiẼi = (−1)r. (1.24)

9



1.1. GEOMETRIC ALGEBRA

Now, what is the relation between the basis blade and its reverse? Kind of answer is
that if you switch the positions of the 2 basis vectors ei, ej

3 included in basis blade, it
results in changing signature. Either gr(Ei) = 2n + 1 or gr(Ei) = 2n, n ∈ N. When n
is even, there is no signature change and if n is odd the signature will change. Function
(−1)

(gr(Ei)−1)gr(Ei))
2 has precisely this property. Using (1.24) and the function from the

previous sentence gives:

E−1
i = (−1)rẼi = (−1)r(−1)

(gr(Ei)−1)gr(Ei)
2 Ei. (1.25)

An inverse I−1 to the pseudoscalar I = Gp,q[2
p+q] is then,

I−1 = (−1)rĨ = (−1)r(−1)
(p+q−1)(p+q)

2 I.

Example 1.1.6. In G5,3 an inverse to the pseudoscalar I = e12345678 is

I−1 = (−1)3(−1)
7·8
2 I = (−1)(−1)28I = −I = −e12345678.

1.1.6. Duality
Along with capability of perform geometric transformation, which will be performed on
G5,3, the advantage of using geometric algebras comes with ability to represent a geomet-
rical object in 2 different ways. But not only that, there exist relation between these to
representations. Lest start with defining what is meant by a dual element.
Definition 1.1.16. Let U ∈ Gp,q, then a dual multivector U ∗ to the multivector U is
defined as

U ∗ = UI−1, (1.26)

where I is pseudoscalar and I−1 is its inversion.
Example 1.1.7. In case of the geometric algebra G5,3, if we follow Example 1.1.6, a dual
U ∗ to the multivector U ∈ G5,3 is U ∗ = −UI. When I−1 = −I, it results in that the
dual of the dual element will not be the original element, but rather −1-multiple of that
((I∗)∗ = (II−1)∗ = 1∗ = −I). For an example take E116 = e1367 ∈ G5,3.

e∗
1367 = e1367(−e1235678) = e2458 = E141,

e∗
2458 = e2458(−e1235678) = −e2458 = −E116.

Note that this computation was performed by a command in the computer applications
source code the presented in the Second Chapter.

To get an idea what is motivation for using multiple representations, we know that in
2D we can set a line by a function f(u1) = a+ bu1, where a, b ∈ R. The representation of
f in the R2 is set of vectors (c, a + bc) ∈ R2, a, b, c ∈ R. Thus we have 2 representations
of the line in space of continuous functions C(R) and in vector space R2. But when we
are talking about representations in geometric algebra, they are in the same algebra and
that’s the big advantage as we will see later. Now, lets present a null spaces.

3It doesn’t matter which ei, ej are switched. The case, where the distance between switched basis
vectors is 1, is trivial. In the case of n ≥ 2 we have to do n switches to get the first element to the
seconds position, and because the seconds element is one step closer to first position, we have to do n− 1
switches to get it to the first position. Together there are 2n− 1 switches and thus it results in changing
the signature.

10
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Definition 1.1.17. Inner-product null space (IPNS) of blade U 〈k〉 ∈ Gp,q is denoted
NI(U 〈k〉) and defined as follows;

NI(U 〈k〉) = {u ∈ Rp,q ⊂ Gp,q : u ·U 〈k〉 = 0}. (1.27)

Definition 1.1.18. Outer-product null space (OPNS) of blade U 〈k〉 ∈ Gp,q is denoted
NO(U 〈k〉) and defined as follows;

NO(U 〈k〉) = {u ∈ Rp,q ⊂ Gp,q : u ∧U 〈k〉 = 0}. (1.28)

Example 1.1.8. Consider geometric algebra G3 and consider 2-blade u ∧ v 6= 0, where
u,v ∈ R3 ⊂ G3, then

NO(u ∧ v) = {w ∈ R3 ⊂ G3 : w ∧ u ∧ v = 0} = {cu+ dv : c, d ∈ R},

which is a plane generated by u and v. OPNS can be seen right away, but finding IPNS
of u ∧ v is a bit more complicated.

u ∧ v = (u1e1 + u2e2 + u3e3) ∧ (v1e1 + v2e2 + v3e3) =

= 〈u1v1e1e1〉2 + 〈u1v2e1e2〉2 + · · ·+ 〈u3v2e3e2〉2 + 〈u3v3e3e3〉2 =
= (u1v2 − u2v1)e12 + (u1v3 − u3v1)e13 + (u2v3 − u3v2)e23.

Now, let w ∈ R3 = w1e1 + w2e2 + w3e3 such that

(w1e1 + w2e2 + w3e3) · ((u1v2 − u2v1)e12 + (u1v3 − u3v1)e13 + (u2v3 − u3v2)e23) = 0.

Inner product will leave only first grade elements to be non-zero,

(w1(u1v2 − u2v1)− w3(u2v3 − u3v2))e2 + (w1(u1v3 − u3v1) + w2(u2v3 − u3v2))e3+

+(−w2(u1v2 − u2v1)− w3(u1v3 − u3v1))e1 = 0.

There are 3 equations with 3 unknowns and solving these equations gives us a non-trivial
solution

w1 = c(u2v3 − u3v2),

w2 = c(−u1v3 + u3v1),

w3 = c(u1v2 − u2v1),

where c ∈ R. Therefore,

NI(u ∧ v) = {w ∈ R3 ⊂ G3 : w · (u ∧ v) = 0} =
= {c((u2v3 − u3v2)e1 + (−u1v3 + u3v1)e2 + (u1v2 − u2v1)e3) : c ∈ R}.

If we follow [10], we find that IPNS and OPNS has a relation. Let u ∈ Rp,q ⊂ Gp,q be
a vector and let U 〈k〉 ∈ Gp,q be a blade with the property u · u 6= 0 and U 〈k〉 ·U 〈k〉 6= 0.
Now, let I = Gp,q[2

p+q] be a pseudoscalar, then

(u ∧U 〈k〉)
∗ = (u ∧U 〈k〉) · I−1 = u ·U ∗

〈k〉,

11
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and therefore
u ∧U 〈k〉 = 0 ⇐⇒ u ·U ∗

〈k〉 = 0,

and
NO(U 〈k〉) = NI(U ∗

〈k〉). (1.29)

In other words, an IPNS of a blade U 〈k〉 is equal to OPNS of the U ∗
〈k〉. It works also in

other direction, OPNS of a blade U 〈k〉 is equal to IPNS of the U ∗
〈k〉. In next the Section,

this property will play an important role of describing the conics.

Definition 1.1.19. A multivector U ∈ Gp,q is called a null multivector, if it has following
property:

UU = 0.

If gr(U) = 1, then we say that U is a null vector.

1.2. Geometric Algebra for Conics
In this Section, we introduce Geometric Algebra for Conics (GAC) together with partic-
ular embedding of two-dimensional Euclidean space. We follow [7] with the definitions,
and we present examples computed and drawn by a software developed for this thesis.
Firstly, we present GAC basis and its elements. Then we continue with the inner and
outer product representation of some conics (for our purposes we don’t have to cover all
of them). We also introduce Euclidean transformations, which can be performed on both
representations. This section is finished by Conic fitting algorithm (introduced by [6]),
which assigns closest conic to a set of points. This algorithm is implemented and can be
tested directly in the software.

1.2.1. Definition of GAC
GAC is geometric algebra G5,3. Dimension of this algebra is 28 = 256, so working with
large multivectors can be very demanding. Subsection 1.1.1 assumes the bilinear form
in certain way and all the geometric algebra properties comes from that bilinear form.
Question is what happens to the properties if we get different vector space basis. Lets
write down standard basis R5,3 of the vector space R5,3 equipped with bilinear form (1.2)
represented by matrix B

R5,3
=

(
e1 e2 e3 e4 e5 e6 e7 e8

)
,

B =

(
15×5 0

0 −13×3

)
,

(1.30)

12
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where 1n×n denotes diagonal n × n identity matrix. Due to conformal embedding of a
point defined bellow we define basis R5,3∗ which corresponding bilinear form on its basis
in a matrix form vectors becomes B

R5,3∗
=

(
n× n− n+ e1 e2 n+ n− n×

)
,

B =



0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0

0 0 0 0 0 −1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 −1 0 0 0 0 0

0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0


.

(1.31)

Let C be transition matrix between these two basis, then

R5,3∗
= CR5,3

,

C =



−1
2

0 0 0 0 0 0 1

0 −1
2

0 0 0 0 1 0

0 0 −1
2

0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1
2

0 0 1 0 0

0 1
2

0 0 0 0 1 0
1
2

0 0 0 0 0 0 1


.

(1.32)

Basis R5,3∗ then can be written in the terms of basis R5,3, where

n× = 1
2
(−e1 + e8), n× = e1 + e8,

n− = 1
2
(−e2 + e7), n− = e2 + e7,

n+ = 1
2
(−e3 + e6), n+ = e3 + e6,

e1 = e4 e2 = e5,

(1.33)
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Similarly we get

R5,3
= C−1R5,3∗

,

C−1 =



−1 0 0 0 0 0 0 1

0 −1 0 0 0 0 1 0

0 0 −1 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1
2

0 0 1
2

0 0

0 1
2

0 0 0 0 1
2

0
1
2

0 0 0 0 0 0 1
2


.

Similarly R5,3 then can be written in the terms of R5,3∗, where

e1 = −n× + 1
2
n×, e8 = n× + 1

2
n×,

e2 = −n− + 1
2
n−, e7 = n− + 1

2
n−,

e3 = −n+ + 1
2
n+, e6 = n+ + 1

2
n+,

e4 = e1, e5 = e2.

(1.34)

This transition comes handy in the second Chapter as it is easier to work with (1.30).
To add some geometric meaning to GAC, we have to describe the embedding of R2 plane
into the space R5,3. As we can see this transformed basis R5,3∗ has 6 null vectors and 2
positive signature vectors.

Vectors e1 and e2 are just coordinates from R2. The null vectors n and n are rep-
resenting origin and infinity respectively. In terms of this basis, a point of the plane
represented by vector u = u1e1 + u2e2 ∈ R2 is embedded by function C : R2 → G5,3

(defined in [7]),

C(u) = n+ + u1e1 + u2e2 +
1

2
(u2

1 + u2
2)n+ +

1

2
(u2

1 − u2
2)n− + u1u2n×. (1.35)

The pseudoscalar I of GAC, is of the form

I = n×n−n+e1e2n+n−n×. (1.36)

The image C of the plane in R5,3 is an analogue of the conformal cone4 and for u ∈ R2:
C(u) · C(u) = 0. Let us calculate the inner product of two embedded points u,v ∈ R2:

C(u) · C(v) = (n+ + u1e1 + u2e2 +
1
2
(u2

1 + u2
2)n+ + 1

2
(u2

1 − u2
2)n− + u1u2n×) ·

· (n+ + v1e1 + v2e2 +
1
2
(v21 + v22)n+ + 1

2
(v21 − v22)n− + v1v2n×)

= u1v1e1 · e1 + u2v2e2 · e2 +
1
2
(v21 + v22)n+ · n+ + 1

2
(u2

1 + u2
2)n+ · n+ =

= u1v1 + u2v2 − 1
2
(v21 + v22)− 1

2
(u2

1 + u2
2) =

= −1
2
(v21 − 2v1u1 + u2

1)− 1
2
(v22 − 2v2u2 + u2

2) = −1
2
((v1 − u1)

2 + (v2 − u2)
2).

4In [9], the null cone in GAC context is 4-dimensional null cone where the embedded points are placed.
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If the result is multiplied by −2, then the square root of the result corresponds to the
Euclidean norm of the vector (u − v), which is the distance of u and v in || · ||2 norm.
This property is common for geometric algebras with conformal embedding,

||u− v||22 = −2(C(u) · C(v)). (1.37)

1.2.2. Inner Product Representation
In 1.27 we computed the IPNS and OPNS representation of an object A given by certain
blade. Now we define IPNS of an unknown A as embedded point C(u) given by general
vector u ∈ R2 and we want to know what is the object A in each of the representations
(AI , AO). Let x ∈ R5,3 be a general vector5 in terms of basis R5,3∗, we follow [7]

v = v×n× + v+n+ + v−n− + v1e1 + v2e2 + v+n+ + v−n− + v×n×.

Now its inner product with the embedded point is:

C(u) · v = v+n+ · n+ + u1v1e1 · e1 + u2v2e2 · e2 +
1
2
(u2

1 + u2
2)v+n+ · n+

+ 1
2
(u2

1 − u2
2)v−n− · n− + u1u2v×n× · n× =

= −v+ + u1v1 + u2v2 − 1
2
(u2

1 + u2
2)v+ − 1

2
(u2

1 − u2
2)v− − u1u2v× =

= −v+ + v1u1 + v2u2 − 1
2
(v+ + v−)u

2
1 − 1

2
(v+ − v−)u

2
2 − u1u2v×.

(1.38)

It is a general polynomial of degree two, thus this inner product shows that IPNS of
embedded point is the most general equation for conics;

Au2
1 + 2Bu1u2 + Cu2

2 + 2Du1 + 2Eu2 + F = 0. (1.39)

We see that the term v−n− + v×n× is orthogonal to the all embedded points. So the
inner representation of a conic can be defined as a vector

QI = v×n× + v+n+ + v−n− + v1e1 + v2e2 + v+n+. (1.40)

Conic section can also be read off its matrix representation with coefficients from (1.39)
and also from last term in (1.38),

Q =


A B D

B C E

D E F

 =


−1

2
(v+ + v−) −1

2
v×

1
2
v1

−1
2
v× −1

2
(v+ − v−)

1
2
v2

1
2
v1

1
2
v2 −v+

 . (1.41)

As we can see from (1.38), the matrix can be computed also using the inner product and
QI ;

Q =


QI · 12(n+ + n−) QI · 12n× QI · 12e1

QI · 12n× QI · 12(n+ − n−) QI · 12e2

QI · 12e1 QI · 12e2 QI · n+

 . (1.42)

5Remember that IPNS is set of vectors from Rp,q ⊂ Gp,q according to term 1.27.
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Example 1.2.1. There are three types of non-degenerate conics. First are ellipses, the
simplest ellipse is axes-aligned and centered in the origin (i.e. A = b2, C = a2, F = −a2b2).
In this case the equation (1.39) becomes:

b2u2
1 + a2u2

2 − a2b2 = 0. (1.43)

Now, according to the last term in (1.38),

1
2
(v+ + v−)u

2
1 +

1
2
(v+ − v−)u

2
2 + v+ = 0.

From equation (1.43) we see that, v+ = −a2b2 and v+ + v− = 2b2, resp. v+ − v− = 2a2.
Solving this equations give the GAC vector for above described ellipse

EI = (a2 + b2)n+ + (−a2 + b2)n− − a2b2n+. (1.44)

The general equation’s coefficients can be obtained from known semi-major axis a, semi-
minor axis b, center coordinates (c1, c2) ∈ R2, and rotation angle θ using the formulae:

A = −1
2
(v+ + v−) = a2 sin2 θ + b2 cos2 θ,

2B = −v× = 2(b2 − a2) sin θ cos θ,
C = −1

2
(v+ − v−) = a2 cos2 θ + b2 sin2 θ,

2D = v1 = −2Ac1 − 2Bc2,

2E = v2 = −2Bc1 − 2Cc2,

F = −v+ = Ac21 + 2Bc1c2 + Cc22 − a2b2.

We can see that v×, x1, x2,−x+ right away. But some of these depends on A,C. Now let
us find the values of v+, v−:

v+ = −(A+ C) = −a2(sin2 θ + cos2 θ)− b2(sin2 θ + cos2 θ) = −(a2 + b2),

v− = −(A− C) = a2(− sin2 θ + cos2 θ)− b2(cos2 θ − sin2 θ) =

= a2 cos 2θ − b2 cos 2θ = (a2 − b2) cos 2θ,
v× = −2(b2 − a2) sin θ cos θ = (a2 − b2) sin 2θ,

v1 = −2Ac1 −Bc2 = (v+ + v−)c1 − v×c2 =

= (−(a2 + b2)− (a2 − b2) cos 2θ)c1 + ((a2 − b2) sin 2θ)c2,

v2 = −Bc1 − 2Cc2 = −v×c1 + (v+ − v−)c2 =

= ((a2 − b2) sin 2θ)c1 + (−(a2 + b2) + (a2 − b2) cos 2θ)c2,
v+ = 1

2
(−2Ac21 − 2Bc1c2 − 2Cc22 + 2a2b2) =

= 1
2
((v+ + v−)c

2
1 − 2v×c1c2 + (v+ − v−)c

2
2 + 2a2b2) =

= 1
2
((−(a2 + b2)− (a2 − b2) cos 2θ)c21 + (a2 − b2) sin 2θc1c2+

+(−(a2 + b2) + (a2 − b2) cos 2θ)c22 + 2a2b2).
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Now, to simplify some of these terms, let the whole equation be multiplied by − 1
a2+b2

;

v+ = γ,

v− = −α cos 2θ,
v× = −α sin 2θ,

v1 = (γ − α cos 2θ)c1 − (α sin 2θ)c2,

v2 = −α sin 2θc1 + (γ + α cos 2θ)c2,
v+ = 1

2
((γ − α cos 2θ)c21 − 2α sin 2θc1c2 + (γ + α cos 2θ)c22 − β),

where α = a2 − b2, β = 2a2b2, γ = a2 + b2. The general vector for the ellipse in GAC6

becomes

EI = −(α sin 2θ)n× + γn+ − (α cos 2θ)n−+

+((γ − α cos 2θ)c1 − (α sin 2θ)c2)e1 + (−α sin 2θc1 + (γ + α cos 2θ)c2)e2+

+1
2
((γ − α cos 2θ)c21 − 2α sin 2θc1c2 + (γ + α cos 2θ)c22 − β)n+ ,

(1.45)

Figure 1.1: Ellipse given from IPNS representation

6We got the same result as [7].
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In Figure 1.1 we can see an ellipse given by (1.45). Number L denotes the size of one
square. The ellipse’s parameters are: a = 17, b = 53, c1 = 8, c2 = 13, θ = 68°. Resulting
coefficients are

Q =


−0.16174 −0.22029 4.15767

−0.22029 −0.61797 9.79595

4.15767 9.79595 43.70689

 .

Note that, for esthetic reasons, the result is normalized: Q = 1
|A|+|B|+|C|Q

′.

Example 1.2.2. The next example is a special case of the ellipse (1.45), when a = b = r
and θ = 0◦, we get equation for a circle with radius r and center in (c1, c2) ∈ R2;

CI = n+ + c1e1 + c2e2 +
1
2
(c21 + c22 − r2)n+ . (1.46)

Example 1.2.3. The next example is hyperbola, which can be obtained in similar way
like the ellipse in Example 1.2.1. In GAC, an axes-aligned hyperbola centered in the
origin with semi-major axis a, semi-minor axis b is obtained as;

HI = (a2 + b2)n+ + (−a2 + b2)n− + a2b2n+. (1.47)

Hyperbola with semi-major axis a, semi-minor axis b, center coordinates (c1, c2) ∈ R2,
and rotation angle θ is defined by the same equation (1.45);

HI = −(α sin 2θ)n× + γn+ − (α cos 2θ)n−+

+((γ − α cos 2θ)c1 − (α sin 2θ)c2)e1 + (−α sin 2θc1 + (γ + α cos 2θ)c2)e2+

+1
2
((γ − α cos 2θ)c21 − 2α sin 2θc1c2 + (γ + α cos 2θ)c22 − β)n+ ,

(1.48)
but α = a2 + b2, β = −2a2b2, γ = a2 − b2. Proposed and proved in [7].

In Figure 1.2 we can see a hyperbola given by (1.48). The hyperbola’s parameters are:
a = 54, b = 22, c1 = −34, c2 = −23, θ = −12°. Resulting coefficients are

Q =


0.08875 −0.18208 −1.17037
−0.18208 −0.72917 −22.96165
−1.17037 −22.96165 −939.56047

 .

1.2.3. Outer Product Representation
Recall that due to duality shown in (1.29), we can compute outer product representation
of an object A by finding dual to AI . But this dual A∗

I is always a multivector of the form
AO∧n−∧n×. It follows from the equation (1.40) of a general conic section that the basis
vectors n−,n× are orthogonal to the general conic QI . According to [7], we will call the
term AO as the outer representation of an entity A if and only if

A = {u ∈ R2 : C(u) ∧ AO ∧ n− ∧ n× = 0}.
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Figure 1.2: Hyperbola given from IP representation

To preserve the duality between AI and AO, we define duality between them as

AO = (AI ∧ n− ∧ n×)
∗,

AI = (AO ∧ n− ∧ n×)
∗.

(1.49)

The outer representation of structures, in geometric algebra CGA in [9], were minimal
number of points that can define the structure. For example sphere in CGA is the outer
product of points lying on it. In GAC, the structures are obtained similarly.
Example 1.2.4. The outer product representation of a general conic Q in GAC is given
by five point lying on it. Let u1, . . . ,u5 ∈ R2, then

QO = C(u1) ∧ C(u2) ∧ C(u3) ∧ C(u4) ∧ C(u5). (1.50)

In Figure 1.3 we can see an ellipse given by (1.50). The ellipse is spanned by points
(−4.9,−6.2), (−3.4,−4.2), (6,−10), (5.6, 1), (11.9,−2.3). Results coefficients are

Q =


−0.29966 0.20190 2.04867

0.20190 −0.49844 −3.43575
2.04867 −3.43575 −8.43918

 .

Changing the point (−4.9,−6.2) → (−8,−6.2) results in a hyperbola showed in Figure
1.4 with coefficients

Q =


−0.27045 0.41805 2.04867

0.41805 −0.31150 2.64056

2.04867 2.64056 −17.75187

 .
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Figure 1.3: Ellipse spanned by 5 points

Figure 1.4: Hyperbola spanned by 5 points

Example 1.2.5. An axes-aligned conic Qal
O in GAC is given by four points lying on it.

Let u1, . . . ,u4 ∈ R2, then

Qal
O = C(u1) ∧ C(u2) ∧ C(u3) ∧ C(u4) ∧ n×. (1.51)
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Figure 1.5: Axes-aligned hyperbola spanned by 4 points

Figure 1.5 shows a hyperbola given by formula (1.51). The hyperbola is given by
points (−4.9,−6.2), (−3.4,−4.2), (6,−3), (5.6, 1). Resulting coefficients are

Q =


−0.51549 0.00000 0.85817

0.00000 0.48451 0.27134

0.85817 0.27134 5.52718

 .

Example 1.2.6. A circle CO in GAC is given by three points lying on it. Let u1,u2,u3 ∈
R2, then

CO = C(u1) ∧ C(u2) ∧ C(u3) ∧ n− ∧ n×. (1.52)

Finally, Figure 1.6 shows a circle given by formula (1.52). The circle is given by points
(0,−6.2), (−3.4,−4.2), (6,−3). Resulting coefficients are

Q =


0.50000 0.00000 −0.46643
0.00000 0.50000 0.36206

−0.46643 0.36206 −14.73042

 .

Note that the conic parameters can be easily extracted. Subsection 2.2.3 shows how to
get conic parameters from its matrix representation.
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Figure 1.6: Circle spanned by 3 points

1.2.4. Euclidean Transformations and Scaling
One of the reasons why to use the geometric algebras is simple perforation of Euclidean
transformations. These are realised an element called versor R ∈ Gp,q and its reverse.
Each of the transformation is performed on ellipse from Figure 1.3. Each of the transfor-
mations is proposed and proved in [7].

Example 1.2.7. The first transformation is rotating by angle α around the origin given
by R = R+(R1 ∧R2), where

R+ = cos(α
2
) + sin(α

2
)e1 ∧ e2,

R1 = cos(α) + sin(α)n× ∧ n−,

R2 = cos(α)− sin(α)n− ∧ n×.

(1.53)

Coefficients for the ellipse from Figure 1.7, rotated by rotor (and its reverse) with
parameter α = −143°, are

Q =


−0.21190 −0.04760 0.51498

−0.04760 −0.74050 4.74571

0.51498 4.74571 −10.07081

 .

Rotor in terms of basis (1.30), R = 0.20238 − 0.15251e12 − 0.60486e45 − 0.15251e78 +
0.45579e1245 + 0.11492e1278 + 0.45579e4578 − 0.34347e124578.
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Figure 1.7: Ellipse rotated by rotor

Example 1.2.8. The next transformation is translation in direction e1 with length a
given by translator T e1 = T+T−T× where

T+ = 1− 1
2
ae1 ∧ n+,

T− = 1− 1
2
ae1 ∧ n− + 1

4
a2n+ ∧ n−,

T× = 1− 1
2
ae2 ∧ n×.

(1.54)

In case of translation in direction e2, we have tranlator T e2 = T+T−T× where

T+ = 1− 1
2
ae2 ∧ n+,

T− = 1 + 1
2
ae2 ∧ n− − 1

4
a2n+ ∧ n−,

T× = 1− 1
2
ae1 ∧ n×.

(1.55)

Coeficients for the ellipse from Figure 1.8, translated by both translators (and its
reverses) with parameter a1 = −3.02, a2 = 5.67, are

Q =


−0.29966 0.20190 −0.00109
0.20190 −0.49844 0.00014

−0.00109 0.00014 17.22443


T e1 = 1 − 1.51e15 − 1.51e24 − 1.51e34 + 1.51e46 + 1.51e47 + 1.51e58 + 2.2801e1245 +
2.2801e1345+2.2801e1456+2.2801e1457−2.2801e2458−2.2801e3458−2.2801e4568−2.2801e4578.
T e2 = 1+2.835e15+2.835e24+2.835e34−2.835e46−2.835e47−2.835e58+8.03722e1245+
8.03722e1345 +8.03722e1456 +8.03722e1457− 8.03722e2458− 8.03722e3458− 8.03722e4568−
8.03722e4578.
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Figure 1.8: Ellipse translated by combination of translators

Example 1.2.9. Scale by α in GAC is given by scalor S = S+S−S×, where

S+ = α+1
2
√
α
+ α−1

2
√
α
n+ ∧ n+,

S− = α+1
2
√
α
+ α−1

2
√
α
n− ∧ n−,

S× = α+1
2
√
α
+ α−1

2
√
α
n× ∧ n×.

(1.56)

Coefficients for the ellipse from Figure 1.9, scaled by scalor with parameter α = 2.3,
are

Q =


−0.29966 0.20190 4.71194

0.20190 −0.49844 −7.90222
4.71194 −7.90222 −44.64327


S = 1.28783 − 0.50733e18 − 0.50733e27 − 0.50733e36 + 0.19986e1278 + 0.19986e1368 +
0.19986e2367 − 0.07873e123678.

1.2.5. Conic Fitting
The goal of this subsection is to find a conic by interpolating a set of points. Interpolation
is performed by conic fitting algorithm introduced in [6]. Basically we solve optimization
problem described below. We have a general conic Q represented by vector QI given in
(1.40), but in matrix form

QI = (v× v− v− v1 v2 v+ 0 0)T . (1.57)

24



1.2. GEOMETRIC ALGEBRA FOR CONICS

Figure 1.9: Ellipse scaled by scalor

The point in the plane represented by vector u = u1e1 + u2e2 ∈ R2 and embedded to
GAC defined in (1.35) will be now written in matrix form,

C(u) = (0 0 1 u1 u2
1
2
(u2

1 + u2
2)

1
2
(u2

1 − u2
2) u1u2)

T . (1.58)

In subsection 1.2.2 we defined conics in way that inner product QI · C(u) is zero when the
point lie on the conic. We have to point out that the value of (QI ·C(u))2 is getting smaller
as the point is closer to the conic. For a set of points U we define objective function (cost
function) given by

Q→
∑
i

(C(ui) ·Q)2, ui ∈ U. (1.59)

Conic closest to all points in U minimizes this function. As the simple solution Q = 0 fits
every U, we are not interested in such geometrically meaningless Q. Thus we consider the
natural geometric constraint

QQ = 1. (1.60)
Note this the geometric product in this case7 is equal to inner product. Problem (1.59)
with constrain (1.60) can be generalized with geometric product using bilinear form (1.30),

C(ui) ·Q = C(ui)BQ,

where matrix multiplication is executed using geometric product. Altogether we have

Q→
∑
i

(C(ui) ·Q)2 =
∑
i

(C(ui)BQ)2 =

=
∑
i

QTBC(ui)C(ui)
TBQ = QTPQ, ui ∈ U.

7This claim was proved in Example 1.1.4, i.e. uu = u · u, when u is 1-vector.
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where
P =

∑
i

BC(ui)C(ui)
TB, ui ∈ U. (1.61)

To formulate the solution we have to decompose the matrix P into block matrix. If we
try to compute P for general C(u), we get

BC(u) = (−u1u2 − 1
2
(u2

1 − u2
2) − 1

2
(u2

1 + u2
2) u1 u2 − 1 0 0)T ,

C(u)TB = (−u1u2 − 1
2
(u2

1 − u2
2) − 1

2
(u2

1 + u2
2) u1 u2 − 1 0 0),

BC(u)C(u)TB =


P 0 P 1 0

P T
1 P c 0

0 0 0

 ,

(1.62)

where

P 0 =

(
u2
1u

2
2

1
2
u1u2(u

2
1 − u2

2)
1
2
u1u2(u

2
1 − u2

2)
1
4
(u2

1 − u2
2)

2

)
,

P 1 =

(
1
2
u1u2(u

2
1 + u2

2) −u2
1u2 −u1u

2
2 u1u2

1
4
(u4

1 − u4
2) −1

2
u1(u

2
1 − u2

2) −1
2
u2(u

2
1 − u2

2)
1
2
(u2

1 − u2
2)

)
,

P c =


1
4
(u2

1 + u2
2)

2 −1
2
u1(u

2
1 + u2

2) −1
2
u2(u

2
1 + u2

2)
1
2
(u2

1 + u2
2)

−1
2
u1(u

2
1 + u2

2) u2
1 u1u2 −u1

−1
2
u2(u

2
1 + u2

2) u1u2 u2
2 −u2

1
2
(u2

1 + u2
2) −u1 −u2 1

 .

Let us write down block of the matrix B denoted as Bc,

Bc =


0 0 0 −1
0 1 0 0

0 0 1 0

−1 0 0 0

 . (1.63)

The solution to the optimization problem (1.59), (1.60) if given by Q = (w v 0), where
v is 4-dimensional eigenvector corresponding to the minimal non-negative eigenvalue of

P con = Bc(P c − P 1P
−1
0 P 1). (1.64)

and w is a 2-dimensional vector of the form

w = −P−1
0 P 1v. (1.65)

Example 1.2.10. For example let C(ui) ∈ U, i ∈ {1, . . . , 15} be set of points defined by

U = {(−80.54474,−116.2646), (−38.52142,−116.2646), (−20.31128,−112.0623),
(21.71204,−99.45526), (56.73151,−79.84436), (86.14789,−51.8288),
(111.3619,−23.81323), (133.7744, 32.2179), (136.5759, 71.43967),
(132.3735, 105.0583), (112.7626, 133.0739), (83.34631, 169.4941),

(56.73151, 190.5058), (23.11279, 203.1129),

(−14.70819, 214.319)}.
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For this set of points we get matrices P and P con

P =



69718451 −21911575 76249979 −362046 −535434 4785 0.000 0.000

−21911575 107569190 −93769285 −101975 743144 −4554 0.000 0.000

76249979 −93769288 177287640 −637409 −1105190 11860 0.000 0.000

−362046 −101975 −637409 7307 4785 −53.37 0.000 0.000

−535434 743144 −1105190 4785 16414 −34.65 0.000 0.000

4785 −4554 11860 −53.37 −34.65 1.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000



P con =


−4512.815 35.059 −19.514 −0.579
−391035.649 4964.133 3236.073 −35.059
−121031.621 3236.073 9019.504 19.514

−45497331.090 391035.649 121031.621 −4512.815


Vector Q = (0.00033,−0.00087, 0.00556,−0.29094, 0.33530,−72.22643). In Figure 1.10
we see the result along with defined points. In Figure 1.11 we added one point to show
how can one distant point change properties of the conic.

Figure 1.10: Ellipse fitted to set U

In next chapter we will introduce computer application with implemented concepts
shown in this chapter.
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Figure 1.11: Hyperbola fitted to set U with one more distant point
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2. Applications
2.1. Computing Engine
We did not discussed reason to do the transition between (1.30) and (1.31). Complications
come with computing for example with a reverse to certain basis blades. Suppose a basis
blade n×n×, then reverse of this basis blade is n×n×. Now, the question what basis
blade is that reverse. We can answer that question by transiting these multivectors using
(1.33),

n×n× = 1
2
(−e1 + e8)(e1 + e8) =

1
2
(−1− e1e8 + e8e1 − 1) = −1− e1e8,

n×n× = 1
2
(e1 + e8)(−e1 + e8) =

1
2
(−1 + e1e8 − e8e1 − 1) = −1 + e1e8.

n×n× = −n×n× − 2.

Without a property eiej = −ejei, ∀i, j ∈ {1, . . . , p+ q} : i 6= j we would have to redefine
a lot of relations in Section 1.1. In this section we introduce an approach to compute
geometric product on general multivectors along with other important functions.

2.1.1. Defining Multivector in C#

Dots in the code can be understood in the same way as in mathematical text. There are
two main approaches to structures in C# . We use classes, because it has no negative
impact on functionality.

The code alone is quite long, thus we describe only the idea behind this approach. For
the detailed and complete code see appendix with the program, where the source code
is separately accessible. The C# code is not supposed to work on its own, it is called by
Unity.

Because it is so much easier to work with positions of the basis vectors in their basis, we
define the general multivector of GAC as 256-dimensional vector of coefficients a ∈ R256.
Each position i ∈ {1, . . . , 256} of this vector represents coefficient for basis blade eS[i],
where S = PO({1, . . . , 8}). Each multivector is initiated as o ∈ R256;

Code 2.1: Multivector class
1 public class MVec
2 {
3 public double[] coef = new double[256]{0,0,...,0};
4 }

Then we can choose from several options, how we define any new multivector (Mvec).

Code 2.2: Creating new multivector
1 public MVec(double[] setcoef)
2 {
3 coef = setcoef;
4 //Create new MVec directly by 256-double
5 }
6 public MVec(int pos, double setcoef)
7 {
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8 coef[pos] = setcoef;
9 //Create new MVec by setting coefficient to position

10 }
11 public MVec(int[] poss, double[] setcoefs)
12 {
13 int value = poss.Length;
14 if (value == coefs.Length)
15 {
16 for (int i = 0; i < value; i++)
17 {
18 coef[poss[i]] = coefs[i];
19 }
20 }
21 //Create new MVec by set of positions and corresponding

coefficients
22 }

2.1.2. Performing Computations on Multivectors
All functions are related to the multivectors. We do not need to introduce the basis
blades in the code, because all their properties can be derived from the position in their
basis. Now we define connection of position to the power set we used in 1.1.6. The
following functions are included in public static class Compute. The next function
is implementation of {PO({1, . . . , 8})[i]}i ,∀i ∈ {1, 2, . . . , 256}.

Code 2.3: Obtaining the set of basis blade signatures from positions in their basis
1 static readonly int[,] setfromposition = new int[256,8]
2 {
3 { 0, 0, 0, 0, 0, 0, 0, 0},
4 { 1, 0, 0, 0, 0, 0, 0, 0},

258 { 1, 2, 3, 4, 5, 6, 7, 8},
259 }

This matrix is filled with all possible signatures ordered by the rule in Definition 1.1.6.
This matrix is used in the next function.

Code 2.4: Basis blade signature from position
1 public static int[] SOP(int E)
2 {
3 int[] cache = new int[8];
4 for (int i = 0; i < 8; i++)
5 {
6 cache[i] = setfromposition[E - 1, i];
7 }
8 return cache;
9 }

10 //returns signature from position in the basis
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Code 2.5: Position in basis from the basis blade signature
1 public static int POS(int[] Signature)
2 {
3 int translation = Signature[0]*(int)Mathf.Pow(10,7) + Signature

[1]*(int)Mathf.Pow(10, 6) + Signature[2]*(int)Mathf.Pow(10, 5)
+ Signature[3]*(int)Mathf.Pow(10, 4) + Signature[4]*(int)Mathf.
Pow(10, 3) + Signature[5]*(int)Mathf.Pow(10, 2) + Signature
[6]*(int)Mathf.Pow(10, 1) + Signature[7];

4 int cache;
5 switch (translation)
6 {
7 case 0:
8 cache = 1;
9 break;

10 case 10000000:
11 cache = 2;
12 break;

772 case 12345678:
773 cache = 256;
774 break;
775 default:
776 cache = 1;
777 break;
778 }
779 return cache;
780 }
781 //computes temporary variable given by signature set and returns

position

The reason why we need this connection to exist, is to be able to compute the grade
only from the position in the basis. As in Definition 1.1.10, we compute a number of
non-zero numbers in the basis blade signature set PO({1, . . . , 8})[i], i ∈ {1, . . . , 256}1.

Code 2.6: Grade from position of the basis blade in basis
1 public static int GetGrade(int position)
2 {
3 int[] cache = SOP(position);
4 int counter = 0;
5 for (int i = 0; i<8; i++)
6 {
7 if (cache[i] != 0)
8 {
9 counter++;

10 }
11 }
12 return counter;
13 }

1Grade of PO({1, . . . , 8})[i] is just cardinality of that set, but in C# the cardinality is always 8 as you
can see in Code 2.3.
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14 //returns grade of position

As we mentioned that part of source code is written in MATLAB. The reason behind
this is that we want to precompute all combinations of geometric product of two basis
blades. A matrix G ∈ {1,−1, 2,−2 . . . , 256,−256}256×256, where

Gi,j = {l ∈ Z : l = sgn(Ek)k}, whereEk = EiEj. (2.1)

Thus, the geometric product can be computed using this matrix as follows, EiEj =
sgn(Gi,j)E|Gi,j |. This approach reduces computation time, because in practice there are
commonly hundreds or even thousands of geometric products computed in one step. We
now explain algorithm for computation of geometric product. The code is written in
MATLAB and is created by author.

Code 2.7: function code written in MATLAB, which returns basis blade signature together
with its sign
1 function [result,signature] = geometricproduct(sgn1, sgn2, grade1,

grade2)
2
3 changesignature = false;
4 n1 = grade1;
5 n2 = grade2;
6 k = 0;
7 r = 0;
8 for i = 1:8
9 for j = 1:8

10 if (sgn1(i) == sgn2(j)) && sgn1(i) ~= 0
11 k = k + 1;
12 if sgn1(i) >= 6
13 r = r + 1;
14 end
15 end
16 end
17 end
18 % computes number of common basis vectors k and number of -

signature vectors

First part of the code computes number of common basis vectors in both basis blades and
if this basis vector ei has negative signature, i. e. i ≥ 6.
19 if k > 0
20 for l = 1 : k
21 for i = 1:n1 + 1 - l
22 for j = l:n2
23 if sgn1(i) > 0 && sgn2(j) > 0
24 if sgn1(i) == sgn2(j)
25 if i ~= n1 + 1 - l
26 cache1 = sgn1(n1 + 1 - l);
27 sgn1(n1 + 1 - l) = sgn1(i);
28 sgn1(i) = cache1;
29 changesignature = ~ changesignature;
30 end
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31 if j ~= l
32 cache2 = sgn2(l);
33 sgn2(l) = sgn2(j);
34 sgn2(j) = cache2;
35 changesignature = ~ changesignature;
36 end
37 end
38 end
39 end
40 end
41 end
42 end

Second part of the code is ordering both basis blades, so they can cancel common basis
vectors. Note that each change of position results in changing the sign.
44 if n1 > k && n2 > k
45 for i = 1:n2 - k
46 sgn1(n1 - k + i) = sgn2(k + i);
47 end
48 elseif n1 == k
49 for i = 1:n2 - k
50 sgn1(i) = sgn2(k + i);
51 end
52 end
53
54 if n1 + n2 - 2*k < 8
55 for i = n1 + n2 - 2*k + 1:8
56 sgn1(i) = 0;
57 end
58 end
59
60 index = 0;
61
62 for i = 1:n1 + n2 - 2 * k
63 min = 8;
64 for j = i:n1 + n2 - 2 * k
65 if sgn1(j) <= min
66 min = sgn1(j);
67 index = j;
68 end
69 end
70 if index ~= i
71 changesignature = ~changesignature;
72 l = sgn1(i);
73 sgn1(i) = sgn1(index);
74 sgn1(index) = l;
75 end
76 end
77 if changesignature == false
78 signature = 1;
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79 else
80 signature = -1;
81 end
82 signature = signature * (-1)^r;
83 result = sgn1;
84 end

The last part of the function performs the cancellation of common basis vectors and
rewrites the signature of the first basis blade as the result. Note that the cancellation
does not change the signature of the result, but rather this change is performed on line
82. Now, we write a script which generates C# source code.

Code 2.8: Using this code we implement matrix G, which components are defined by
(2.1), to C# source code
1 for i = 1:256
2 for j =1:256
3 [output2(i,j,:),outsgn(i,j)] = geometricproduct(output(i,:),

output(j,:),outputdim(i),outputdim(j));
4 for k = 1:256
5 issame = true;
6 for l = 1:8
7 if output(k,l) ~= output2(i,j,l)
8 issame = false;
9 break;

10 end
11 end
12 if issame == true
13 output3(i,j) = outsgn(i,j) * k;
14 end
15 end
16 end
17 end
18 fprintf('static readonly int[,] Values = new int[256, 256]{');
19 for i = 1:256
20 fprintf('{');
21 for j =1:255
22 fprintf(' %.0f,',output3(i,j));
23 end
24 fprintf(' %.0f',output3(i,256));
25 fprintf('},\n');
26 end
27 fprintf('};');

Note that output(i,:) is signature of the basis blade Ei, and outputdim(i) grade of
Ei.

Code 2.9: Part of the output given by Code 2.8
1 static readonly int[,] Values = new int[256, 256] {{ 1, 2, 3,

...},
2 { 2, 1, 10, 11, 12, 13, 14, 15, 16, 3, 4, 5, 6, 7, 8, 9, 38,

...},
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256 {..., 15, -14, -13, 12, -11, 10, 9, -8, 7, 6, -5, 4, -3, 2, -1},
257 };

This concept of computing geometric product can be extended to general geometric
algebra Gp,q and also can be implemented to C# . Now, lets implement grade projection
of basis blade (1.1.10) to the some grade k ∈ {0, . . . , 8}.

Code 2.10: Function that returns true if basis blade with the certain position has targeted
grade
1 static bool GradeP(int tgrade, int position)
2 {
3 int a = Compute.GetGrade(Mathf.Abs(position));
4 if(tgrade == a)
5 {
6 return true;
7 }
8 else
9 {

10 return false;
11 }
12 }

2.1.3. Geometric, Outer and Inner Product
Lets finish this section with functions that perform geometric, outer and inner products
of 2 multivectors defined in Code 2.1. Recall that the geometric, outer and inner product
of multivectors U ,V ∈ G5,3 is computed by

UV =
∑
i,j

uivj(EiEj), (1.14)

U ∧ V =
∑
i,j

uivj(Ei ∧Ej), (1.21)

U · V =
∑
i,j

uivj(Ei ·Ej). (1.20)

Code 2.11: Function in C# computing geometric product of 2 multivectors
1 public static MVec GPMvec(MVec vec1, MVec vec2)
2 {
3 MVec result = new MVec();
4 List<int> vec1nonzero = new List<int>();
5 List<int> vec2nonzero = new List<int>();
6 int cache1;
7 double cache2;
8 for (int i = 0; i<256; i++)
9 {

10 if (vec1.coef[i] != 0)
11 {
12 vec1nonzero.Add(i);
13 }
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14 }
15 for (int i = 0; i < 256; i++)
16 {
17 if (vec2.coef[i] != 0)
18 {
19 vec2nonzero.Add(i);
20 }
21 }
22 int[] vec1nonzer = vec1nonzero.ToArray();
23 int[] vec2nonzer = vec2nonzero.ToArray();
24 int n = vec1nonzer.Length;
25 int m = vec2nonzer.Length;
26 for (int i = 0; i < n; i++)
27 {
28 for (int j = 0; j < m; j++)
29 {
30 cache1 = Compute.Values[vec1nonzer[i], vec2nonzer[j]];
31 cache2 = Mathf.Sign(cache1) * vec1.coef[vec1nonzer[i]] *

vec2.coef[vec2nonzer[j]];
32 result.coef[Mathf.Abs(cache1) - 1] += cache2;
33 }
34 }
35
36 return result;
37 }

In the case of outer and inner product, the lines 26-34 are changer as follows:

Code 2.12: Adjustments in Code 2.11 in case of computing outer product of 2 multivectors
32 int grade1;
33 int grade2;
34 for (int i = 0; i < n; i++)
35 {
36 for (int j = 0; j < m; j++)
37 {
38 grade1 = Compute.GetGrade(vec1nonzer[i] + 1);
39 grade2 = Compute.GetGrade(vec2nonzer[j] + 1);
40 cache1 = Compute.Values[vec1nonzer[i], vec2nonzer[j]];
41 if(GradeP(Mathf.Abs(grade1 + grade2), Mathf.Abs(cache1)))
42 {
43 cache2 = Mathf.Sign(cache1) * vec1.coef[vec1nonzer[i]] *

vec2.coef[vec2nonzer[j]];
44 result.coef[Mathf.Abs(cache1) - 1] += cache2;
45 }
46 }
47 }

Code 2.13: Adjustments in Code 2.11 in case of computing inner product of 2 multivectors
32 int grade1;
33 int grade2;
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34 for (int i = 0; i < n; i++)
35 {
36 for (int j = 0; j < m; j++)
37 {
38 grade1 = Compute.GetGrade(vec1nonzer[i] + 1);
39 grade2 = Compute.GetGrade(vec2nonzer[j] + 1);
40 cache1 = Compute.Values[vec1nonzer[i], vec2nonzer[j]];
41 if (GradeP(Mathf.Abs(grade1 - grade2), Mathf.Abs(cache1)))
42 {
43 cache2 = Mathf.Sign(cache1) * vec1.coef[vec1nonzer[i]] *

vec2.coef[vec2nonzer[j]];
44 result.coef[Mathf.Abs(cache1) - 1] += cache2;
45 }
46 }
47 }

2.2. Displaying Conics
Before we show specific functions defining conics and transformations, we show transition
for vectors. Recall that using (1.34) we can convert multivector in the terms of basis
R5,3 to the multivector in terms of basis R5,3∗. We specify this transition for vector
u ∈ R5,3 ⊂ G5,3 as function φ : R5,3 ⊂ G5,3 → R5,3 ⊂ G5,3

u =
(
u1 u2 u3 u4 u5 u6 u7 u8

)
,

φ(u) =

=
(
−u1 + u8 −u2 + u7 −u3 + u6 u4 u5

1
2
(u3 + u6)

1
2
(u2 + u7)

1
2
(u1 + u8)

)
.

(2.2)
Its inverse can be done using (1.33). Transition of vector v ∈ R5,3 ⊂ G5,3 in terms of basis
R5,3∗ to the vector in terms of basis R5,3 is defined by φ−1 : R5,3 ⊂ G5,3 → R5,3 ⊂ G5,3,

v =
(
v× v− v+ v1 v2 v+ v− v×

)
,

φ−1(v) =

=
(
−1

2
v× + v× −1

2
v− + v− −1

2
v+ + v+ v1 v2

1
2
v+ + v+

1
2
v− + v−

1
2
v× + v×

)
.

(2.3)
Now we show a C# function that performs these functions φ−1 and φ.

Code 2.14: Implementation of function φ−1

1 public static MVec C1VtoR53(MVec mvec)
2 {
3 MVec result = new MVec();
4 result.coef[1] = -mvec.coef[1] / 2f + mvec.coef[8];
5 result.coef[2] = -mvec.coef[2] / 2f + mvec.coef[7];
6 result.coef[3] = -mvec.coef[3] / 2f + mvec.coef[6];
7 result.coef[4] = mvec.coef[4];
8 result.coef[5] = mvec.coef[5];
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9 result.coef[6] = mvec.coef[3] / 2f + mvec.coef[6];
10 result.coef[7] = mvec.coef[2] / 2f + mvec.coef[7];
11 result.coef[8] = mvec.coef[1] / 2f + mvec.coef[8];
12 return result;
13 }

Code 2.15: Implementation of function φ

1 public static MVec C1VtoR53star(MVec mvec)
2 {
3 MVec result = new MVec();
4 result.coef[1] = -mvec.coef[1] + mvec.coef[8];
5 result.coef[2] = -mvec.coef[2] + mvec.coef[7];
6 result.coef[3] = -mvec.coef[3] + mvec.coef[6];
7 result.coef[4] = mvec.coef[4];
8 result.coef[5] = mvec.coef[5];
9 result.coef[6] = mvec.coef[3] / 2f + mvec.coef[6] / 2f;

10 result.coef[7] = mvec.coef[2] / 2f + mvec.coef[7] / 2f;
11 result.coef[8] = mvec.coef[1] / 2f + mvec.coef[8] / 2f;
12 return result;
13 }

2.2.1. Conics in C#

In this subsection we implement IPNS and OPNS representations of conics to C# code.
First, lets implement embedding of the point defined by (1.35),

Code 2.16: Implementation of embbeding point from 2D
1 public static MVec E2DtoG53(double u1, double u2)
2 {
3 MVec point = new MVec();
4 point.coef[3] = 1;
5 point.coef[4] = u1;
6 point.coef[5] = u2;
7 point.coef[6] = (u1 * u1 + u2 * u2) / 2;
8 point.coef[7] = (u1 * u1 - u2 * u2) / 2;
9 point.coef[8] = (u1 * u2);

10 return point;
11 }

From equations (1.45) and (1.48) we set IPNS of an ellipse and a hyperbola in terms of
basis R5,3∗:

Code 2.17: Implementation ellipse (type = 0) and hyperbola (type = 1)
1 public static MVec IPRConic(double a, double b, double c1, double

C2, double angle, int type)
2 {
3 angle = angle * Mathf.Deg2Rad;
4 double gamma;
5 double alpha;
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6 double beta;
7 float cos = Mathf.Cos(2 * (float)angle);
8 float sin = Mathf.Sin(2 * (float)angle);
9 MVec conic = new MVec();

10 if (type == 0)
11 {
12 gamma = (a * a + b * b);
13 alpha = (a * a - b * b);
14 beta = (2 * a * a * b * b);
15 }
16 else
17 {
18 gamma = (a * a - b * b);
19 alpha = (a * a + b * b) ;
20 beta = -(2 * a * a * b * b) ;
21 }
22 conic.coef[1] = -alpha * sin;
23 conic.coef[2] = -alpha * cos;
24 conic.coef[3] = 1 * gamma;
25 conic.coef[4] = (c1 * gamma - c1 * alpha * cos - C2 * alpha *

sin);
26 conic.coef[5] = (C2 * gamma + C2 * alpha * cos - c1 * alpha *

sin);
27 conic.coef[6] = ((c1 * c1 * gamma + C2 * C2 * gamma - beta - (c1

* c1 - C2 * C2) * alpha * cos - 2 * c1 * C2 * alpha * sin) /
2);

28 return conic;
29 }

In the case of OPNS representation we implement the conic spanned by 5 points u1, u2,
u3, u4, u5 ∈ R2 as follows2

QO = φ−1(C(u1)) ∧ φ−1(C(u2)) ∧ φ−1(C(u3)) ∧ φ−1(C(u4)) ∧ φ−1(C(u5)).

Code 2.18: Implementation of conic spanned by 5 points
1 public static MVec OPR5Points(Vector2 u1, Vector2 u2, Vector2 u3,

Vector2 u4, Vector2 u5)
2 {
3 MVec result = OPMVec(C1VtoR53(E2DtoG53(u1.x,u1.y)), C1VtoR53(

E2DtoG53(u2.x, u2.y)));
4 result = OPMVec(result, C1VtoR53(E2DtoG53(u3.x, u3.y)));
5 result = OPMVec(result, C1VtoR53(E2DtoG53(u4.x, u4.y)));
6 result = OPMVec(result, C1VtoR53(E2DtoG53(u5.x, u5.y)));
7 return result;
8 }

In the case of axes-aligned conic given by 4 points and one basis vector n×,

Qal
O = φ−1(C(u1)) ∧ φ−1(C(u2)) ∧ φ−1(C(u3)) ∧ φ−1(C(u4)) ∧ φ−1(n×).

2The geometric( inner, outer) product accepts only 2 multivectors at the time, but due to associativity
of the geometric product, the order does not matter.
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Code 2.19: Implementation of axes-aligned conic spanned by 4 points
1 public static MVec OPRAL4Points(Vector2 u1, Vector2 u2, Vector2 u3

, Vector2 u4)
2 {
3 MVec result = OPMVec(C1VtoR53(E2DtoG53(u1.x, u1.y)), C1VtoR53(

E2DtoG53(u2.x, u2.y)));
4 result = OPMVec(result, C1VtoR53(E2DtoG53(u3.x, u3.y)));
5 result = OPMVec(result, C1VtoR53(E2DtoG53(u4.x, u4.y)));
6 result = OPMVec(result, C1VtoR53(new MVec(8,1)));
7 return result;
8 }

In the case of circle spanned by 3 points and basis vector of GAC representing infinity
n×,n−,

CO = φ−1(C(u1)) ∧ φ−1(C(u2)) ∧ φ−1(C(u3)) ∧ φ−1(n−) ∧ φ−1(n×). (2.4)

Code 2.20: Implementation of circle spanned by 3 points
1 public static MVec OPRC3Points(Vector2 u1, Vector2 u2, Vector2 u3)
2 {
3 MVec result = OPMVec(C1VtoR53(E2DtoG53(u1.x, u1.y)), C1VtoR53(

E2DtoG53(u2.x, u2.y)));
4 result = OPMVec(result, C1VtoR53(E2DtoG53(u3.x, u3.y)));
5 result = OPMVec(result, C1VtoR53(new MVec(7, 1)));
6 result = OPMVec(result, C1VtoR53(new MVec(8, 1)));
7 return result;
8 }

As we will perform conic transformations on IPNS representation, we implement dual
operator as follows. From (1.49) and Example 1.1.6,

QI = (QO ∧ φ−1(n−) ∧ φ−1(n×))(−I). (2.5)

Code 2.21: Implementation of dual operator for OPNS representation
1 public static MVec OPRDual(MVec OPR)
2 {
3 MVec PseudoS = new MVec();
4 PseudoS.coef[255] = -1;
5 MVec resutl = OPMVec(OPR, C1VtoR53(new MVec(2, 1)));
6 resutl = OPMVec(resutl, C1VtoR53(new MVec(1, 1)));
7 resutl = GPMvec(resutl, PseudoS);
8 return resutl;
9 }
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2.2.2. Transformations in C#

This subsection finishes implementations of G5,3 functionalities to C# source code. Clock-
wise rotation by angle α done in G5,3 is given by rotor R and its reverse R̃.

R = (cos(α
2
) + sin(α

2
)e4 ∧ e5)

((
cos(α) + sin(α)(φ−1(n×)∧

∧φ−1(n−))
)
∧
(

cos(α)− sin(α)(φ−1(n−) ∧ φ−1(n×))
))

.
(2.6)

Code 2.22: Implementation of rotor
1 public static MVec Rotor(double alpha)
2 {
3 double angle = alpha* Mathf.Deg2Rad;
4 MVec Rplus = new MVec();
5 Rplus.coef[0] += Mathf.Cos((float)angle / 2f);
6 Rplus.coef[27] += Mathf.Sin((float)angle / 2f);
7 MVec R1 = MByConst(Mathf.Sin((float)angle), OPMVec(C1VtoR53(new

MVec(1, 1)), C1VtoR53(new MVec(7, 1))));
8 R1.coef[0] += Mathf.Cos((float)angle);
9 MVec R2 = MByConst(-Mathf.Sin((float)angle), OPMVec(C1VtoR53(new

MVec(2, 1)), C1VtoR53(new MVec(8, 1))));
10 R2.coef[0] += Mathf.Cos((float)angle);
11 MVec result = OPMVec(R1, R2);
12 result = GPMvec(Rplus, result);
13 ahoj(result);
14 return result;
15 }

Translation by a1 in direction e1 and a2 in direction e2 is given by translator T = T e1T e2

and its reverse T̃ , where

T e1 =
(
(1− 1

2
a1e4 ∧ (e3 + e6))(1− 1

2
a1e4 ∧ (e2 + e7) +

1
4
a21(e3 + e6) ∧ (e2 + e7))

)
(1− 1

2
a1e5 ∧ (e3 + e6)).

T e2 =
(
(1− 1

2
a2e5 ∧ (e3 + e6))(1− 1

2
a2e5 ∧ (e2 + e7) +

1
4
a22(e3 + e6) ∧ (e2 + e7))

)
(1− 1

2
a2e4 ∧ (e3 + e6)).

(2.7)
The following code construct a translator in the direction e1, translator in the direction
e2 is implemented analogously.

Code 2.23: Implementation of translator in direction e1

1 public static MVec Translatore1(double a1)
2 {
3 MVec cache;
4 MVec Tplus = MByConst(-a1 / 2f, OPMVec(C1VtoR53(new MVec(4, 1)),

C1VtoR53(new MVec(6, 1))));
5 Tplus.coef[0] += 1;
6 MVec Tminus = MByConst(-a1 / 2f, OPMVec(C1VtoR53(new MVec(4, 1))

, C1VtoR53(new MVec(7, 1))));
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7 cache = MByConst(a1 * a1 / 4f, OPMVec(C1VtoR53(new MVec(6, 1)),
C1VtoR53(new MVec(7, 1))));

8 Tminus = Plus(Tminus, cache);
9 Tminus.coef[0] += 1;

10 MVec Tx = MByConst(-a1 / 2f, OPMVec(C1VtoR53(new MVec(5, 1)),
C1VtoR53(new MVec(8, 1))));

11 Tx.coef[0] += 1;
12 MVec result = GPMvec(Tplus, Tminus);
13 result = GPMvec(result, Tx);
14 return result;
15 }

Scale by α is given by scalor S and its reverse S̃.

S =
(
(α+1
2
√
α
+ α−1

2
√
α
(1
2
(−e3 + e6) ∧ (e3 + e6))(

α+1
2
√
α
+ α−1

2
√
α
(1
2
(−e2 + e7) ∧ (e2 + e7)))

)
(α+1
2
√
α
+ α−1

2
√
α
(1
2
(−e1 + e8) ∧ (e1 + e8))).

(2.8)

Code 2.24: Implementation of scalor
1 public static MVec Scalor(double a)
2 {
3 MVec Splus = MByConst(((float)a - 1)/(2*Mathf.Sqrt((float)a)),

OPMVec(C1VtoR53(new MVec(3, 1)), C1VtoR53(new MVec(6, 1))));
4 Splus.coef[0] += (a + 1) / (2 * Mathf.Sqrt((float)a));
5 MVec Smin = MByConst((a - 1) / (2 * Mathf.Sqrt((float)a)),

OPMVec(C1VtoR53(new MVec(2, 1)), C1VtoR53(new MVec(7, 1))));
6 Smin.coef[0] += (a + 1) / (2 * Mathf.Sqrt((float)a));
7 MVec Sx = MByConst((a - 1) / (2 * Mathf.Sqrt((float)a)), OPMVec(

C1VtoR53(new MVec(1, 1)), C1VtoR53(new MVec(8, 1))));
8 Sx.coef[0] += (a + 1) / (2 * Mathf.Sqrt((float)a));
9 MVec result = GPMvec(Splus, Smin);

10 result = GPMvec(result, Sx);
11 ahoj(result);
12 return result;

2.2.3. Conic Properties
We will finish this section with getting conic properties from its general representation.
As it is not the goal of this thesis, we will not explain theory behind the equations. From
conic properties and parametric equations for an ellipse and hyperbola we can obtain set
of points (pixels), which will be displayed as a graphical output. To get more knowledge
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about conics see [2, 11, 14]. Recall the general conic section equation and its matrix
representation Q with its determinant |Q| in the form

Au2
1 + 2Bu1u2 + Cu2

2 + 2Du1 + 2Eu2 + F = 0, Q =


A B D

B C E

D E F

 ,

|Q| =

∣∣∣∣∣∣∣∣
A B D

B C E

D E F

∣∣∣∣∣∣∣∣ = ACF + 2BDE − CD2 − AE2 −B2F.

From the matrix representation Q of conic sections we can derive their properties. If
|Q| = 0 we say that the conic is degenerate (intersected lines, parallel lines). If |Q| 6= 0 so
that Q is not degenerate and we are able to see what type of conic section it is. Computing
determinant of a sub-matrix Q2×2 of Q

Q2×2 =

(
A B

B C

)
, |Q2×2| =

∣∣∣∣∣A B

B C

∣∣∣∣∣ = AC −B2,

gives information which type of conic section it is. Conic Q is an ellipse ⇐⇒ |Q2×2| > 0,
parabola if |Q2×2| = 0 and hyperbola if |Q2×2| < 0. We care about ellipses and hyperbolas,
because other types of conics are unlikely to occur in conic fitting algorithm. Ellipses and
hyperbolas are central conics. Their center (c1, c2) ∈ R2 is computed as(

c1

c2

)
=

(
A B

B C

)−1(
−D
−E

)
=

(
BE−CD
AC−B2

DB−AE
AC−B2

)
.

Counterclockwise angle θ ∈ (−1
4
π, 3

4
π〉 of rotation round e1 axis for ellipses is given by

θ =


1
4
π, A = C and sign(B) 6= sign(|Q2×2|),

3
4
π, A = C and sign(B) = sign(|Q2×2|),

1
2

arctan( 2B
A−C

), A < C,
1
2
π + 1

2
arctan( 2B

A−C
), A > C.

And counterclockwise angle θ ∈ (−1
4
π, 3

4
π〉 of rotation around e1 axis for hyperbolas is

given by

θ =


1
4
π, A = C and sign(B) 6= sign(|Q2×2|),

3
4
π, A = C and sign(B) = sign(|Q2×2|),

1
2

arctan( 2B
A−C

), A > C,
1
2
π + 1

2
arctan( 2B

A−C
), A < C.

Note that non-degenerate, non-parabolic conic with angle θ ∈ (−1
4
π, 3

4
π〉 is the same conic

as conic with angle θ + π. To find the semi-axes lengths we have to compute eigenvalues
λ1,2 of the matrix Q2×2 first.

|Q2×2| =

∣∣∣∣∣A− λ B

B C − λ

∣∣∣∣∣ = 0, λ2 − (A+ C)λ+ AC −B2 = 0

λ1,2 =
(A+ C)±

√
(A+ C)2 − 4(AC −B2)

2
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Then the centralized conic with u′
1 = u1 − c1 and u′

2 = u2 − c2, where u1, u2 are points
lying on conic, can be rewritten to its standard form and thus we can get semi-axes length
a, b.

λ1u
′
1
2 + λ2u

′
2
2 = − |Q|

|Q2×2|
=⇒ −|Q2×2|λ1u

′
1
2

|Q|
− |Q2×2|λ2u

′
2
2

|Q|
= 1.

If Q is hyperbola, then λ1,2 have opposite sign. Now the centralized axes-aligned ellipse,
hyperbola has following equation:

u′
1
2

a2
+

u′
2
2

b2
= 1,

u′
1
2

a2
− u′

2
2

b2
= 1.

The squared semi-axes length a, b for ellipses are as follows. Note, that these equations
hold for |Q| > 0. If |Q| < 0 then we simply multiply Q by −1.

a2 = − |Q|
|Q2×2|λ1

= − 2(ACF + 2BDE − CD2 − AE2 −B2F )

(AC −B2)((A+ C) +
√

(A+ C)2 − 4(AC −B2))
,

b2 = − |Q|
|Q2×2|λ2

= − 2(ACF + 2BDE − CD2 − AE2 −B2F )

(AC −B2)((A+ C)−
√

(A+ C)2 − 4(AC −B2))
.

The squared semi-axes length a, b for hyperbolas are as follows:

a2 = − |Q|
|Q2×2|λ1

= − 2(ACF + 2BDE − CD2 − AE2 −B2F )

(AC −B2)((A+ C) +
√

(A+ C)2 − 4(AC −B2))
,

b2 =
|Q|

|Q2×2|λ2

=
2(ACF + 2BDE − CD2 − AE2 −B2F )

(AC −B2)((A+ C)−
√

(A+ C)2 − 4(AC −B2))
.

The parametric equation for the ellipse with counterclockwise rotation θ, centered in
(c1, c2) and with semi-axes lengths a, b is given by(

u1

u2

)
=

(
c1 + a cos(α) cos(θ)− b sin(α) sin(θ)
c2 + a cos(α) sin(θ) + b sin(α) cos(θ)

)
α ∈ 〈0, 2π). (2.9)

Analogously for a hyperbola with counterclockwise rotation θ, centered in (c1, c2) and
with semi-axes lengths a, b is given by(

u1

u2

)
=

(
c1 + a cosh(α) cos(θ)− b sinh(α) sin(θ)
c2 + a cosh(α) sin(θ) + b sinh(α) cos(θ)

)
α ∈ R. (2.10)
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2.3. Ellipse Extraction
Suppose a camera, lying somewhere on the tube axis, with a point light source illuminating
some neighborhood. Let the camera be rotated, so that it is oriented to same direction
as a tangent of the axis. Then the camera can capture 2 types of images (Figures 2.1,
2.2). If we use certain image filters, we can extract a set of points (pixels of the image)
highlighting a character of the tube in certain distance3 in front of the camera. These
points (pixels) are using conic fitting algorithm (introduced in Subsection 1.2.5) to get
conic (in this case our aim is to always get an ellipse) in IPNS representation (vector in
R5,3 ⊂ G5,3). Matrix form of that ellipse is then obtained using (1.41) and its properties
from equations defined in Subsection 2.2.3. From the ellipse properties we can further
estimate a navigation trajectory through the tube. Note that in this Section we will use
three kind of points; point of image (pixel with coordinates i, j) is denoted by I i,j

4, point
projected onto rectangle (2D subspace of Euclidean space R3) is denoted by uproj (and
its scaled variation uproj), and point from Euclidean space R3 is denoted by u.

In the first Subsection we briefly introduce principle of creating 3D object in graphical
software. Then we analyze the camera view in the dark tube (illuminated by a point
source of light in the camera’s position) and define a highlight matrices carrying points
for the conic fitting algorithm. By means of projective geometry in computer graphics, we
analyze and try to restore the tube axis using gained ellipses from conic fitting algorithm
from different points in the tube. In this Section we commonly use term point, by what
we mean vector that goes from origin to that point.

In the tube a plane intersection with the tube results in a circle with and from our
camera position can be viewed as a circle or an ellipse. In Figures 2.5, 2.6 we can see
discussed situation, where green plane is set by point of the axis and by its tangent in that
point. We can already see the connection between the curved tube and ellipse observed
from camera position.

2.3.1. Tube generation
In this Subsection we briefly introduce computer graphic software (Unity) on tube gener-
ation. Tube assumed in this thesis can be an object that consist of 2 types of segments;
cylinder and torus. Tube can have only constant diameter and its surface has to be con-
tinuous and transition between the cylinder and the torus has to be smooth. Then the
tube axis is either a line or part of a circle, which follow each other smoothly. The Figure
2.3 shows the principle of creating the tube mesh. Note that vectors p, tc are normalized.
Object in 3D computer graphics consist of triangles, see [13]. In Unity, first we have to
create a set of points, which lie on the tube. After that we create a set which connects
the points in particular way. As we can see on the right part of Figure 2.3, the triangle
is created by certain 3 points. Important is the order of points, because it carries also
information about the normal of the triangle. For example taking triangle indexed by
{1, 0,m}, results in downward facing normal and triangle indexed by {0, 1,m} result in
upward facing normal.

3We suppose that the filter will extract pixels of projected tube points that are in a similar distance
to the camera.

4Symbol I denotes pseudoscalar in terms of geometric algebra. However, in this Section, we do not
use geometric algebra terminology, so by I we mean an image.
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Figure 2.1: Camera view in a straight tube Figure 2.2: Camera view in a curved tube
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Figure 2.3: A way to create a tube mesh in the computer geometry

Definition 2.3.1. Let {ci}i, ci ∈ R3, i = 1, . . . , n be a set of points of the tube axis c
and let vector tci ∈ R3 be tangent to the axis at the point ci. Then the set of points that
lie on a tube can be obtained from the following n×m point set

V i(m−1)+j+1 = ci + r cos( j
m
)pi + r sin( j

m
)tci × pi,

where r ∈ R+, pi ∈ R3 5 is orthogonal to tci, and j = 0, . . . ,m− 1. This set is called set
of vertices.

Definition 2.3.2. Let V n×m be a set of vertices of the tube, where n is a number of
points that lie on the axis and m is a number of points lying on single circle of the tube.

5We can choose the initial point p1 arbitrarily, but we have to be consistent with the rotation of pi.
For each tci we find rotation angles to tci+1. These rotations are applied to pi. This results in a smooth
mesh.
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Then the set of triangles, that connect the vertices of the tube is defined as a set of indexes
T k, k = 1, . . . , 6(n− 1)m,

T 6((i−1)(m−1)+j)+1 = (i− 1)(m− 1) + j + 1

T 6((i−1)(m−1)+j)+2 = (i− 1)(m− 1) + j

T 6((i−1)(m−1)+j)+3 = i(m− 1) + j

T 6((i−1)(m−1)+j)+4 = i(m− 1) + j + 1

T 6((i−1)(m−1)+j)+5 = (i− 1)(m− 1) + j + 1

T 6((i−1)(m−1)+j)+6 = i(m− 1) + j

i ∈ {1, . . . , n− 1}, j ∈ {1, . . . ,m− 2}.

(2.11)

T 6((i−1)(m−1)+j)+1 = (i− 1)m

T 6((i−1)(m−1)+j)+2 = (i− 1)m+ j

T 6((i−1)(m−1)+j)+3 = im+ j

T 6((i−1)(m−1)+j)+4 = im

T 6((i−1)(m−1)+j)+5 = (i− 1)m

T 6((i−1)(m−1)+j)+6 = im+ j

i ∈ {1, . . . , n− 1}, j = m− 1. (2.12)

There are 2(n − 1)m − 1 triangles, where k-th triangle can be obtained from the set of
vertices and set of triangles as follows, either from set of indexes (the k-th triangle is
indexed by) {T 3k+1,T 3k+2,T 3k+3}, or from set of vertices (the k-th triangle is generated
by vertices) {V T 3k+1

,V T 3k+2
,V T 3k+3

}.

Six points are defining one rectangle. Equation (2.12) completes the last missing
rectangle to (2.11). For example if we look at Figure 2.3, we can clearly get first 2
triangles from {{T i}, i = 1, . . . , 6} = {1, 0,m,m+1, 1,m} and the last two triangles from
{{T j}, j = 6(m− 1) + 1, . . . , 6(m− 1) + 6} = {0,m− 1, 2m− 1,m, 0, 2m− 1}.

Figure 2.4: Wire frame of tube in Unity6
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Figure 2.5: Plane intersection example in a straight tube.

Figure 2.6: Plane intersection example in a curved tube

2.3.2. Pixels Selection
In this subsection we introduce two methods how to get a set of points, which we will fill
the conic fitting algorithm. As we discussed in the introduction to this Section, suppose a
camera that lies on the tube axis and in addition, it is pointed in the direction of a tangent
to the axis. If the conic, produced by the fitting algorithm, is centered in the middle of
the image, then the tube is straight in some neighborhood in front of the camera. If the
center is not in the middle of the image, then the tube is curved in some distance. An
example for the first case is Figure 2.1 and for the second see Figure 2.2. Question is how
to find a set of points that can generate ellipses shown in Figures 2.5, 2.6.

The first algorithm for finding such set is taking points with certain brightness (color
value). Let I be considered as a cameras screen7. Unity has function
2DTexture.GetPixel(i,j).grayscale, which can be understood as the brightness (con-
verts a color value to a gray scale) of the pixel, because it converts ARGB8 format into

6Note that Unity uses inverted e1, e2 axis, so compared to the left part of Figure 2.3, the points are
ordered counterclockwise.

7As a screen we consider a matrix (image) I with the following properties; Iwidth(Iheight) is a number
of pixels in image’s horizontal(vertical) layer, Ii,j is a color value of the pixel i, j. However, we consider
Ii,j as the pixel’s brightness.

8Alpha, red, green, blue. Alpha is a coefficient for transparency of the color.
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Figure 2.7: First algorithm result on Figures 2.1 and 2.2

number within zero and one. Now, let Hb be a Iwidth × Iheight brightness highlighting
matrix, where

Hb i,j =

{
1 if I i,j ≥ bmin ∧ I i,j ≤ bmax,

0 else,
(2.13)

where bmin is the minimal brightness of the pixel and bmax is the maximal. For example,
take Figures 2.1, 2.2 and set bmin = 0.18 and bmin = 0.19, Iwidth = Iheight = 720. We will
visualize the highlight matrix as blue pixels on the screen and draw green ellipse using
the conic fitting algorithm (the method of implementing the algorithm is described at the
end of this Subsection). For these values, the result is sufficient in case of the straight
tube, but in case of the curved tube these points does not make convincing elliptic shape
on their own as we can notice on Figure 2.7.

The second algorithm of highlighting points is based on the difference in brightness
between neighborhoods. Let Hd be a Iwidth× Iheight difference in brightness highlighting
matrix, where

Hd i,j =


1 if max{I[i− 1, i, i+ 1; j − 1, j, j + 1]}−
−min{I[i− 1, i, i+ 1; j − 1, j, j + 1]} > d,

0 else,
(2.14)

where d is the targeted difference in brightness. As with previous highlight matrix we
take Figures 2.1, 2.2 and set d = 0.03. Unfortunately, Figure 2.1 is too smooth to find any
points. From Figure 2.8 we ca observe, that the ellipse indicated in the contour, compared
with the drawn ellipse, is not that precise. However, this filter can be used to extract
exact ellipse parameters from Figures 2.5, 2.6. In the next Subsection we will work with
pixels selection from the matrix Hb.
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Figure 2.8: Second algorithm result on Figures 2.1 and 2.2

We start with the implementation of conic fitting algorithm (Subsection 1.2.5) by
embedding points from the highlight matrix H to G5,3. Let n = Iwidth and m = Iheight,
then the point set U is computed as follows,

ui+n(j−1) =

{
(i− 1

2
n)e1 + (j − 1

2
m)e2 ⇐⇒ H i,j = 1,

o else.

Then we compute the matrix P (1.61),

P =
nm∑
i

BC(ui)C(ui)
TB, ui ∈ U.

Rest of the steps are same as in Subsection 1.2.5.

2.3.3. Tube Axis Recovery
If we want to recover the tube axis using the above algorithms (resulting in a single
ellipse), we have to find the connection between the shape and position of the ellipse on
the screen and known environment properties (camera and tube properties). We can use
projective geometry in computer graphics to see how the point in 3D is projected on the
screen (to find more about computer graphics and projective geometry, see [4]).

In the computer graphics, camera has 3 main properties along with its position, ro-
tation and resolution. The first property is a FOV (field of view) and the last two are
znear, zfar, i.e. the closest and the most distant point that can be projected. Now we
consider that the camera has its own coordinate system (we consider that the camera is
static in its own coordinate system and changes to its position and rotation are done in
global coordinate system). The reason to do this is that we don’t have to manipulate with
the projection matrix M described below, but rather transform the rest of the space. The
camera (in its own coordinate system) is placed in the origin o = (0, 0, 0) and it is pointed
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to e3-axis (0, 0, 1). Then the point u = (u1, u2, u3) ∈ R3 is projected using a projection
matrix M (according to [8]),

M =


Iheight

Iwidth
cot(FOV

2
π
180

) 0 0 0

0 cot(FOV
2

π
180

) 0 0

0 0
zfar

zfar−znear
1

0 0
−znearzfar
zfar−znear

0

 ,

uM =
(
u1 u2 p3 1

)
,

uproj = uMM =

=
(
u1

Iheight

Iwidth
cot(FOV

2
π
180

) u2 cot(FOV
2

π
180

) u3
zfar

zfar−znear
+

−znearzfar
zfar−znear

u3

)
,

uproj =
(

Iwidth

2

uproj [1]

uproj [4]

Iheight

2

uproj [2]

uproj [4]

)
=

= 1
2

(
u1

u3
Iheight cot(FOV

2
π
180

) u2

u3
Iwidth cot(FOV

2
π
180

)
)
=

= 1
2u3

cot(FOV
2

π
180

)
(
u1Iheight u2Iwidth

)
,

(2.15)
where uproj is a projection of the point u to a rectangle given by points (−1, 1, 1),

u

w

e1

e2

e3

vproj

(1,−1, 1)

(1, 1, 1)(−1, 1, 1)

(−1,−1, 1)

Figure 2.9: Projection of points into the rectangle

(1, 1, 1), (1,−1, 1), (−1,−1−1) as it is visualized in Figure 2.9. Term Iwidth

Iheight
is commonly

called an aspect ratio. Note that the point u is projected to the pixel with coordinates
α(u)[1], α(u)[2], where

α(u) = Round
(
uproj[1] +

1
2
Iwidth uproj[2] +

1
2
Iheight

)
.

Note that the following assumptions are made on the orthographic projection9. In the
case when the generated ellipse is a circle, we can say that the e3 coordinate of the points
on the circle is constant as we can see on Figure 2.10. In the case of an ellipse, when
observing curved part of the tube, there exist 2 points with the same e3 coordinates, along

9Note that the views on Figures 2.10, 2.11 are not perspective, but for simplicity rather orthographic.
As we will see, this approach
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e3

e2

e1

z

e3

e2

e1

Figure 2.10: Orthographic view of a circle from distance
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Figure 2.11: Orthographic view of rotated circle around e1 axis from distance

with ellipses center, as we can see in Figure 2.11. It is no surprise that these 2 points are
on major semi-axis. If we compute distance of the points uproj, vproj, we get 2a (a is the
length of ellipses major semi-axis).

uproj =
(
cproj[1] + a cproj[2]

)
= 1

2u3
cot(FOV

2
π
180

)
(
u1Iheight u2Iwidth

)
,

vproj =
(
cproj[1]− a cproj[2]

)
= 1

2v3
cot(FOV

2
π
180

)
(
v1Iheight v2Iwidth

)
,

where u1, u2, u3 and v1, v2, v3 are coefficients of 3D points u,v and a is major semi-axis
length. We can use that u3 = v3, u2 = v2 and calculate an Euclidean distance of these 2
points, which is ‖·‖2 norm of vector u− v

‖u− v‖2 =
√
(cproj[1] + a− cproj[1] + a)2 + (cproj[2]− cproj[2])2 = 2a =

= 1
2u3

cot(FOV
2

π
180

)
√
(u1Iheight − v1Iheight)2 + (u2Iwidth − v2Iwidth)2 =

=
Iheight

2u3
cot(FOV

2
π
180

)(u1 − v1),

(2.16)
where u1−v1 = 2r, where r is the radius and since u3 is the only unknown in the previous
equation we can compute it directly. Note that a is semi-axis length of the ellipse in
perspective view, while r is actual tube radius. Thus

2a =
Iheight

2u3
cot(FOV

2
π
180

)2r

c3 = u3 =
Iheight

2
cot(FOV

2
π
180

) r
a
.

With all this in mind we are now able to compute the center’s e3 coordinate of the conic.
Now it is easy to compute the rest of the centers coordinates as follows(

cproj[1] cproj[2]
)

= 1
2c3

cot(FOV
2

π
180

)
(
c1Iheight c2Iwidth

)
⇐⇒

⇐⇒
(
c1 c2

)
= 2c3 tan(FOV

2
π
180

)
(
cproj[1]

1
Iheight

cproj[2]
1

Iwidth

)
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The computer application has a camera with the following properties: FOV = 100, znear =
0.3, zfar = 1000 and Iheight = Iwidth = 720. Then we approximate the ellipses center
c = (c1, c2, c3) ∈ R3 in camera coordinate system by

c3 = 360 cot(5π
18
) r
a
,

c1 = c3
360

tan(5π
18
)cproj[1] =

r
a
cproj[1],

c2 = c3
360

tan(5π
18
)cproj[2] =

r
a
cproj[2],

(2.17)

where cproj[1], cproj[2] ∈ R2 is center of the ellipse computed by conic fitting algorithm,
a is its major semi-axis length, and r is radius of the tube. Remember that this center
c is related to the camera and we have to place it into global coordinate system, which
can be done using Euler angles of the camera rotation. Euler angles are commonly used
in computer graphics and they are easy to work with. Recall from linear algebra that
rotation can be computed using rotation matrix for each axis

Re1(θ) =


1 0 0

0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 ,

Re2(θ) =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 ,

Re3(θ) =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 .

Let θe1 , θe2 , θe3 be Euler angles of camera rotation in global coordinate system. Let
w = (w1, w2, w3) ∈ R3 be a camera position in global coordinates, then the center of the
ellipse c is transformed to global coordinate system center ĉ as follows

ĉ = w + cRe1(θe1)Re2(θe2)Re3(θe3). (2.18)

Now we estimate the tube axis. Suppose, that the camera is moving along an exact
axis trough a part of the tube with the following restrictions. The look rotation of the
camera goes with a tangent of the axis at a point where the camera is placed. Every step
i ∈ {1, . . . , n} camera captures an image, from which we will obtain highlight matrix.
Using conic fitting algorithm, we compute the ellipse properties. From that properties
and the camera properties, we can compute the i-th point of estimated tube. Then the
tube sector is divided into n points and the estimate of the axis is then set of points
ĉi ∈ R3 , i = 1, . . . , n

ĉ1 = w1

ĉi = wi + ciRi,e1(θi,e1)Ri,e2(θi,e2)Ri,e3(θi,e3),
(2.19)

where wi is position of the camera in global coordinate system, ci is position of center
of the ellipse in camera coordinate system and Rti,e1(θi,e1)Ri,e2(θi,e2)Ri,e3(θi,e3) are Euler
angles from global coordinate system to cameras.
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Figure 2.12: Perfect scenario simulation, where the exact elliptic projection of circle is
obtained from intersection of plane (distance from camera is 8

3
r) with the tube.

Figure 2.13: The axis is computed using Hb (2.13), with values bmin = 0.18, bmax = 0.19.

Note that even the perfect scenario showed in Figure 2.12 does not give exact axis
back. This is due to perspective projection properties, which are noticeable from Figure
2.14.
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Figure 2.14: Inaccuracy in perspective projection.

2.3.4. Application documentation
This Subsection is guide to the application interface, with a brief explanation of each
function. First Figure is for tube generation. Note that all changes are done after pressing
’Apply Changes’.

1.
2.

3.

4.

5.

6.

7.

8.

1. Change tube radius by rewriting the number in input field.

2. Change mesh size by rewriting the number in input field. This number is used
to calculate m, the number of points in one circle as you can see in Figure 2.3.
m = d2π · r ·meshsizee, where de is ceiling function.

3. Choose the number of tube segments in dropdown. You can choose from 1 up to 10
total segments.

4. In this part of the menu, you can navigate through each of the segments.

55



2.3. ELLIPSE EXTRACTION

5. In this part you can set data to each segment. ’Segment type’ can be either ’Cylin-
der’ or ’Torus’. To each of the ’Segment type’ you can assign ’Segment length’. If
the ’Torus’ is selected, you can also assign ’Segment radius’, which affect the radius
of a circle part of the tube segment axis. And with selecting ’Torus’, you can also
select ’Segment angle’, where with 0° the tube will continue down, with 90° the tube
will continue right and so on.

6. If you hit button ’Create New’, program will create n segments with default settings
(’Segment type’ = ’Cylinder’, ’Segment length’ = ’1’). If you hit ’Apply Changes’
button, program will apply all changes you made excluding changing number of
segments.

7. Push this button to set tube data to its default values.

8. Push this button to change interface to GAC Calculator.

Second Figure describe infertace for GAC Calculator.

1.

2.

3.

4.

5.

6.

7.

8.

9.

1. Choose either ’Inner Product Representation’ or ’Outer Product Representation’ in
this dropdown. Note that the input interface depends on the item selected 3. for
first item and 12. for second.

2. Choose either ’Ellipse’ or ’Hyperbola’.

3. This area is for input values for the conic in inner product representation.

4. In this area you can set transformations. You can also choose an order of performing
the transformation (by choice of numbers 1,2,3).

5. Push the button to compute a multivector in G5,3 basis. Program will compute
conic before and after the transformations are done. The original conic is gray and
the transformed is black.
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10.

11.

6. In this area, you can find an information about multivector in the form a2E2, a3E3,
a4E4, a5E5, a6E6, a7E7, where E2 = n+, E3 = n−, E4 = n×, E5 = e1, E6 = e2,
E7 = n+.

7. If press this button to hide/show an Image field (a place where you can see graphical
output).

8. If you check a ’Normalize Scale’ toggle, it adapts screen to the computed conic
(conic has preset size on the screen). Default resolution is 720 × 720, where the
origin is placed in the middle of screen. If you check a ’Transparent Mask’ toggle,
screen will be transparent and you will be able to see a view inside the tube.

9. This area contains the resulting conic, an information about a scale of one square
L and conic properties derived from the general equation.

10. In this dropdown you can choose either ’General Conic’, ’Axes-Aligned Conic’ or
’Circle’. Changing item selected from the dropdown will change a number of acces-
sible points (5 for the first item, 4 for the second item, and 3 for the third item).

11. In this area you can set points to span the conic by number of points depending on
dropdown 10. item selection.

Last Figure is used to describe functions connected to the conic fitting algorithm.

1. Push this button to translation of the camera and its light forward by one step. In
addition if a toggle ’Auto’ is checked, the camera will attempt to move 10 times per
second.

2. Push the button to Hide/show center curve (tube axis).

3. Push the button to activate/deactivate creation of highlight matrix depends on item
selection in dropdown in 4. In addition if a toggle ’Ellipse’ is checked, a conic fitting
algorithm will draw closest conic to the set of points (at least 5 points are required
to perform).
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

4. Choose item in dropdown and set properties of the filter (mask). The first is ’Pixel
Luminosity Filter’; ’Luminosity Values’ property controls certain pixel brightness
values (Matrix Hb). The second is ’Difference in Luminosity’ and it computes
minimal and maximal brightness of surrounding pixels (Matrix Hd). A ’Random
Reduce’ property causes that only one of n highlighted pixels is displayed and
counted. A ’Extend Mask By’ counts not only the highlighted pixel, but even n
pixels surrounding the pixel.

5. Push this button to simulate moving through the tube, during the simulation inter-
face is not interactable. If you select in dropdown 4. the first item, the simulation
is performed only with matrix Hb. If the second item is selected, to perform the
perfect scenario.

6. Push this button to point camera to the point on the center axis, which is ’24’ steps
ahead. You can change this value by changing the number in input field 7.

7. In this area if you check a ’Plane cutting the tube’ it shows a plane in distance of
a number written in input field.

8. Push the button to create a field where you can click with mouse. On that place
it creates a point and if there are at least 5 points, the conic fitting algorithm will
draw a conic closest to these points.

9. Push this button to capture and save screenshot to folder ’RenderOutput’ in png
format.

10. Push this button to export conic data to inner product representation input 3. Input
field has to be active to perform export.
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Conclusion
This thesis aimed to a tube axis estimation, which consists of projected ellipse centers

into environment of the tube. Chapter 1 gave us necessary mathematical background.
We defined a relation between the position of the basis blade in its basis and its signature
(1.12). This relation helped with the definition of multivector in C#, more specifically
with the grade projection, and actual transition between the form of the basis blades
(e1 ←→ E2). We used a fact that a multivector can be written as a linear combination
of basis blades to define that geometric, inner and outer products can be computed by
(1.14), (1.20), (1.21). We introduced inner (outer) product null space of a blade as a
set of vectors, whose inner (outer) product with the blade is zero. Important fast was
that IPNS and OPNS representations are related by duality. In Section 1.2 we defined
transition between the standard basis of R5,3 to basis R5,3∗, with corresponding bilinear
form B (1.31). Figures with examples were presented with data proving that the code was
precisely implemented. We have to point out that the translation of a conic in directions
e1, e2 (1.54), (1.55) are giving non-zero coefficients for the basis blades n−, n+. However,
it has no impact on software functionality because, as equation (1.40) showed, basis
vectors n− and n+ are orthogonal to all embedded points, so the conic remains the same
regardless the coefficients (in other words, equation (1.38) remains the same regardless
v×,v−). In Subsection 1.2.5 we explained conic fitting algorithm introduced in [6]. We
have shown that one point can change the result dramatically (Figures 1.10,1.11).

In Section 2.1 we implemented necessary algorithms to be able to perform geometric,
inner and outer product. Then we implemented efficient method for computing geometric
product of two basis blades as a basis blade with position from the value matrix (Code
2.9) with precomputed (Code 2.7 and Code 2.8) values for the geometric product. An
improvement can be made by generalizing this concept to the general geometric algebra
Gp,q and move the computation of the value matrix to C# . In Section 2.2 we defined two
functions φ (2.2) and φ−1 (2.3), which transit vectors between the bases R5,3 and R5,3∗.
Then, using φ−1, we implemented inner and outer product null space representations of
conics to C# code. Examples in Section 1.2 verified that this code was successfully imple-
mented and introduced software’s interface for creating conics. In Section 2.3 we created
3D environment including light source, camera and tube. From image data (Figures 2.1
and 2.2) we were able to create algorithms for choosing certain points and extract an
ellipse. However, only the first algorithm (using matrix Hb) was able to estimate the
tube axis, that was actually going through the tube (Figure 2.13). We compared that
algorithm to the best scenario (Figure 2.12), which took advantage of the cutting plane
(Figures 2.5 and 2.6). The inaccuracy, even in the best scenario, is caused by projective
geometry in computer graphics, where the size of the projected object depends only on
e3 coordinate. This causes that the distant objects (in e1, e2 coordinates) seems closer
than they really are. The next step would be an image processing to reduce the inaccu-
racy, or even compute the inaccuracy from the shape of the ellipse. Even considerable
are self-learning algorithms that can choose points based on different tube examples and
textures. The result given by matrix Hb is sufficient for demonstration of approach to
autonomous navigation of a robot with camera in the tube.
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Appendices
A C# _code, folder including C# source code for Unity engine

B Matlab_code, folder including MATLAB source code

C Version 1.0, folder including Unity files, screenshots are saved to RenderOutput

D GACImageProcessing.exe
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